Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-17T01:10:12.855Z Has data issue: false hasContentIssue false

3 - Epidemiology and etiology

from Section 1 - History and general issues

Published online by Cambridge University Press:  05 April 2013

Ching-Hon Pui
Affiliation:
St Jude's Children's Research Hospital
Get access

Summary

Introduction

The acute leukemias of childhood are a heterogeneous group of diseases. In this review of the descriptive and analytic epidemiology of these malignancies, specific subgroups are emphasized, as defined by morphology, cytogenetic features, or molecular markers. There is evidence that specific leukemic subgroups may have distinct etiologies, and that molecular abnormalities associated with particular subgroups may be linked with specific causal mechanisms. Moreover, the mutations produced at the successive stages of leukemogenesis, from initiation through induction to promotion, may all involve separate etiologic processes.

It is also important to note that changes over time in diagnostic practice and precision may account in part for some reported epidemiologic trends. Moreover, changes in terminology and classification schemes for leukemia make it difficult to make direct comparisons between studies, particularly if risk factors differ for different subgroups. However, in assessing risk factors, studies of the childhood leukemias present several methodologic advantages. The interval between exposure to putative risk factors and onset of leukemia may be shorter, recall of exposures is likely to be better, and intervening factors may be fewer than those associated with adult leukemias. These characteristics of childhood leukemia may facilitate identification of the most likely risk factors for the various leukemic subgroups. Furthermore, they lend themselves to an approach that includes both population studies and molecular epidemiologic techniques, permitting the design of research to assess genetic–environmental causal interactions. As studies of potential environmental causes of childhood leukemia have now accumulated to a degree that allows data synthesis, and in order to succinctly summarize the literature, recent meta-analyses rather than individual studies are cited preferentially below.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Horner, MJ, Ries, LA, Krapcho, M, et al. SEER Cancer Statistics Review, 1975–2006. Bethesda, MD: National Cancer Institute, 2009.Google Scholar
Gurney, JG, Severson, RK, Davis, S, Robison, LL. Incidence of cancer in children in the United States. Sex-, race-, and 1-year age-specific rates by histologic type. Cancer 1995;75:2186–2195.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Linet, MS, Devesa, SS. Descriptive epidemiology of childhood leukaemia. Br J Cancer 1991;63:424–429.CrossRefGoogle ScholarPubMed
GLOBOCAN 2000: Cancer Incidence, Mortality and Prevalence Worldwide Version 1.0. Lyon: IARC Press, 2000.Google Scholar
Parkin, DM, Kramarova, ED, Draper, GJ, et al. (eds.). International Incidence of Childhood Cancer, Vol II. Lyon: IARC Press, 1998.Google Scholar
Glazer, ER, Perkins, CI, Young, JL, Jr., et al. Cancer among Hispanic children in California, 1988–1994: comparison with non-Hispanic white children. Cancer 1999;86:1070–1079.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Kwan, ML, Buffler, PA, Abrams, B, Kiley, VA. Breastfeeding and the risk of childhood leukemia: a meta-analysis. Public Health Rep 2004;119:521–535.CrossRefGoogle ScholarPubMed
Bao, PP, Zheng, Y, Gu, K, et al. Trends in childhood cancer incidence and mortality in urban Shanghai, 1973–2005. Pediatr Blood Cancer 2000;54:1009–1013.Google Scholar
Gurney, JG, Davis, S, Severson, RK, et al. Trends in cancer incidence among children in the US. Cancer 1996;78:532–541.3.0.CO;2-Z>CrossRefGoogle Scholar
Blair, V, Birch, JM. Patterns and temporal trends in the incidence of malignant disease in children: I. Leukaemia and lymphoma. Eur J Cancer 1994;30A:1490–1498.CrossRefGoogle ScholarPubMed
McWhirter, WR, Petroeschevsky, AL. Incidence trends in childhood cancer in Queensland, 1973–1988. Med J Aust 1991;154:453–455.Google Scholar
Bunin, GR, Feuer, EJ, Witman, PA, Meadows, AT. Increasing incidence of childhood cancer: report of 20 years experience from the greater Delaware Valley Pediatric Tumor Registry. Paediatr Perinat Epidemiol 1996;10:319–338.CrossRefGoogle ScholarPubMed
Kaatsch, P, Haaf, G, Michaelis, JChildhood malignancies in Germany: methods and results of a nationwide registry. Eur J Cancer 1995;31A:93–99.Google ScholarPubMed
Linet, MS, Ries, LA, Smith, MA, Tarone, RE, Devesa, SS. Cancer surveillance series: recent trends in childhood cancer incidence and mortality in the United States. J Natl Cancer Inst 1999;91:1051–1058.CrossRefGoogle ScholarPubMed
Taylor, GM, Birch, JM. The hereditary basis of human leukemia. In Henderson, ES, Lister, TA, Greaves, MF (eds.) Leukemia. Philadelphia, PA: Saunders, 1996:210–245.Google ScholarPubMed
Norppa, H. Cytogenetic markers of susceptibility: influence of polymorphic carcinogen-metabolizing enzymes. Environ Health Perspect 1997;105:829–835.CrossRefGoogle ScholarPubMed
Ross, JA, Davies, SM, Potter, JD, Robison, LL. Epidemiology of childhood leukemia, with a focus on infants. Epidemiol Rev 1994;16:243–272.CrossRefGoogle ScholarPubMed
Puchkova, GP, Prigogina, EL, Fleischmann, EW, et al. Chromosome abnormalities in chronic myeloid leukemia in children. Hum Genet 1983;64:257–262.CrossRefGoogle ScholarPubMed
Woods, WG, Nesbit, ME, Buckley, J, et al. Correlation of chromosome abnormalities with patient characteristics, histologic subtype, and induction success in children with acute nonlymphocytic leukemia. J Clin Oncol 1985;3:3–11.CrossRefGoogle ScholarPubMed
Cimino, G, Lo-Coco, F, Biondi, A, et al. ALL-1 gene at chromosome 11q23 is consistently altered in acute leukemia of early infancy. Blood 1993;82:544–546.Google ScholarPubMed
Pui, CH, Raimondi, SC, Murphy, SB, et al. An analysis of leukemic cell chromosomal features in infants. Blood 1987;69:1289–1293.Google ScholarPubMed
Stone, RM, Mayer, RJ. The unique aspects of acute promyelocytic leukemia. J Clin Oncol 1990;8:1913–1921.CrossRefGoogle ScholarPubMed
Secker-Walker, LM, Berger, R, Fenaux, P, et al. Prognostic significance of the balanced t(1;19) and unbalanced der(19)t(1;19) translocations in acute lymphoblastic leukemia. Leukemia 1992;6:363–369.Google Scholar
Crist, W, Carroll, A, Shuster, J, et al. Philadelphia chromosome positive childhood acute lymphoblastic leukemia: clinical and cytogenetic characteristics and treatment outcome. A Pediatric Oncology Group study. Blood 1990;76:489–494.Google ScholarPubMed
Shurtleff, SA, Buijs, A, Behm, FG, et al. TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia 1995;9:1985–1989.Google Scholar
Robison, LL, Neglia, JP. Epidemiology of Down syndrome and childhood acute leukemia. Prog Clin Biol Res 1987;246:19–32.Google ScholarPubMed
Front, C-T, Brodeur, GM. Down's syndrome and leukemia: epidemiology, genetics, cytogenetics, and the mechanisms of leukemogenesis. Cancer Genet Cytogenet 1987;28:55–76.Google Scholar
Mundschau, G, Gurbuxani, S, Gamis, AS, et al. Mutagenesis of GATA1 is an initiating event in Down syndrome leukemogenesis. Blood 2003;101: 4298–4300.CrossRefGoogle ScholarPubMed
Wechsler, J, Greene, M, McDevitt, MA, et al. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet 2002;32:148–152.CrossRefGoogle ScholarPubMed
Zipursky, A, Thorner, P, de Harven, E, Christensen, H, Doyle, J. Myelodysplasia and acute megakaryoblastic leukemia in Down's syndrome. Leuk Res 1994;18: 163–171.CrossRefGoogle ScholarPubMed
Malinge, S, Izraeli, S, Crispino, JD. Insights into the manifestations, outcomes, and mechanisms of leukemogenesis in Down syndrome. Blood 2009;113:2619–2628.CrossRefGoogle ScholarPubMed
Mullvihill, JJ. Congenital and genetic diseases. In Fraumeni, JF, Jr. (ed.) Persons at High Risk of Cancer, San Diego, CA: Academic Press, 1975:3–31.Google Scholar
Bader, JL, Miller, RW. Neurofibromatosis and childhood leukemia. J Pediatr 1978;92:925–929.CrossRefGoogle ScholarPubMed
German, J, Bloom, D, Passarge, E. Bloom's syndrome. VII. Progress report for 1978. Clin Genet 1979;15:361–367.CrossRefGoogle ScholarPubMed
Woods, WG, Roloff, JS, Lukens, JN, Krivit, W. The occurrence of leukemia in patients with the Shwachman syndrome. J Pediatr 1981;99: 425–428.CrossRefGoogle ScholarPubMed
Hecht, F, Hecht, BK. Cancer in ataxia-telangiectasia patients. Cancer Genet Cytogenet 1990;46:9–19.CrossRefGoogle ScholarPubMed
Bloomfield, CD, Brunning, RD. Acute leukemia as a terminal event in nonleukemic hematopoietic disorders. Semin Oncol 1976;3:297–317.Google ScholarPubMed
Zeidler, C, Reiter, A, Yakisan, E, et al. [Long-term treatment with recombinant human granulocyte colony stimulating factor in patients with severe congenital neutropenia.]Klin Padiatr 1993;205:264–271.CrossRefGoogle Scholar
Shannon, KM, Turhan, AG, Rogers, PC, Kan, YW. Evidence implicating heterozygous deletion of chromosome 7 in the pathogenesis of familial leukemia associated with monosomy 7. Genomics 1992;14:121–125.CrossRefGoogle ScholarPubMed
Narod, SA, Stiller, C, Lenoir, GM. An estimate of the heritable fraction of childhood cancer. Br J Cancer 1991;63:993–999.CrossRefGoogle ScholarPubMed
Robison, LL, Nesbit, ME, Jr., Sather, HN, et al. Down syndrome and acute leukemia in children: a 10-year retrospective survey from Childrens Cancer Study Group. J Pediatr 1984;105:235–242.CrossRefGoogle ScholarPubMed
Watson, MS, Carroll, AJ, Shuster, JJ, et al. Trisomy 21 in childhood acute lymphoblastic leukemia: a Pediatric Oncology Group study (8602). Blood 1993;82:3098–3102.Google Scholar
Mertens, AC, Wen, W, Davies, SM, et al. Congenital abnormalities in children with acute leukemia: a report from the Children's Cancer Group. J Pediatr 1998;133:617–623.CrossRefGoogle ScholarPubMed
Narod, SA, Hawkins, MM, Robertson, CM, Stiller, CA. Congenital anomalies and childhood cancer in Great Britain. Am J Hum Genet 1997;60:474–485.Google ScholarPubMed
Anderson, R. Familial leukemia. Am J Dis Child 1955;81:313–322.Google Scholar
Maklin, M. Inheritance of cancer of the stomach and large intestine in man. J Natl Cancer Inst 1960;24:551–571.CrossRefGoogle Scholar
Gunz, FW, Gunz, JP, Vincent, PC, et al. Thirteen cases of leukemia in a family. J Natl Cancer Inst 1978;60:1243–1250.CrossRefGoogle ScholarPubMed
Farwell, J, Flannery, JT. Cancer in relatives of children with central- nervous-system neoplasms. N Engl J Med 1984;311:749–753.CrossRefGoogle ScholarPubMed
MacMahon, Levy MA. Prenatal origin of leukemia: evidence from tumors. N Engl J Med 1964;270:1082–1085.CrossRefGoogle Scholar
Keith, L, Brown, ER, Ames, B, Stotsky, M, Keith, DM. Leukemia in twins: antenatal and postnatal factors. Acta Genet Med Gemellol 1976;25:336–341.CrossRefGoogle ScholarPubMed
Chaganti, RS, Miller, DR, Meyers, PA, German, J. Cytogenetic evidence of the intrauterine origin of acute leukemia in monozygotic twins. N Engl J Med 1979;300:1032–1034.CrossRefGoogle ScholarPubMed
Hartley, SE, Sainsbury, C. Acute leukaemia and the same chromosome abnormality in monozygotic twins. Hum Genet 1981;58:408–410.CrossRefGoogle ScholarPubMed
Strong, LC. Genetics, etiology, and epidemiology of childhood cancer. In Sutow, WW, Vietti, TJ, Fernbach, DJ (eds.) Clinical Pediatric Oncology. St. Louis, MO: Mosby, 1984:14–41.Google Scholar
Elwood, PC. Possible explanation of the high concordance for acute leukemia in monozygotic twins. Lancet 1971;i:699.Google Scholar
Buckley, JD, Buckley, CM, Breslow, NE, et al. Concordance for childhood cancer in twins. Med Pediatr Oncol 1996;26:223–229.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Inskip, PD, Harvey, EB, Boice, JD, Jr., et al. Incidence of childhood cancer in twins. Cancer Cause Control 1991;2:315–24.CrossRefGoogle ScholarPubMed
Ford, AM, Ridge, SA, Cabrera, ME, et al. In utero rearrangements in the trithorax-related oncogene in infant leukaemias. Nature 1993;363:358–360.CrossRefGoogle ScholarPubMed
Maia, AT, Ford, AM, Jalali, GR, et al. Molecular tracking of leukemogenesis in a triplet pregnancy. Blood 2001;98: 478–482.CrossRefGoogle Scholar
Ford, AM, Pombo-de-Oliveira, MS, McCarthy, KP, et al. Monoclonal origin of concordant T-cell malignancy in identical twins. Blood 1997;89: 281–285.Google ScholarPubMed
Ford, AM, Bennett, CA, Price, CM, et al. Fetal origins of the TEL-AML1 fusion gene in identical twins with leukemia. Proc Natl Acad Sci USA 1998;95: 4584–4588.CrossRefGoogle ScholarPubMed
Hawkins, MM, Draper, GJ, Winter, DL. Cancer in the offspring of survivors of childhood leukaemia and non-Hodgkin lymphomas. Br J Cancer 1995;71: 1335–1339.CrossRefGoogle ScholarPubMed
Bajnoczky, K, Khezri, S, Kajtar, P, et al. No chromosomal instability in offspring of survivors of childhood malignancy. Cancer Genet Cytogenet 1999;109:79–80.CrossRefGoogle ScholarPubMed
Infante-Rivard, C, Guiguet, M. Family history of hematopoietic and other cancers in children with acute lymphoblastic leukemia. Cancer Detect Prev 2004;28:83–87.CrossRefGoogle ScholarPubMed
Perrillat, F, Clavel, J, Jaussent, I, et al. Family cancer history and risk of childhood acute leukemia (France). Cancer Causes Control 2001;12: 935–941.CrossRefGoogle Scholar
Rudant, J, Menegaux, F, Leverger, G, et al. Family history of cancer in children with acute leukemia, Hodgkin's lymphoma or non-Hodgkin's lymphoma: the ESCALE study (SFCE). Int J Cancer 2007;121:119–126.CrossRefGoogle Scholar
Perillat-Menegaux, F, Clavel, J, Auclerc, MF, et al. Family history of autoimmune thyroid disease and childhood acute leukemia. Cancer Epidemiol Biomarkers Prev 2003;12:60–63.Google ScholarPubMed
Snyder, R. Benzene and leukemia. Crit Rev Toxicol 2002;32:155–210.CrossRefGoogle ScholarPubMed
Stewart, A. A survey of childhood malignancies. BMJ 1958;2:1495–1507.CrossRefGoogle Scholar
MacMahon, B, Newill, VA. Birth characteristics of children dying of malignant neoplasms. J Natl Cancer Inst 1962;28:231–244.Google ScholarPubMed
Gibson, RW, Bross, ID, Graham, S, et al. Leukemia in children exposed to multiple risk factors. N Engl J Med 1968;279:906–909.CrossRefGoogle ScholarPubMed
Stewart, A, Kneale, GW. Radiation dose effects in relation to obstetric X-rays and childhood cancers. Lancet 1970;i:1185–1188.CrossRefGoogle Scholar
Wakeford, R. Childhood leukaemia following medical diagnostic exposure to ionizing radiation in utero or after birth. Radiat Prot Dosimetry 2008;132:166–174.CrossRefGoogle ScholarPubMed
Schuz, J, Ahlbom, A. Exposure to electromagnetic fields and the risk of childhood leukaemia: a review. Radiat Prot Dosimetry 2008;132:202–211.CrossRefGoogle ScholarPubMed
Linet, MS, Hatch, EE, Kleinerman, RA, et al. Residential exposure to magnetic fields and acute lymphoblastic leukemia in children. N Engl J Med 1997;337: 1–7.CrossRefGoogle ScholarPubMed
Little, MP, Charles, MW, Wakeford, R. A review of the risks of leukemia in relation to parental pre-conception exposure to radiation. Health Phys 1995;68:299–310.CrossRefGoogle ScholarPubMed
Preston, DL, Kusumi, S, Tomonaga, M, et al. Cancer incidence in atomic bomb survivors. Part III. Leukemia, lymphoma and multiple myeloma, 1950–1987. Radiat Res 1994;137: S68–S97.CrossRefGoogle ScholarPubMed
Doll, R. Hazards of ionising radiation: 100 years of observations on man. Br J Cancer 1995;72:1339–1349.CrossRefGoogle ScholarPubMed
Harvey, EB, Boice, JD, Jr., Honeyman, M, Flannery, JT. Prenatal X-ray exposure and childhood cancer in twins. N Engl J Med 1985;312:541–545.CrossRefGoogle ScholarPubMed
Rodvall, Y, Pershagen, G, Hrubec, Z, et al. Prenatal X-ray exposure and childhood cancer in Swedish twins. Int J Cancer 1990;46:362–365.CrossRefGoogle ScholarPubMed
Mole, RH. Childhood cancer after prenatal exposure to diagnostic X-ray examinations in Britain. Br J Cancer 1990;62:152–168.CrossRefGoogle ScholarPubMed
Boice, JD, Inskip, PD. Radiation- induced leukemia. In Henderson, ES, Lister, TA, Greaves, MF (eds.) Leukemia. Philadelphia, PA: Saunders, 1996:195–209.Google Scholar
Darby, SC, Weiss, HA. Human studies in radiation leukemogenesis. In Hendry, JH, Lord, BI (eds.) Radiation Toxicology: Bone Marrow and Leukemia. London: Taylor & Francis, 1995:337–353.Google Scholar
Simpson, CI, Hempelmann, LH, Fuller, LM. Neoplasms in children treated with X-rays in infancy for thymic enlargement. Radiology 1955;64:840–855.CrossRefGoogle ScholarPubMed
Ron, E, Moden, B. Thyroid and other neoplasms following childhood scalp irradiation. In Boice, JD, Fraumeni, JF (eds.) Radiation Carcinogenesis, Epidemiology and Biological Significance. New York: Raven Press, 1984:139–151.Google Scholar
Tucker, MA, Coleman, CN, Cox, RS, Varghese, A, Rosenberg, SA. Risk of second cancers after treatment for Hodgkin's disease. N Engl J Med 1988;318:76–81.CrossRefGoogle ScholarPubMed
Egeler, RM, Neglia, JP, Arico, M, et al. Acute leukemia in association with Langerhans cell histiocytosis. Med Pediatr Oncol 1994;23:81–85.CrossRefGoogle ScholarPubMed
Infante-Rivard, C, Mathonnet, G, Sinnett, D. Risk of childhood leukemia associated with diagnostic irradiation and polymorphisms in DNA repair genes. Environ Health Perspect 2000;108:495–498.CrossRefGoogle ScholarPubMed
Linos, A, Kyle, RA, Elveback, LR, Kurland, LT. Leukemia in Olmsted County, Minnesota, 1965–1974. Mayo Clin Proc 1978;53:714–718.Google Scholar
Boice, JD, Jr. The danger of X-rays: real or apparent?N Engl J Med 1986;315: 828–830.CrossRefGoogle ScholarPubMed
Noshchenko, AG, Bondar, OY, Drozdova, VD. Radiation-induced leukemia among children aged 0–5 years at the time of the Chernobyl accident. Int J Cancer 2009;127: 412–426.Google Scholar
Davis, S, Day, RW, Kopecky, KJ, et al. Childhood leukaemia in Belarus, Russia, and Ukraine following the Chernobyl power station accident: results from an international collaborative population-based case–control study. Int J Epidemiol 2006;35:386–396.CrossRefGoogle ScholarPubMed
Hjalmars, U, Kulldorff, M, Gustafsson, G. Risk of acute childhood leukaemia in Sweden after the Chernobyl reactor accident. Swedish Child Leukaemia Group. BMJ 1994;309:154–157.CrossRefGoogle ScholarPubMed
Auvinen, A, Hakama, M, Arvela, H, et al. Fallout from Chernobyl and incidence of childhood leukaemia in Finland, 1976–92. BMJ 1994;309:151–154.CrossRefGoogle Scholar
Cartwright, RA, McKinney, PA, Alexander, FE, Ricketts, J. Leukemia in young children. Lancet 1988;ii:960.CrossRefGoogle Scholar
Gibson, BE, Eden, OB, Barrett, A, Stiller, CA, Draper, GJ. Leukaemia in young children in Scotland. Lancet 1988;ii:630.CrossRefGoogle Scholar
Michaelis, J, Kaletsch, U, Burkart, W, Grosche, B. Infant leukaemia after the Chernobyl accident. Nature 1997;387:246.CrossRefGoogle ScholarPubMed
Torok, S, Borgulya, G, Lobmayer, P, et al. Childhood leukaemia incidence in Hungary, 1973–2002. Interpolation model for analysing the possible effects of the Chernobyl accident. Eur J Epidemiol 2005;20:899–906.CrossRefGoogle ScholarPubMed
Petridou, E, Proukakis, C, Tong, D, et al. Trends and geographical distribution of childhood leukemia in Greece in relation to the Chernobyl accident. Scand J Social Med 1994;22:127–131.CrossRefGoogle ScholarPubMed
Petridou, E, Trichopoulos, D, Dessypris, N, et al. Infant leukaemia after in utero exposure to radiation from Chernobyl. Nature 1996;382:352–353.CrossRefGoogle ScholarPubMed
Parkin, DM, Cardis, E, Masuyer, E, et al. Childhood leukemia following the Chernobyl accident: the European Childhood Leukemia-Lymphoma Incidence Study (ECLIS). Eur J Cancer 1992;29A:87–95.Google Scholar
Ivanov, EP, Tolochko, G, Lazarev, VS, Shuvaeva, L. Child leukaemia after Chernobyl. Nature 1993;365:702.CrossRefGoogle ScholarPubMed
(UNSCEAR) UNSCotEoAR. Sources and Effects of Ionizing Radiation, E.94.IX.11. New York: United Nations, 1994.Google Scholar
Stevens, W, Thomas, DC, Lyon, JL, et al. Leukemia in Utah and radioactive fallout from the Nevada test site. A case–control study. JAMA 1990;264:585–591.CrossRefGoogle ScholarPubMed
Cook-Mozaffari, PJ, Darby, SC, Doll, R, et al. Geographical variation in mortality from leukaemia and other cancers in England and Wales in relation to proximity to nuclear installations, 1969–78. Br J Cancer 1989;59:476–485.CrossRefGoogle ScholarPubMed
Bithell, JF, Dutton, SJ, Draper, GJ, Neary, NM. Distribution of childhood leukaemias and non-Hodgkin's lymphomas near nuclear installations in England and Wales. BMJ 1994;309:501–505.CrossRefGoogle ScholarPubMed
Hill, C, Laplanche, A. Overall mortality and cancer mortality around French nuclear sites. Nature 1990;347:755–757.CrossRefGoogle ScholarPubMed
Jablon, S, Hrubec, Z, Boice, JD, Jr. Cancer in populations living near nuclear facilities. A survey of mortality nationwide and incidence in two states. JAMA 1991;265:1403–1408.CrossRefGoogle ScholarPubMed
Jablon, S, Hrubec, Z, Boice, JD, Stone, BJ. Cancer in Populations Living Near Nuclear Facilities. [NIH Publication 90–874.] Bethesda, MD: Public Health Service, Department of Health and Human Services, 1990.Google Scholar
Michaelis, J, Keller, B, Haaf, G, Kaatsch, P. Incidence of childhood malignancies in the vicinity of west German nuclear power plants. Cancer Causes Control 1992;3:255–263.CrossRefGoogle ScholarPubMed
Clarke, EA, McLaughlin, J, Anderson, TW. Childhood Leukaemia Around Canadian Nuclear Facilities: Phase II. Final Report. Ottawa, Canada: Atomic Energy Control Board, 1991.Google Scholar
(COMARE) CotMAoRitE. The Incidence of Cancer and Leukaemia in Young People in the Vicinity of the Sellafield Site, West Cumbria: Further Studies and an Update of the Situation since the Publication of the Report of the Black Advisory Group in 1984. London: Her Majesty's Stationery Office, 1996.Google Scholar
Gardner, MJ. Father's occupational exposure to radiation and the raised level of childhood leukemia near the Sellafield nuclear plant. Environ Health Perspect 1991;94:5–7.CrossRefGoogle ScholarPubMed
Shu, XO, Reaman, GH, Lampkin, B, et al. Association of paternal diagnostic X-ray exposure with risk of infant leukemia. Investigators of the Childrens Cancer Group. Cancer Epidemiol Biomarkers Prevent 1994;3:645–653.Google ScholarPubMed
McLaughlin, JR, Clarke, EA, Nishri, ED, Anderson, TW. Childhood leukemia in the vicinity of Canadian nuclear facilities. Cancer Causes Control 1993;4:51–58.CrossRefGoogle ScholarPubMed
Parker, L, Craft, AW, Smith, J, et al. Geographical distribution of preconceptional radiation doses to fathers employed at the Sellafield nuclear installation, West Cumbria. BMJ 1993;307:966–971.CrossRefGoogle ScholarPubMed
Johnson, KJ, Alexander, BH, Doody, MM, et al. Childhood cancer in the offspring born in 1921–1984 to US radiologic technologists. Br J Cancer 2008;99:545–550.CrossRefGoogle ScholarPubMed
Little, MP, Wakeford, R, Kendall, GM. Updated estimates of the proportion of childhood leukaemia incidence in Great Britain that may be caused by natural background ionising radiation. J Radiol Prot 2009;29:467–482.CrossRefGoogle ScholarPubMed
Wakeford, R, Kendall, GM, Little, MP. The risk of cancer from natural background ionizing radiation. Health Phys 2009;97:637–638 [author reply 638].CrossRefGoogle ScholarPubMed
Henshaw, DL, Eatough, JP, Richardson, RB. Radon as a causative factor in induction of myeloid leukaemia and other cancers. Lancet 1990;335: 1008–1012.CrossRefGoogle ScholarPubMed
Raaschou-Nielsen, O. Indoor radon and childhood leukaemia. Radiat Prot Dosimetry 2008;132:175–181.CrossRefGoogle ScholarPubMed
Draper, G. Electromagnetic fields and childhood cancer. BMJ 1993;307: 884–885.CrossRefGoogle ScholarPubMed
Kheifets, L, Oksuzyan, S. Exposure assessment and other challenges in non-ionizing radiation studies of childhood leukaemia. Radiat Prot Dosimetry 2008;132:139–147.CrossRefGoogle ScholarPubMed
Ahlbom, A, Day, N, Feychting, M, et al. A pooled analysis of magnetic fields and childhood leukaemia. Br J Cancer 2000;83:692–698.CrossRefGoogle ScholarPubMed
Greenland, S, Sheppard, AR, Kaune, WT, Poole, C, Kelsh, MA. A pooled analysis of magnetic fields, wire codes, and childhood leukemia. Childhood Leukemia-EMF Study Group. Epidemiol 2000;11:624–634.CrossRefGoogle ScholarPubMed
Wigle, DT, Turner, MC, Krewski, D. A systematic review and meta-analysis of childhood leukemia and parental occupational pesticide exposure. Environ Health Perspect 2009;117:1505–1513.CrossRefGoogle ScholarPubMed
Turner, MC, Wigle, DT, Krewski, D. Residential pesticides and childhood leukemia: a systematic review and meta-analysis. Environ Health Perspect 2009;118:33–41.Google Scholar
Rull, RP, Gunier, R, Von Behren, J, et al. Residential proximity to agricultural pesticide applications and childhood acute lymphoblastic leukemia. Environ Res 2009;109:891–899.CrossRefGoogle ScholarPubMed
Lowengart, RA, Peters, JM, Cicioni, C, et al. Childhood leukemia and parents' occupational and home exposures. J Natl Cancer Inst 1987;79:39–46.Google ScholarPubMed
Shu, XO, Stewart, P, Wen, WQ, et al. Parental occupational exposure to hydrocarbons and risk of acute lymphocytic leukemia in offspring. Cancer Epidemiol Biomarkers Prevent 1999;8:783–791.Google ScholarPubMed
Buckley, JD, Robison, LL, Swotinsky, R, et al. Occupational exposures of parents of children with acute nonlymphocytic leukemia: a report from the Childrens Cancer Study Group. Cancer Res 1989;49:4030–4037.Google ScholarPubMed
van Steensel-Moll, HA, Valkenburg, HA, Vandenbroucke, JP, van Zanen, GE. Are maternal fertility problems related to childhood leukaemia?Int J Epidemiol 1985;14:555–559.CrossRefGoogle ScholarPubMed
Gold, EB, Diener, MD, Szklo, M. Parental occupations and cancer in children: a case–control study and review of the methodologic issues. J Occup Med 1982;24:578–584.CrossRefGoogle ScholarPubMed
McKinney, PA, Roberts, BE, O'Brien, C, et al. Chronic myeloid leukaemia in Yorkshire: a case control study. Acta Haematol 1990;83:35–38.CrossRefGoogle ScholarPubMed
Abadi-Korek, I, Stark, B, Zaizov, R, Shaham, J. Parental occupational exposure and the risk of acute lymphoblastic leukemia in offspring in Israel. J Occup Environ Med 2006;48:165–174.CrossRefGoogle ScholarPubMed
Infante-Rivard, C, Siemiatycki, J, Lakhani, R, Nadon, L. Maternal exposure to occupational solvents and childhood leukemia. Environ Health Perspect 2005;113:787–792.CrossRefGoogle ScholarPubMed
McKinney, PA, Raji, OY, van Tongeren, M, Feltbower, RG. The UK Childhood Cancer Study: maternal occupational exposures and childhood leukaemia and lymphoma. Radiat Prot Dosimetry 2008;132:232–240.CrossRefGoogle ScholarPubMed
Scelo, G, Metayer, C, Zhang, L, et al. Household exposure to paint and petroleum solvents, chromosomal translocations, and the risk of childhood leukemia. Environ Health Perspect 2009;117:133–139.CrossRefGoogle ScholarPubMed
Sung, TI, Wang, JD, Chen, PC. Increased risk of cancer in the offspring of female electronics workers. Reprod Toxicol 2008;25:115–119.CrossRefGoogle ScholarPubMed
Shaw, G, Lavey, R, Jackson, R, Austin, D. Association of childhood leukemia with maternal age, birth order, and paternal occupation. A case–control study. Am J Epidemiol 1984;119:788–795.CrossRefGoogle ScholarPubMed
Infante-Rivard, C, Mur, P, Armstrong, B, Alvarez-Dardet, C, Bolumar, F. Acute lymphoblastic leukaemia among Spanish children and mothers' occupation: a case–control study. J Epidemiol Community Health 1991;45:11–15.CrossRefGoogle ScholarPubMed
Brosselin, P, Rudant, J, Orsi, L, et al. Acute childhood leukaemia and residence next to petrol stations and automotive repair garages: the ESCALE study (SFCE). Occup Environ Med 2009;66:598–606.CrossRefGoogle Scholar
Schuz, J, Kaletsch, U, Meinert, R, Kaatsch, P, Michaelis, J. Risk of childhood leukemia and parental self-reported occupational exposure to chemicals, dusts, and fumes: results from pooled analyses of German population-based case–control studies. Cancer Epidemiol Biomarkers Prevent 2000;9:835–838.Google ScholarPubMed
Lyons, RA, Monaghan, SP, Heaven, M, et al. Incidence of leukaemia and lymphoma in young people in the vicinity of the petrochemical plant at Baglan Bay, South Wales, 1974 to 1991. Occup Environ Med 1995;52: 225–228.CrossRefGoogle ScholarPubMed
Sans, S, Elliott, P, Kleinschmidt, I, et al. Cancer incidence and mortality near the Baglan Bay petrochemical works, South Wales. Occup Environ Med 1995;52:217–224.CrossRefGoogle ScholarPubMed
Crosignani, P, Tittarelli, A, Borgini, A, et al. Childhood leukemia and road traffic: a population-based case–control study. Int J Cancer 2004;108:596–599.CrossRefGoogle ScholarPubMed
Von Behren, J, Reynolds, P, Gunier, RB, et al. Residential traffic density and childhood leukemia risk. Cancer Epidemiol Biomarkers Prev 2008;17:2298–2301.CrossRefGoogle ScholarPubMed
Weng, HH, Tsai, SS, Chen, CC, et al. Childhood leukemia development and correlation with traffic air pollution in Taiwan using nitrogen dioxide as an air pollutant marker. J Toxicol Environ Health A 2008;71:434–438.CrossRefGoogle ScholarPubMed
Pearson, RL, Wachtel, H, Ebi, KL. Distance-weighted traffic density in proximity to a home is a risk factor for leukemia and other childhood cancers. J Air Waste Manag Assoc 2000;50: 175–180.CrossRefGoogle ScholarPubMed
Reynolds, P, Elkin, E, Scalf, R, Von Behren, J, Neutra, RR. A case–control pilot study of traffic exposures and early childhood leukemia using a geographic information system. Bioelectromagnetics 2001; Suppl 5:S58–S68.
Reynolds, PV, von Behren, J, Gunier, RB, et al. Traffic patterns and childhood cancer incidence rates in California, United States. Cancer Causes Control 2002;13:665–673.CrossRefGoogle ScholarPubMed
Alexander, F, Cartwright, R, McKinney, PA, Ricketts, TJ. Investigation of spacial clustering of rare diseases: childhood malignancies in North Humberside. J Epidemiol Community Health 1990;44:39–46.CrossRefGoogle ScholarPubMed
Wulff, M, Hogberg, U, Sandstrom, A. Cancer incidence for children born in a smelting community. Acta Oncol 1996;35:179–183.CrossRefGoogle Scholar
Feychting, M, Plato, N, Nise, G, Ahlbom, A. Paternal occupational exposures and childhood cancer. Environ Health Perspect 2001;109:193–196.CrossRefGoogle ScholarPubMed
Van Maele-Fabry, G, Lantin, AC, Hoet, P, Lison, D. Childhood leukaemia and parental occupational exposure to pesticides: a systematic review and meta-analysis. Cancer Causes Control 1989;21:787–809.CrossRefGoogle Scholar
Robison, LL, Buckley, JD, Daigle, AE, et al. Maternal drug use and risk of childhood nonlymphoblastic leukemia among offspring. An epidemiologic investigation implicating marijuana (a report from the Childrens Cancer Study Group). Cancer 1989;63:1904–1911.Google Scholar
Sarasua, S, Savitz, DA. Cured and broiled meat consumption in relation to childhood cancer: Denver, Colorado (United States). Cancer Causes Control 1994;5:141–148.CrossRefGoogle Scholar
Milne, E, Royle, JA, Miller, M, et al. Maternal folate and other vitamin supplementation during pregnancy and risk of acute lymphoblastic leukemia in the offspring. Int J Cancer 2001;126: 2690–2699.Google Scholar
Thompson, JR, Gerald, PF, Willoughby, ML, Armstrong, BK. Maternal folate supplementation in pregnancy and protection against acute lymphoblastic leukaemia in childhood: a case–control study. Lancet 2001;358:1935–1940.CrossRefGoogle ScholarPubMed
Kwan, ML, Jensen, CD, Block, G, et al. Maternal diet and risk of childhood acute lymphoblastic leukemia. Public Health Rep 2009;124:503–514.CrossRefGoogle ScholarPubMed
Petridou, E, Ntouvelis, E, Dessypris, N, Terzidis, A, Trichopoulos, D. Maternal diet and acute lymphoblastic leukemia in young children. Cancer Epidemiol Biomarkers Prev 2005;14:1935–1939.CrossRefGoogle ScholarPubMed
Peters, JM, Preston-Martin, S, London, SJ, et al. Processed meats and risk of childhood leukemia (California, USA). Cancer Causes Control 1994;5:195–202.CrossRefGoogle Scholar
Liu, CY, Hsu, YH, Wu, MT, et al. Cured meat, vegetables, and bean-curd foods in relation to childhood acute leukemia risk: a population based case–control study. BMC Cancer 2009;9:15.CrossRefGoogle ScholarPubMed
Buckley, JD, Buckley, CM, Ruccione, K, et al. Epidemiological characteristics of childhood acute lymphocytic leukemia. Analysis by immunophenotype. The Childrens Cancer Group. Leukemia 1994;8:856–864.Google ScholarPubMed
Kwan, ML, Block, G, Selvin, S, Month, S, Buffler, PA. Food consumption by children and the risk of childhood acute leukemia. Am J Epidemiol 2004;160:1098–1107.CrossRefGoogle ScholarPubMed
Shu, XO, Gao, YT, Brinton, LA, et al. A population-based case–control study of childhood leukemia in Shanghai. Cancer 1988;62:635–644.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Severson, RK, Buckley, JD, Woods, WG, Benjamin, D, Robison, LL. Cigarette smoking and alcohol consumption by parents of children with acute myeloid leukemia: an analysis within morphological subgroups: a report from the Childrens Cancer Group. Cancer Epidemiol Biomarkers Prevent 1993;2:433–439.Google ScholarPubMed
van Duijn, CM, van Steensel-Moll, HA, Coebergh, JW, van Zanen, GE. Risk factors for childhood acute non-lymphocytic leukemia: an association with maternal alcohol consumption during pregnancy?Cancer Epidemiol Biomarkers Prevent 1994;3:457–460.Google Scholar
Shu, XO, Ross, JA, Pendergrass, TW, et al. Parental alcohol consumption, cigarette smoking, and risk of infant leukemia: a Childrens Cancer Group study. J Natl Cancer Inst 1996;88: 24–31.CrossRefGoogle ScholarPubMed
MacArthur, AC, McBride, ML, Spinelli, JJ, et al. Risk of childhood leukemia associated with parental smoking and alcohol consumption prior to conception and during pregnancy: the cross-Canada childhood leukemia study. Cancer Causes Control, 2008;19:283–295.CrossRefGoogle ScholarPubMed
Menegaux, F, Ripert, M, Hemon, D, Clavel, J. Maternal alcohol and coffee drinking, parental smoking and childhood leukaemia: a French population-based case–control study. Paediatr Perinat Epidemiol 2007;21:293–299.CrossRefGoogle ScholarPubMed
Menegaux, F, Steffen, C, Bellec, S, et al. Maternal coffee and alcohol consumption during pregnancy, parental smoking and risk of childhood acute leukaemia. Cancer Detect Prev 2005;29:487–493.CrossRefGoogle ScholarPubMed
Sorahan, T, Lancashire, R, Prior, P, Peck, I, Stewart, A. Childhood cancer and parental use of alcohol and tobacco. Ann Epidemiol 1995;5: 354–359.CrossRefGoogle ScholarPubMed
Stjernfeldt, M, Berglund, K, Lindsten, J, Ludvigsson, J. Maternal smoking and irradiation during pregnancy as risk factors for child leukemia. Cancer Detect Prevent 1992;16:129–135.Google ScholarPubMed
Neutel, CI, Buck, C. Effect of smoking during pregnancy on the risk of cancer in children. J Natl Cancer Inst 1971;47:59–63.Google Scholar
John, EM, Savitz, DA, Sandler, DP. Prenatal exposure to parents' smoking and childhood cancer. Am J Epidemiol 1991;133:123–132.CrossRefGoogle ScholarPubMed
Buckley, JD, Hobbie, WL, Ruccione, K, et al. Maternal smoking during pregnancy and the risk of childhood cancer. Lancet 1986;ii:519–520.Google Scholar
Pershagen, G, Ericson, A, Otterblad- Olausson, P. Maternal smoking in pregnancy: does it increase the risk of childhood cancer?Int J Epidemiol 1992;21:1–5.CrossRefGoogle ScholarPubMed
McKinney, PA, Stiller, C. Maternal smoking during pregnancy and the risk of childhood leukaemia. Lancet 1986; ii:519.CrossRefGoogle Scholar
Li, FP. Maternal smoking during pregnancy and the risk of childhood cancer. Lancet 1986;ii:520.Google Scholar
Ji, BT, Shu, XO, Linet, MS, et al. Paternal cigarette smoking and the risk of childhood cancer among offspring of nonsmoking mothers. J Natl Cancer Inst 1997;89:238–244.CrossRefGoogle ScholarPubMed
Rudant, J, Menegaux, F, Leverger, G, et al. Childhood hematopoietic malignancies and parental use of tobacco and alcohol: the ESCALE study (SFCE). Cancer Causes Control, 2008;19:1277–1290.CrossRefGoogle Scholar
Mucci, LA, Granath, F, Cnattingius, S. Maternal smoking and childhood leukemia and lymphoma risk among 1 440 542 Swedish children. Cancer Epidemiol Biomarkers Prev 2004;13:1528–1533.Google ScholarPubMed
Sorahan, T, Lancashire, RJ, Hulten, MA, Peck, I, Stewart, AM. Childhood cancer and parental use of tobacco: deaths from 1953 to 1955. Br J Cancer 1997;75:134–138.CrossRefGoogle ScholarPubMed
Brondum, J, Shu, XO, Steinbuch, M, et al. Parental cigarette smoking and the risk of acute leukemia in children. Cancer 1999;85:1380–1388.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Sandler, DP, Wilcox, AJ, Everson, RB. Cumulative effects of lifetime passive smoking on cancer risk. Lancet 1985;i:312–315.CrossRefGoogle Scholar
Trivers, KF, Mertens, AC, Ross, JA, et al. Parental marijuana use and risk of childhood acute myeloid leukaemia: a report from the Children's Cancer Group (United States and Canada). Paediatr Perinat Epidemiol 2006;20:110–118.CrossRefGoogle Scholar
Kaye, SA, Robison, LL, Smithson, WA, et al. Maternal reproductive history and birth characteristics in childhood acute lymphoblastic leukemia. Cancer 1991;68:1351–1355.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Yeazel, MW, Buckley, JD, Woods, WG, Ruccione, K, Robison, LL. History of maternal fetal loss and increased risk of childhood acute leukemia at an early age. A report from the Childrens Cancer Group. Cancer 1995;75: 1718–1727.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Puumala, SE, Spector, LG, Wall, MM, et al. Infant leukemia and parental infertility or its treatment: a Children's Oncology Group report. Hum Reprod 2010;25:1561–1568.CrossRefGoogle ScholarPubMed
Ross, JA, Potter, JD, Shu, XO, et al. Evaluating the relationships among maternal reproductive history, birth characteristics, and infant leukemia: a report from the Children's Cancer Group. Ann Epidemiol 1997;7:172–179.CrossRefGoogle ScholarPubMed
Johnson, KJ, Soler, JT, Puumala, SE, Ross, JA, Spector, LG. Parental and infant characteristics and childhood leukemia in Minnesota. BMC Pediatr 2008;8:7.CrossRefGoogle ScholarPubMed
Westergaard, T, Andersen, PK, Pedersen, JB, et al. Birth characteristics, sibling patterns, and acute leukemia risk in childhood: a population-based cohort study. J Natl Cancer Inst 1997;89: 939–947.CrossRefGoogle ScholarPubMed
Dockerty, JD, Draper, G, Vincent, T, Rowan, SD, Bunch, KJ. Case–control study of parental age, parity and socioeconomic level in relation to childhood cancers. Int J Epidemiol 2001;30:1428–1437.CrossRefGoogle ScholarPubMed
Johnson, KJ, Carozza, SE, Chow, EJ, et al. Parental age and risk of childhood cancer: a pooled analysis. Epidemiology 2009;20:475–483.CrossRefGoogle ScholarPubMed
Zack, M, Adami, HO, Ericson, A. Maternal and perinatal risk factors for childhood leukemia. Cancer Res 1991;51:3696–3701.Google ScholarPubMed
Hjalgrim, LL, Westergaard, T, Rostgaard, K, et al. Birth weight as a risk factor for childhood leukemia: a meta-analysis of 18 epidemiologic studies. Am J Epidemiol 2003;158:724–735.CrossRefGoogle ScholarPubMed
Caughey, RW, Michels, KB. Birth weight and childhood leukemia: a meta-analysis and review of the current evidence. Int J Cancer 2009;124: 2658–2670.CrossRefGoogle ScholarPubMed
Milne, E, Royle, JA, de Klerk, NH, et al. Fetal growth and risk of childhood acute lymphoblastic leukemia: results from an Australian case–control study. Am J Epidemiol 2009;170: 221–228.CrossRefGoogle ScholarPubMed
Petridou, E, Skalkidou, A, Dessypris, N, et al. Endogenous risk factors for childhood leukemia in relation to the IGF system (Greece). The Childhood Haematologists-Oncologists Group. Cancer Causes Control 2000;11: 765–771.CrossRefGoogle ScholarPubMed
Lei, U, Wohlfahrt, J, Hjalgrim, H, et al. Neonatal level of thyroid-stimulating hormone and acute childhood leukemia. Int J Cancer 2000;88:486–488.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Gale, KB, Ford, AM, Repp, R, et al. Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots. Proc Natl Acad Sci USA 1997;94:13950–13954.CrossRefGoogle ScholarPubMed
Pui, CH, Ribeiro, RC, Hancock, ML, et al. Acute myeloid leukemia in children treated with epipodophyllotoxins for acute lymphoblastic leukemia. N Engl J Med 1991;325:1682–1687.CrossRefGoogle ScholarPubMed
Broeker, PL, Super, HG, Thirman, MJ, et al. Distribution of 11q23 breakpoints within the MLL breakpoint cluster region in de novo acute leukemia and in treatment-related acute myeloid leukemia: correlation with scaffold attachment regions and topoisomerase II consensus binding sites. Blood 1996;87:1912–1922.Google ScholarPubMed
Wang, JC. DNA topoisomerases. Annu Rev Biochem 1996;65:635–692.CrossRefGoogle ScholarPubMed
Ross, JA, Potter, JD, Reaman, GH, Pendergrass, TW, Robison, LL. Maternal exposure to potential inhibitors of DNA topoisomerase II and infant leukemia (United States): a report from the Children's Cancer Group. Cancer Causes Control 1996;7:581–590.CrossRefGoogle ScholarPubMed
Ross, JA. Maternal diet and infant leukemia: a role for DNA topoisomerase II inhibitors?Int J Cancer 1998;11(Suppl):26–28.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Spector, LG, Xie, Y, Robison, LL, et al. Maternal diet and infant leukemia: the DNA topoisomerase II inhibitor hypothesis: a report from the Children's Oncology Group. Cancer Epidemiol Biomarkers Prev 2005;14:651–655.CrossRefGoogle ScholarPubMed
Strick, R, Strissel, PL, Borgers, S, Smith, SL, Rowley, JD. Dietary bioflavonoids induce cleavage in the MLL gene and may contribute to infant leukemia. Proc Natl Acad Sci USA 2000;97:4790–4795.CrossRefGoogle ScholarPubMed
Bandele, OJ, Osheroff, N. Bioflavonoids as poisons of human topoisomerase II alpha and II beta. Biochemistry 2007;46:6097–6108.CrossRefGoogle ScholarPubMed
Alexander, FE, Patheal, SL, Biondi, A, et al. Transplacental chemical exposure and risk of infant leukemia with MLL gene fusion. Cancer Res 2001;61: 2542–2546.Google ScholarPubMed
Ross, JA, Potter, JD, Robison, LL. Infant leukemia, topoisomerase II inhibitors, and the MLL gene. J Natl Cancer Inst 1994;86:1678–1680.CrossRefGoogle ScholarPubMed
Greaves, MF. Infant leukaemia biology, aetiology and treatment. Leukemia 1996;10:372–377.Google ScholarPubMed
Kinlen, LJ. Epidemiological evidence for an infective basis in childhood leukaemia. Br J Cancer 1995;71:1–5.CrossRefGoogle ScholarPubMed
Anderson, RM, May, RM. Immunisation and herd immunity. Lancet 1990;335: 641–645.CrossRefGoogle ScholarPubMed
Boutou, O, Guizard, A-V, Slama, R, Pottier, D, Spira, A. Population mixing and leukaemia in young people around the La Hague nuclear waste reprocessing plant. Br J Cancer 2002;87:740–745.CrossRefGoogle ScholarPubMed
Langford, I. Childhood leukaemia mortality and population change in England and Wales 1969–73. Social Sci Med 1991;33:435–440.CrossRefGoogle ScholarPubMed
Stiller, CA, Boyle, PJ. Effect of population mixing and socioeconomic status in England and Wales, 1979–85, on lymphoblastic leukaemia in children. BMJ 1996;313:1297–1300.CrossRefGoogle ScholarPubMed
Dickinson, HO, Parker, L. Quantifying the effect of population mixing on childhood leukaemia risk: the Seascale cluster. Br J Cancer 1999;81:144–151.CrossRefGoogle ScholarPubMed
Koushik, A, King, WD, McLaughlin, JR. An ecologic study of childhood leukemia and population mixing in Ontario, Canada. Cancer Causes Control 2001;12:483–490.CrossRefGoogle ScholarPubMed
Dickinson, HO, Hammal, DM, Bithell, JF, Parker, L. Population mixing and childhood leukaemia and non-Hodgkin's lymphoma in census wards in England and Wales, 1966–87. Br J Cancer 2002;86:1411–1413.CrossRefGoogle ScholarPubMed
Parslow, RC, Law, GR, Feltbower, R, Kinsey, SE, McKinney, PA. Population mixing, childhood leukaemia, CNS tumours and other childhood cancers in Yorkshire. Eur J Cancer 2002;38: 2033–2040.CrossRefGoogle ScholarPubMed
Baccate, EM. Social patterns of antibody to poliovirus. Lancet 1983;i:778–783.Google Scholar
Dworsky, M, Yow, M, Stagno, S, Pass, RF, Alford, C. Cytomegalovirus infection of breast milk and transmission in infancy. Pediatrics 1983;72:295–299.Google ScholarPubMed
Parker, L. Breast-feeding and cancer prevention. Eur J Cancer 2001;37: 155–158.CrossRefGoogle ScholarPubMed
Ma, X, Buffler, PA, Selvin, S, et al. Daycare attendance and risk of childhood acute lymphoblastic leukaemia. Br J Cancer 2002;86: 1419–1424.CrossRefGoogle ScholarPubMed
Perrillat, F, Clavel, J, Auclerc, MF, et al. Day-care, early common infections and childhood acute leukaemia: a multicentre French case–control study. Br J Cancer 2002;86:1064–1069.CrossRefGoogle ScholarPubMed
Infante-Rivard, C, Fortier, I, Olson, E. Markers of infection, breast-feeding and childhood acute lymphoblastic leukaemia. Br J Cancer 2000;83: 1559–1564.CrossRefGoogle ScholarPubMed
Rosenbaum, PF, Buck, GM, Brecher, ML. Early child-care and preschool experiences and the risk of childhood acute lymphoblastic leukemia. Am J Epidemiol 2000;152:1136–1144.CrossRefGoogle ScholarPubMed
Neglia, JP, Linet, MS, Shu, XO, et al. Patterns of infection and day care utilization and risk of childhood acute lymphoblastic leukaemia. Br J Cancer 2000;82:234–240.CrossRefGoogle ScholarPubMed
Gahrton, G, Wahren, B, Killander, D, Foley, GE. Epstein–Barr and other herpes virus antibodies in children with acute leukemia. Int J Cancer 1971;8:242–249.CrossRefGoogle ScholarPubMed
Groves, FD, Sinha, D, Kayhty, H, Goedert, JJ, Levine, PH. Haemophilus influenzae type b serology in childhood leukaemia: a case–control study. Br J Cancer 2001;85:337–340.CrossRefGoogle ScholarPubMed
Heegaard, ED, Jensen, L, Hornsleth, A, Schmiegelow, K. The role of parvovirus B19 infection in childhood acute lymphoblastic leukemia. Pediatr Hematol Oncol 1999;16:329–334.CrossRefGoogle ScholarPubMed
MacKenzie, J, Gallagher, A, Clayton, RA, et al. Screening for herpesvirus genomes in common acute lymphoblastic leukemia. Leukemia 2001;15:415–421.CrossRefGoogle ScholarPubMed
MacKenzie, J, Perry, J, Ford, AM, Jarrett, RF, Greaves, M. JC and BK virus sequences are not detectable in leukaemic samples from children with common acute lymphoblastic leukaemia. Br J Cancer 1999;81: 898–899.CrossRefGoogle Scholar
Salonen, MJ, Siimes, MA, Salonen, EM, Vaheri, A, Koskiniemi, M. Antibody status to HHV-6 in children with leukaemia. Leukemia 2002;16: 716–719.CrossRefGoogle ScholarPubMed
Dockerty, JD, Skegg, DC, Elwood, JM, et al. Infections, vaccinations, and the risk of childhood leukaemia. Br J Cancer 1999;80:1483–1489.CrossRefGoogle ScholarPubMed
McKinney, PA, Juszczak, E, Findlay, E, Smith, K, Thomson, CS. Pre- and perinatal risk factors for childhood leukaemia and other malignancies: a Scottish case control study. Br J Cancer 1999;80:1844–1851.CrossRefGoogle ScholarPubMed
Schuz, J, Kaatsch, P, Kaletsch, U, Meinert, R, Michaelis, J. Association of childhood cancer with factors related to pregnancy and birth. Int J Epidemiol 1999;28:631–639.CrossRefGoogle ScholarPubMed
McKinney, PA, Cartwright, RA, Saiu, JM, et al. The inter-regional epidemiological study of childhood cancer (IRESCC): a case control study of aetiological factors in leukaemia and lymphoma. Arch Dis Child 1987;62:279–287.CrossRefGoogle ScholarPubMed
Naumburg, E, Bellocco, R, Cnattingius, S, Jonzon, A, Ekbom, A. Perinatal exposure to infection and risk of childhood leukemia. Med Pediatr Oncol 2002;38:391–397.CrossRefGoogle ScholarPubMed
Chan, LC, Lam, TH, Li, CK, et al. Is the timing of exposure to infection a major determinant of acute lymphoblastic leukaemia in Hong Kong? Paediatr Perinat Epidemiol 2002;16:154–165.CrossRefGoogle Scholar
Greaves, MF, Alexander, FE. An infectious etiology for common acute lymphoblastic leukemia in childhood?Leukemia 1993;7:349–360.Google ScholarPubMed
Petridou, E, Kassimos, D, Kalmanti, M, et al. Age of exposure to infections and risk of childhood leukaemia. BMJ 1993;307:774.CrossRefGoogle ScholarPubMed
Lomelin, D, Jorgenson, E, Risch, N. Human genetic variation recognizes functional elements in noncoding sequence. Genome Res 2009;20: 311–319.CrossRefGoogle ScholarPubMed
Wu, M, Jolicoeur, N, Li, Z, et al. Genetic variations of microRNAs in human cancer and their effects on the expression of miRNAs. Carcinogenesis 2008;29:1710–1716.CrossRefGoogle ScholarPubMed
Dong, LM, Potter, JD, White, E, et al. Genetic susceptibility to cancer: the role of polymorphisms in candidate genes. JAMA 2008;299:2423–2436.CrossRefGoogle ScholarPubMed
Shlien, A, Malkin, D. Copy number variations and cancer. Genome Med 2009;1:62.CrossRefGoogle ScholarPubMed
Rampersaud, GC, Kauwell, GP, Hutson, AD, Cerda, JJ, Bailey, LB. Genomic DNA methylation decreases in response to moderate folate depletion in elderly women. Am J Clin Nutr 2000;72: 998–1003.CrossRefGoogle ScholarPubMed
Blount, BC, Mack, MM, Wehr, CM, et al. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc Natl Acad Sci USA 1997;94:3290–3295.CrossRefGoogle ScholarPubMed
Duthie, SJ, Grant, G, Narayanan, S. Increased uracil misincorporation in lymphocytes from folate-deficient rats. Br J Cancer 2000;83:1532–1537.CrossRefGoogle ScholarPubMed
Chokkalingam, AP, Buffler, PA. Genetic susceptibility to childhood leukaemia. Radiat Prot Dosimetry 2008;132: 119–129.CrossRefGoogle ScholarPubMed
Engbersen, AM, Franken, DG, Boers, GH, et al. Thermolabile 5,10-methylenetetrahydrofolate reductase as a cause of mild hyperhomocysteinemia. Am J Hum Genet 1995;56:142–150.Google ScholarPubMed
Weisberg, I, Tran, P, Christensen, B, Sibani, S, Rozen, R. A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab 1998;64:169–172.CrossRefGoogle ScholarPubMed
Franco, RF, Simoes, BP, Tone, LG, et al. The methylenetetrahydrofolate reductase C677T gene polymorphism decreases the risk of childhood acute lymphocytic leukaemia. Br J Haematol 2001;115:616–618.CrossRefGoogle ScholarPubMed
Balta, G, Yuksek, N, Ozyurek, E, et al. Characterization of MTHFR, GSTM1, GSTT1, GSTP1, and CYP1A1 genotypes in childhood acute leukemia. Am J Hematol 2003;73:154–160.CrossRefGoogle ScholarPubMed
Chiusolo, P, Reddiconto, G, Cimino, G, et al. Methylenetetrahydrofolate reductase genotypes do not play a role in acute lymphoblastic leukemia pathogenesis in the Italian population. Haematologica 2004;89:139–144.Google Scholar
Krajinovic, M, Lamothe, S, Labuda, D, et al. Role of MTHFR genetic polymorphisms in the susceptibility to childhood acute lymphoblastic leukemia. Blood 2004;103:252–257.CrossRefGoogle ScholarPubMed
Chatzidakis, K, Goulas, A, Athanassiadou-Piperopoulou, F, et al. Methylenetetrahydrofolate reductase C677T polymorphism: association with risk for childhood acute lymphoblastic leukemia and response during the initial phase of chemotherapy in greek patients. Pediatr Blood Cancer 2006;47:147–151.CrossRefGoogle ScholarPubMed
Oliveira, E, Alves, S, Quental, S, et al. The MTHFR C677T and A1298C polymorphisms and susceptibility to childhood acute lymphoblastic leukemia in Portugal. J Pediatr Hematol Oncol 2005;27:425–429.CrossRefGoogle ScholarPubMed
Schnakenberg, E, Mehles, A, Cario, G, et al. Polymorphisms of methylenetetrahydrofolate reductase (MTHFR) and susceptibility to pediatric acute lymphoblastic leukemia in a German study population. BMC Med Genet 2005;6:23.CrossRefGoogle Scholar
Thirumaran, RK, Gast, A, Flohr, T, et al. MTHFR genetic polymorphisms and susceptibility to childhood acute lymphoblastic leukemia. Blood 2005;106:2590–2591 [author reply 2591–2592].CrossRefGoogle ScholarPubMed
Zanrosso, CW, Hatagima, A, Emerenciano, M, et al. The role of methylenetetrahydrofolate reductase in acute lymphoblastic leukemia in a Brazilian mixed population. Leuk Res 2006;30:477–481.CrossRefGoogle Scholar
Giovannetti, E, Ugrasena, DG, Supriyadi, E, et al. Methylenetetrahydrofolate reductase (MTHFR) C677T and thymidylate synthase promoter (TSER) polymorphisms in Indonesian children with and without leukemia. Leuk Res 2008;32:19–24.CrossRefGoogle ScholarPubMed
Reddy, H, Jamil, K. Polymorphisms in the MTHFR gene and their possible association with susceptibility to childhood acute lymphocytic leukemia in an Indian population. Leuk Lymphoma 2006;47:1333–1339.CrossRefGoogle Scholar
Kim, NK, Chong, SY, Jang, MJ, et al. Association of the methylenetetrahydrofolate reductase polymorphism in Korean patients with childhood acute lymphoblastic leukemia. Anticancer Res 2006;26:2879–2881.Google ScholarPubMed
Petra, BG, Janez, J, Vita, D. Gene–gene interactions in the folate metabolic pathway influence the risk for acute lymphoblastic leukemia in children. Leuk Lymphoma 2007;48:786–792.CrossRefGoogle ScholarPubMed
Koppen, IJ, Hermans, FJ, Kaspers, GJ. Folate related gene polymorphisms and susceptibility to develop childhood acute lymphoblastic leukaemia. Br J Haematol 2009;148:3–14.CrossRefGoogle ScholarPubMed
Zintzaras, E, Koufakis, T, Ziakas, PD, et al. A meta-analysis of genotypes and haplotypes of methylenetetrahydrofolate reductase gene polymorphisms in acute lymphoblastic leukemia. Eur J Epidemiol 2006;21:501–510.CrossRefGoogle ScholarPubMed
Pereira, TV, Rudnicki, M, Pereira, AC, Pombo-de-Oliveira, MS, Franco, RF. 5,10-Methylenetetrahydrofolate reductase polymorphisms and acute lymphoblastic leukemia risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 2006;15:1956–1963.CrossRefGoogle ScholarPubMed
Yeoh, AE, Lu, Y, Chan, JY, et al. Genetic susceptibility to childhood acute lymphoblastic leukemia shows protection in Malay boys: results from the Malaysia-Singapore ALL Study Group. Leuk Res 2009;34:276–283.CrossRefGoogle ScholarPubMed
Leopardi, P, Marcon, F, Caiola, S, et al. Effects of folic acid deficiency and MTHFR C677T polymorphism on spontaneous and radiation-induced micronuclei in human lymphocytes. Mutagenesis 2006;21:327–333.CrossRefGoogle ScholarPubMed
Milne, E, de Klerk, NH, van Bockxmeer, F, et al. Is there a folate-related gene–environment interaction in the etiology of childhood acute lymphoblastic leukemia?Int J Cancer 2006;119:229–232.CrossRefGoogle Scholar
Gast, A, Bermejo, JL, Flohr, T, et al. Folate metabolic gene polymorphisms and childhood acute lymphoblastic leukemia: a case–control study. Leukemia 2007;21:320–325.CrossRefGoogle ScholarPubMed
Kim, HN, Kim, YK, Lee, IK, et al. Association between polymorphisms of folate-metabolizing enzymes and hematological malignancies. Leuk Res 2009;33:82–87.CrossRefGoogle ScholarPubMed
Gemmati, D, Ongaro, A, Scapoli, GL, et al. Common gene polymorphisms in the metabolic folate and methylation pathway and the risk of acute lymphoblastic leukemia and non-Hodgkin's lymphoma in adults. Cancer Epidemiol Biomarkers Prev 2004;13:787–794.Google ScholarPubMed
de Jonge, R, Tissing, WJ, Hooijberg, JH, et al. Polymorphisms in folate-related genes and risk of pediatric acute lymphoblastic leukemia. Blood 2009;113:2284–2289.CrossRefGoogle ScholarPubMed
Lightfoot, TJ, Johnston, WT, Painter, D, et al. Genetic variation in the folate metabolic pathway and risk of childhood leukemia. Blood 2004;115:3923–3929.CrossRefGoogle Scholar
Whysner, J, Reddy, MV, Ross, PM, Mohan, M, Lax, EA. Genotoxicity of benzene and its metabolites. Mutat Res 2004;566:99–130.CrossRefGoogle ScholarPubMed
Chen, H, Eastmond, DA. Synergistic increase in chromosomal breakage within the euchromatin induced by an interaction of the benzene metabolites phenol and hydroquinone in mice. Carcinogenesis 1995;16: 1963–1969.CrossRefGoogle ScholarPubMed
DeCaprio, AP. The toxicology of hydroquinone: relevance to occupational and environmental exposure. Crit Rev Toxicol 1999;29:283–330.CrossRefGoogle ScholarPubMed
Rowley, JD. The critical role of chromosome translocations in human leukemias. Annu Rev Genet 1998;32:495–519.CrossRefGoogle ScholarPubMed
Chen, H, Eastmond, DA. Topoisomerase inhibition by phenolic metabolites: a potential mechanism for benzene's clastogenic effects. Carcinogenesis 1995;16:2301–2307.CrossRefGoogle ScholarPubMed
Asher, G, Lotem, J, Kama, R, Sachs, L, Shaul, Y. NQO1 stabilizes p53 through a distinct pathway. Proc Natl Acad Sci USA 2002;99:3099–3104.CrossRefGoogle ScholarPubMed
Beyer, RE, Segura-Aguilar, J, Di Bernardo, S, et al. The role of DT-diaphorase in the maintenance of the reduced antioxidant form of coenzyme Q in membrane systems. Proc Natl Acad Sci USA 1996;93:2528–2532.CrossRefGoogle ScholarPubMed
Siegel, D, Bolton, EM, Burr, JA, Liebler, DC, Ross, D. The reduction of alpha-tocopherolquinone by human NAD(P)H: quinone oxidoreductase: the role of alpha-tocopherol hydroquinone as a cellular antioxidant. Mol Pharmacol 1997;52:300–305.CrossRefGoogle Scholar
Moran, JL, Siegel, D, Ross, D. A potential mechanism underlying the increased susceptibility of individuals with a polymorphism in NAD(P)H: quinone oxidoreductase 1 (NQO1) to benzene toxicity. Proc Natl Acad Sci USA 1999;96:8150–8155.CrossRefGoogle ScholarPubMed
Clavel, J, Bellec, S, Rebouissou, S, et al. Childhood leukaemia, polymorphisms of metabolism enzyme genes, and interactions with maternal tobacco, coffee and alcohol consumption during pregnancy. Eur J Cancer Prev 2005;14:531–540.CrossRefGoogle ScholarPubMed
Eguchi-Ishimae, M, Eguchi, M, Ishii, E, et al. The association of a distinctive allele of NAD(P)H: quinone oxidoreductase with pediatric acute lymphoblastic leukemias with MLL fusion genes in Japan. Haematologica 2005;90:1511–1515.Google ScholarPubMed
Krajinovic, M, Sinnett, H, Richer, C, Labuda, D, Sinnett, D. Role of NQO1, MPO and CYP2E1 genetic polymorphisms in the susceptibility to childhood acute lymphoblastic leukemia. Int J Cancer 2002;97:230–236.CrossRefGoogle ScholarPubMed
Lanciotti, M, Dufour, C, Corral, L, et al. Genetic polymorphism of NAD(P)H: quinone oxidoreductase is associated with an increased risk of infant acute lymphoblastic leukemia without MLL gene rearrangements. Leukemia 2005;19:214–216.CrossRefGoogle ScholarPubMed
Sirma, S, Agaoglu, L, Yildiz, I, et al. NAD(P)H: quinone oxidoreductase 1 null genotype is not associated with pediatric de novo acute leukemia. Pediatr Blood Cancer 2004;43: 568–570.CrossRefGoogle Scholar
Kracht, T, Schrappe, M, Strehl, S, et al. NQO1 C609T polymorphism in distinct entities of pediatric hematologic neoplasms. Haematologica 2004;89:1492–1497.Google ScholarPubMed
Wiemels, JL, Pagnamenta, A, Taylor, GM, et al. A lack of a functional NAD(P)H: quinone oxidoreductase allele is selectively associated with pediatric leukemias that have MLL fusions. United Kingdom Childhood Cancer Study Investigators. Cancer Res 1999;59:4095–4099.Google ScholarPubMed
Silveira Vda, S, Canalle, R, Scrideli, CA, Queiroz, RG, Tone, LG. Role of the CYP2D6, EPHX1, MPO, NQO1 genes in the susceptibility to acute lymphoblastic leukemia in Brazilian children. Environ Mol Mutagen 2008;51:48–56.Google Scholar
Guha, N, Chang, JS, Chokkalingam, AP, et al. NQO1 polymorphisms and de novo childhood leukemia: a HuGE review and meta-analysis. Am J Epidemiol 2008;168:1221–1232.CrossRefGoogle ScholarPubMed
Ye, Z, Song, H. Glutathione S-transferase polymorphisms (GSTM1, GSTP1 and GSTT1) and the risk of acute leukaemia: a systematic review and meta-analysis. Eur J Cancer 2005;41:980–989.CrossRefGoogle ScholarPubMed
Barnette, P, Scholl, R, Blandford, M, et al. High-throughput detection of glutathione S-transferase polymorphic alleles in a pediatric cancer population. Cancer Epidemiol Biomarkers Prev 2004;13:304–313.CrossRefGoogle Scholar
Canalle, R, Burim, RV, Tone, LG, Takahashi, CS. Genetic polymorphisms and susceptibility to childhood acute lymphoblastic leukemia. Environ Mol Mutagen 2004;43:100–109.CrossRefGoogle ScholarPubMed
Krajinovic, M, Labuda, D, Sinnett, D. Glutathione S-transferase P1 genetic polymorphisms and susceptibility to childhood acute lymphoblastic leukaemia. Pharmacogenetics 2002;12:655–658.CrossRefGoogle ScholarPubMed
Zielinska, E, Zubowska, M, Bodalski, J. Polymorphism within the glutathione S-transferase P1 gene is associated with increased susceptibility to childhood malignant diseases. Pediatr Blood Cancer 2004;43:552–559.CrossRefGoogle ScholarPubMed
Gatedee, J, Pakakassama, S, Muangman, S, Pongstaporn, W. Glutathione S-transferase P1 genotypes, genetic susceptibility and outcome of therapy in Thai childhood acute lymphoblastic leukemia. Asian Pac J Cancer Prev 2007;8:294–296.Google ScholarPubMed
Aydin-Sayitoglu, M, Hatirnaz, O, Erensoy, N, Ozbek, U. Role of CYP2D6, CYP1A1, CYP2E1, GSTT1, and GSTM1 genes in the susceptibility to acute leukemias. Am J Hematol 2006;81:162–170.CrossRefGoogle ScholarPubMed
Krajinovic, M, Labuda, D, Richer, C, Karimi, S, Sinnett, D. Susceptibility to childhood acute lymphoblastic leukemia: influence of CYP1A1, CYP2D6, GSTM1, and GSTT1 genetic polymorphisms. Blood 1999;93:1496–1501.Google ScholarPubMed
Joseph, T, Kusumakumary, P, Chacko, P, et al. Genetic polymorphism of CYP1A1, CYP2D6, GSTM1 and GSTT1 and susceptibility to acute lymphoblastic leukaemia in Indian children. Pediatr Blood Cancer 2004;43:560–567.CrossRefGoogle ScholarPubMed
Pakakasama, S, Mukda, E, Sasanakul, W, et al. Polymorphisms of drug-metabolizing enzymes and risk of childhood acute lymphoblastic leukemia. Am J Hematol 2005;79:202–205.CrossRefGoogle ScholarPubMed
Krajinovic, M, Richer, C, Sinnett, H, Labuda, D, Sinnett, D. Genetic polymorphisms of N-acetyltransferases 1 and 2 and gene–gene interaction in the susceptibility to childhood acute lymphoblastic leukemia. Cancer Epidemiol Biomarkers Prev 2000;9: 557–562.Google ScholarPubMed
Hattori, H, Suminoe, A, Wada, M, et al. Regulatory polymorphisms of multidrug resistance 1 (MDR1) gene are associated with the development of childhood acute lymphoblastic leukemia. Leuk Res 2007;31:1633–1640.CrossRefGoogle ScholarPubMed
Jamroziak, K, Mlynarski, W, Balcerczak, E, et al. Functional C3435T polymorphism of MDR1 gene: an impact on genetic susceptibility and clinical outcome of childhood acute lymphoblastic leukemia. Eur J Haematol 2004;72:314–321.CrossRefGoogle ScholarPubMed
Semsei, AF, Erdelyi, DJ, Ungvari, I, et al. Association of some rare haplotypes and genotype combinations in the MDR1 gene with childhood acute lymphoblastic leukaemia. Leuk Res 2008;32:1214–1220.CrossRefGoogle ScholarPubMed
Urayama, KY, Wiencke, JK, Buffler, PA, et al. MDR1 gene variants, indoor insecticide exposure, and the risk of childhood acute lymphoblastic leukemia. Cancer Epidemiol Biomarkers Prev 2007;16:1172–1177.CrossRefGoogle ScholarPubMed
Healy, J, Belanger, H, Beaulieu, P, et al. Promoter SNPs in G1/S checkpoint regulators and their impact on the susceptibility to childhood leukemia. Blood 2007;109:683–692.CrossRefGoogle ScholarPubMed
Wang, SL, Zhao, H, Zhou, B, et al. Polymorphisms in ERCC1 and susceptibility to childhood acute lymphoblastic leukemia in a Chinese population. Leuk Res 2006;30: 1341–1345.CrossRefGoogle ScholarPubMed
Joseph, T, Kusumakumary, P, Chacko, P, Abraham, A, Pillai, MR. DNA repair gene XRCC1 polymorphisms in childhood acute lymphoblastic leukemia. Cancer Lett 2005;217:17–24.CrossRefGoogle ScholarPubMed
Pakakasama, S, Sirirat, T, Kanchanachumpol, S, et al. Genetic polymorphisms and haplotypes of DNA repair genes in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 2007;48:16–20.CrossRefGoogle ScholarPubMed
Batar, B, Guven, M, Baris, S, Celkan, T, Yildiz, I. DNA repair gene XPD and XRCC1 polymorphisms and the risk of childhood acute lymphoblastic leukemia. Leuk Res 2009;33: 759–763.CrossRefGoogle ScholarPubMed
Mathonnet, G, Krajinovic, M, Labuda, D, Sinnett, D. Role of DNA mismatch repair genetic polymorphisms in the risk of childhood acute lymphoblastic leukaemia. Br J Haematol 2003;123: 45–48.CrossRefGoogle ScholarPubMed
Mehta, PA, Alonzo, TA, Gerbing, RB, et al. XPD Lys751Gln polymorphism in the etiology and outcome of childhood acute myeloid leukemia: a Children's Oncology Group report. Blood 2006;107:39–45.CrossRefGoogle ScholarPubMed
Dearden, SP, Taylor, GM, Gokhale, DA, et al. Molecular analysis of HLA-DQB1 alleles in childhood common acute lymphoblastic leukaemia. Br J Cancer 1996;73:603–609.CrossRefGoogle ScholarPubMed
Dorak, MT, Owen, G, Galbraith, I, et al. Nature of HLA-associated predisposition to childhood acute lymphoblastic leukemia. Leukemia 1995;9:875–878.Google ScholarPubMed
Taylor, GM, Dearden, S, Payne, N, et al. Evidence that an HLA-DQA1-DQB1 haplotype influences susceptibility to childhood common acute lymphoblastic leukaemia in boys provides further support for an infection-related aetiology. Br J Cancer 1998;78:561–565.CrossRefGoogle ScholarPubMed
Taylor, GM, Dearden, S, Ravetto, P, et al. Genetic susceptibility to childhood common acute lymphoblastic leukaemia is associated with polymorphic peptide-binding pocket profiles in HLA-DPB1*0201. Hum Mol Genet 2002;11:1585–1597.CrossRefGoogle ScholarPubMed
Taylor, GM, Hussain, A, Lightfoot, TJ, et al. HLA-associated susceptibility to childhood B-cell precursor ALL: definition and role of HLA-DPB1 supertypes. Br J Cancer 2008;98:1125–1131.CrossRefGoogle ScholarPubMed
Taylor, GM, Hussain, A, Verhage, V, et al. Strong association of the HLA-DP6 supertype with childhood leukaemia is due to a single allele, DPB1*0601. Leukemia 2009;23:863–869.CrossRefGoogle ScholarPubMed
Santoro, A, Cannella, S, Trizzino, A, et al. A single amino acid change A91V in perforin: a novel, frequent predisposing factor to childhood acute lymphoblastic leukemia?Haematologica 2005;90:697–698.Google ScholarPubMed
Mehta, PA, Davies, SM, Kumar, A, et al. Perforin polymorphism A91V and susceptibility to B-precursor childhood acute lymphoblastic leukemia: a report from the Children's Oncology Group. Leukemia 2006;20: 1539–1541.CrossRefGoogle ScholarPubMed
Christensen, K, Murray, JC. What genome-wide association studies can do for medicine. N Engl J Med 2007;356:1094–1097.CrossRefGoogle Scholar
Treviño, LR, Yang, W, French, D, et al. Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat Genet 2009;41: 1001–1005.CrossRefGoogle ScholarPubMed
Papaemmanuil, E, Hosking, FJ, Vijayakrishnan, J, et al. Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat Genet 2009;41:1006–1010.CrossRefGoogle ScholarPubMed
Yang, W, Treviño, LR, Yang, JJ, et al. ARID5B SNP rs10821936 is associated with risk of childhood acute lymphoblastic leukemia in blacks and contributes to racial in leukemia incidence. Leukemia 2010;24:894–896.CrossRefGoogle ScholarPubMed
Prasad, RB, Hosking, FJ, Vijayakrishnan, J, et al. Verification of the susceptibility loci on 7p12.2, 10q21.2, and 14q11.2 in precursor B-cell acute lymphoblastic leukemia of childhood. Blood 2010;115:1765–1767.CrossRefGoogle ScholarPubMed
Hosking, FJ, Papaemmanuil, E, Sheridan, E, et al. Genome-wide homozygosity signatures and childhood acute lymphoblastic leukemia risk. Blood 2010;115:4472–4477.CrossRefGoogle ScholarPubMed
Tasaka, T, Lee, S, Spira, S, et al. Microsatellite instability during the progression of acute myelocytic leukaemia. Br J Haematol 1997;98:219–221.CrossRefGoogle ScholarPubMed
Takeuchi, S, Seriu, T, Tasaka, T, et al. Microsatellite instability and other molecular abnormalities in childhood acute lymphoblastic leukaemia. Br J Haematol 1997;98: 134–139.CrossRefGoogle ScholarPubMed
Baccichet, A, Benachenhou, N, Couture, F, Leclerc, JM, Sinnett, D. Microsatellite instability in childhood T cell acute lymphoblastic leukemia. Leukemia 1997;11:797–802.CrossRefGoogle ScholarPubMed
Finette, BA, Poseno, T, Albertini, RJ. V(D)J recombinase-mediated HPRT mutations in peripheral blood lymphocytes of normal children. Cancer Res 1996;56: 1405–1412.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×