Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-20T09:22:25.337Z Has data issue: false hasContentIssue false

1 - History of leukemia: historical perspectives

from Section 1 - History and general issues

Published online by Cambridge University Press:  05 April 2013

Ching-Hon Pui
Affiliation:
St Jude's Children's Research Hospital
Get access

Summary

Introduction

The best way to study variable human disease in variable human beings is to study variable human disease in variable human beings.

Philip Schein and Barbara Scheffler (paraphrase)

The last half century has witnessed striking progress in the treatment of childhood leukemia, largely by empiric manipulation of a rather limited chemotherapeutic armamentarium through well-designed clinical studies. Approximately 50 years ago, the first attempts to cure this dread disease were dismissed as futile and even cruel in providing unrealistic hopes to desperate families. However, improved supportive care has allowed patients to survive through periods of perilous pancytopenia, induced by the disease and its treatment, and cure has become routine, albeit not universal, in economically privileged countries. Outcomes remain poor for relapsed patients and for those in economically underprivileged countries where treatment may not be accessible.

Appreciation of the biology of leukemia has advanced from clinical descriptions, through cytomorphology and histochemistry, to molecular genetics. The pace has quickened perceptively since the start of the twenty-first century. Genetic studies, at first focused on the single most visually obvious chromosomal abnormality by karyotype, are now expanded to genome-wide analyses and beyond genomics to epigenomics. We are moving from a descriptive catalogue of genetic abnormalities to an appreciation of cooperating functional aberrations affecting differentiation, apoptosis, and proliferation. We not only divide leukemia into major clinical/cytomorphologic subsets such as acute and chronic, lymphoid and myeloid but also recognize the tremendous heterogeneity within each subset. Patients sharing a genetic abnormality, such as t(1;19), may have differing associated abnormalities. Emerging evidence demonstrates oligo-clonality and the consequences of clonal evolution. Some investigators feel that the limits of indiscriminate intensification of therapy have been reached. However, improved event-free survival with intensified anthracycline treatment in acute myeloid leukemia (AML) and with “augmented” postinduction intensification in acute lymphoblastic leukemia (ALL) suggests that our bag of tricks is not yet completely empty. Recent clinical advances in Philadelphia chromosome-positive ALL and chronic myelogenous leukemia (CML) hint at the thrilling promise of coming decades.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Schein, PS, Scheffler, B. Barriers to efficient development of cancer therapeutics. Clin Cancer Res 2006;12:3243–3248.CrossRefGoogle ScholarPubMed
Smith, MA, Seibel, NL, Altekruse, SF, et al. outcomes for children and adolescents with cancer: challenges for the twenty-first century. J Clin Oncol 2010;28:2625–2634.CrossRefGoogle ScholarPubMed
Eden, T, Pui, C-H, Schrappe, M, Tognoni, G, Masera, G. All children have a right to full access to treatment for cancer. Lancet 2004;364:1121–1122.CrossRefGoogle ScholarPubMed
Mullighan, CG, Goorha, S, Radtke, I, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007;446:758–764.CrossRefGoogle ScholarPubMed
Mullighan, CG, Downing, JR. Genome-wide profiling of genetic alterations in acute lymphoblastic leukemia: recent insights and future directions. Leukemia 2009;23:1209–1218.CrossRefGoogle ScholarPubMed
Choi, S, Henderson, MJ, Kwan, E, et al. Relapse in children with acute lymphoblastic leukemia involving selection of a preexisting drug-resistant subclone. Blood 2007;110:632–639.CrossRefGoogle ScholarPubMed
Mullighan, CG, Phillips, LA, Su, X, et al. Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science 2008;322:1377–1380.CrossRefGoogle ScholarPubMed
Fernandez, HF, Sun, Z, Yao, X, et al. Anthracycline dose intensification in acute myeloid leukemia. N Engl J Med 2009;361:1249–1259.CrossRefGoogle ScholarPubMed
Löwenberg, B, Ossenkoppele, GJ, van Putten, W, et al. High-dose daunorubicin in older patients with acute myeloid leukemia. N Engl J Med 2009;361:1235–1248.CrossRefGoogle ScholarPubMed
Seibel, NL, Steinherz, PG, Sather, HN, et al. Early postinduction intensification therapy improves survival for children and adolescents with high-risk acute lymphoblastic leukemia: a report from the Children's Oncology Group. Blood 2008;111:2548–2555.CrossRefGoogle ScholarPubMed
Schultz, KR, Bowman, WP, Aledo, A, et al. Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a Children's Oncology Group Study. J Clin Oncol 2009;27:5175–5181.CrossRefGoogle ScholarPubMed
Druker, BJ. Perspectives on the development of imatinib and the future of cancer research. Nat Med 2009;15:1149–1152.CrossRefGoogle ScholarPubMed
Piller, G. Leukaemia: a brief historical review from ancient times to 1950. Br J Haematol 2001;112:282–292.CrossRefGoogle ScholarPubMed
Goldman, JM, Daley, GQ. Chronic myeloid leukemia: a brief history. In Melo, JV, Goldman, JM, Daley, GQ (eds.) Myeloproliferative Disorders. New York: Springer, 2007:1–13.Google Scholar
Virchow, R. Weisses Blut. Frorieps Notizen 1845;36:151–156.Google Scholar
Ehrlich, P. Farbenanalytische Untersuchungen zur Histologie und Klinik des Blutes. Berlin: Verlag von August Hirschwald, 1891.
Boveri, T. Concerning the origin of malignant tumours by Theodor Boveri. [Translated and annotated by Henry Harris.]J Cell Sci 2008;121:1–84.CrossRefGoogle Scholar
Moldavan, A. Photo-electric technique for the counting of microscopal cells. Science 1934;80:188–189.CrossRefGoogle Scholar
Nowell, PC, Hungerford, DA. Chromosome studies in human leukemia. II. Chronic granulocytic leukemia. J Natl Cancer Inst 1961;27:1013–1035.Google ScholarPubMed
Milstein, C. With the benefit of hindsight. Immunol Today 2000;21:359–364.CrossRefGoogle ScholarPubMed
Weinshilboum, RM, Sladek, SL. Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am J Hum Genet 1980;32:651–662.Google ScholarPubMed
Bauman, JG, Wiegant, J, Borst, P, van Duijn, P. A new method for fluorescence microscopical localization of specific DNA sequences by in situ hybridization of fluorochrome labelled RNA. Exp Cell Res 1980;128:485–490.CrossRefGoogle Scholar
Li, HH, Gyllensten, UB, Cui, XF, et al. Amplification and analysis of DNA sequences in single human sperm and diploid cells. Nature 1988;335: 414–417.CrossRefGoogle ScholarPubMed
Lockhart, DJ, Dong, H, Byrne, MC, et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 1996;14:1675–1680.CrossRefGoogle ScholarPubMed
Solinas-Toldo, S, Lampel, S, Stilgenbauer, S, et al. Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer 1997;20:399–407.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
van Dongen, JJ, Breit, TM, Adriaansen, HJ, Beishuizen, A, Hooijkaas, H. Detection of minimal residual disease in acute leukemia by immunological marker analysis and polymerase chain reaction. Leukemia 1992;6(Suppl 1): 47–59.Google ScholarPubMed
Cave, H, van der Werff, tenBosch, J, Suciu, S, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer–Childhood Leukemia Cooperative Group. N Engl J Med 1998;339:591–598.CrossRefGoogle ScholarPubMed
Thomas, X. Highlights in the history of leukaemia: a historical review from the beginnings to current therapeutic developments. Haema 2006;9:191–211.Google Scholar
Geary, C. The story of chronic myeloid leukemia. Br J Haematol 2000;110:2–11.CrossRefGoogle Scholar
Rowley, JD. Chromosomes in leukemia and beyond: from irrelevant to central players. Annu Rev Genomics Hum Genet 2009;10:1–18.CrossRefGoogle ScholarPubMed
Wu, SQ, Weinberg, KI, Joo, WJ, et al. Preponderant mitotic activity of nonleukemic cells plays an important role in failures to detect abnormal clone in childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol 2003;25:520–525.CrossRefGoogle ScholarPubMed
Greaves, M. Darwin and evolutionary tales in leukemia. The Ham-Wasserman Lecture. Hematology Am Soc Hematol Educ Program 2009:3–12.Google ScholarPubMed
Borowitz, MJ, Devidas, M, Hunger, SP, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children's Oncology Group study. Blood 2008;111:5477–5485.CrossRefGoogle ScholarPubMed
Campana, D. Status of minimal residual disease testing in childhood haematological malignancies. Br J Haematol 2008;143:481–489.Google ScholarPubMed
Bruggemann, M, Schrauder, A, Raff, T, et al. Standardized MRD quantification in European ALL trials. [Proceedings of the Second International Symposium on MRD Assessment in Kiel, Germany, 18–20 September 2008.] Leukemia 2010;24:521–535.CrossRefGoogle Scholar
Lönnerholm, G, Frost, B-M, Abrahamsson, J, et al. Vincristine pharmacokinetics is related to clinical outcome in children with standard risk acute lymphoblastic leukemia. Br J Haematol 2008;142:616–621.CrossRefGoogle ScholarPubMed
Stocco, G, Crews, KR, Evans, WE. Genetic polymorphism of inosine-triphosphate-pyrophosphatase influences mercaptopurine metabolism and toxicity during treatment of acute lymphoblastic leukemia individualized for thiopurine-S-methyl-transferase status. Expert Opin Drug Safety 2010;9:23–37.CrossRefGoogle ScholarPubMed
Yang, JJ, Cheng, C, Yang, W, et al. Genome-wide interrogation of germline genetic variation associated with treatment response in childhood acute lymphoblastic leukemia. JAMA 2009;301:393–403.CrossRefGoogle ScholarPubMed
Treviño, LR, Yang, W, French, D, et al. Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat Genet 2009;41: 1001–1005.CrossRefGoogle ScholarPubMed
Yendamuri, S, Calin, GA. The role of microRNA in human leukemia: a review. Leukemia 2009;23: 1257–1263.CrossRefGoogle ScholarPubMed
Yeoh, EJ, Ross, ME, Shurtleff, SA, et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 2002;1:133–143.CrossRefGoogle ScholarPubMed
Fine, BM, Stanulla, M, Schrappe, M, et al. Gene expression patterns associated with recurrent chromosomal translocations in acute lymphoblastic leukemia. Blood 2004;103:1043–1049.CrossRefGoogle ScholarPubMed
Greaves, M. Cancer stem cells: Back to Darwin?Semin Cancer Biol 2010;20:65–70.CrossRefGoogle ScholarPubMed
Bhojwani, D, Kang, H, Moskowitz, NP, et al. Biologic pathways associated with relapse in childhood acute lymphoblastic leukemia: a Children's Oncology Group study. Blood 2006;108:711–717.CrossRefGoogle ScholarPubMed
Gaynon, PS, Angiolillo, AL, Carroll, WL, et al. Long-term results of the Children's Cancer Group studies for childhood acute lymphoblastic leukemia 1983–2002: a Children's Oncology Group Report. Leukemia 2010;24:285–297.CrossRefGoogle ScholarPubMed
Mitchell, C, Richards, S, Harrison, CJ, Eden, T. Long-term follow-up of the United Kingdom Medical Research Council protocols for childhood acute lymphoblastic leukaemia, 1980–2001. Leukemia 2010;24:406–418.CrossRefGoogle ScholarPubMed
Moricke, A, Zimmermann, M, Reiter, A, et al. Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia 2010;24:265–284.CrossRefGoogle Scholar
Pui, CH, Pei, D, Sandlund, JT, et al. Long-term results of St. Jude Total Therapy Studies 11, 12, 13A, 13B, and 14 for childhood acute lymphoblastic leukemia. Leukemia 2010;24:371–382.CrossRefGoogle ScholarPubMed
Patte, C, Philip, T, Rodary, C, et al. Improved survival rate in children with stage III and IV B cell non-Hodgkin's lymphoma and leukemia using multi-agent chemotherapy: results of a study of 114 children from the French Pediatric Oncology Society. J Clin Oncol 1986;4:1219–1226.CrossRefGoogle ScholarPubMed
Patte, C, Philip, T, Rodary, C, et al. High survival rate in advanced-stage B-cell lymphomas and leukemias without CNS involvement with a short intensive polychemotherapy: results from the French Pediatric Oncology Society of a randomized trial of 216 children. J Clin Oncol 1991;9:123–132.CrossRefGoogle ScholarPubMed
Waxman, S, Anderson, KC. History of the development of arsenic derivatives in cancer therapy. Oncologist 2001;6:3–10.CrossRefGoogle ScholarPubMed
Wright, LD, Welch, AD. The role of “folic acid" and biotin in the utilization of pantothenic acid in the rat. Science 1943;97:426–427.CrossRefGoogle ScholarPubMed
Goodman, LS, Wintrobe, MM, Dameshek, W, et al. Nitrogen mustard therapy; use of methyl-bis (beta-chloroethyl) amine hydrochloride and tris (beta-chloroethyl) amine hydrochloride for Hodgkin's disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. JAMA 1946;132:126–132.CrossRefGoogle ScholarPubMed
Farber, S, Diamond, LK. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N Engl J Med 1948;238: 787–793.CrossRefGoogle ScholarPubMed
Pearson, O, Eliel, L. Use of pituitary adrenocorticotrophic hormone (ACTH) and cortisone in lymphomas and leukemias. JAMA 1950;144:1349–1353.CrossRefGoogle ScholarPubMed
Papac, RJ. Origins of cancer therapy. Yale J Biol Med 2001;74:391–398.Google ScholarPubMed
Wang, ZY, Chen, Z. Acute promyelocytic leukemia: from highly fatal to highly curable. Blood 2008;111: 2505–2515.CrossRefGoogle ScholarPubMed
Heinle, R, Welch, A. Experiments with pteroylglutamic acid and pteroylglutamic acid deficiency in human leukemia. J Clin Invest 1948;27:539.Google ScholarPubMed
Diamond, LK. Citation Classic. Temporary remissions in acute-leukemia in children produced by folic-acid antagonist, 4-aminopteroyl-glutamic acid (aminopterin). Curr Cont/Clin Pract 1985:16.Google Scholar
Miller, DR. A tribute to Sidney Farber: the father of modern chemotherapy. Br J Haematol 2006;134:20–26.CrossRefGoogle Scholar
Pochedly, C, Wolff, JA. II. First successful chemotherapy of acute leukemia. J Pediatr Hematol Oncol 1984;6:449–454.CrossRefGoogle ScholarPubMed
Bertino, J. Karnofsky memorial lecture. Ode to methotrexate. J Clin Oncol 1993;11:5–14.CrossRefGoogle ScholarPubMed
Heilman, F, Kendall, E. The influence of 11-dehydro-17-hydroxycorticosterone (compound E) on the growth of a malignant tumor in the mouse. Endocrinology 1944;34:416–420.CrossRefGoogle Scholar
Schulman, I. The treatment of leukemia with ACTH and cortisone. Am J Dis Child 1950;80:521–522.Google ScholarPubMed
Snelling, C, Donohue, W, Laski, B, Jackson, S. Pituitary adrenocorticotropic hormone (ACTH) and 11-dehydro-17 hydroxy corticosterone (cortisone) therapy in the leukemias and lymphomas of children. Pediatrics 1951;8:22–25.Google ScholarPubMed
Elion, GB, Hitchings, GH, Vanderwerff, H. Antagonists of nucleic acid derivatives. VI. Purines. J Biol Chem 1951;192:505–518.Google ScholarPubMed
Glidewell, OJ, Holland, JF. Clinical trials of the acute leukemia group B in acute lymphocytic leukemia of childhood. Bibl Haematol 1973;39:1053–1067.Google Scholar
Gehan, EA. Progress of therapy in acute leukemia 1948–1981: randomized versus nonrandomized clinical trials. Control Clin Trials 1982;3:199–207.CrossRefGoogle ScholarPubMed
Kaptchuk, TJ, Kerr, CE. Commentary: Unbiased divination, unbiased evidence, and the patulin clinical trial. Int J Epidemiol 2004;33:247–251.CrossRefGoogle ScholarPubMed
Yoshioka, A. Use of randomisation in the Medical Research Council's clinical trial of streptomycin in pulmonary tuberculosis in the 1940s. BMJ 1998;317:1220–1223.CrossRefGoogle ScholarPubMed
Freireich, EJ. Four decades of therapy for AML. Leukemia 1998;12(Suppl 1): S54–S56.Google ScholarPubMed
Anon, . Transfusion of blood in leukaemia. BMJ 1873;1:593.Google Scholar
Levine, P.A review of Landsteiner's contributions to human blood groups. Transfusion 1961;1:45–52.CrossRefGoogle ScholarPubMed
Telischi, M. Evolution of Cook County Hospital Blood Bank. Transfusion 1974;14:623–628.CrossRefGoogle ScholarPubMed
Blajchman, MA. Platelet transfusions: an historical perspective. Hematol Am Soc Hematol Educ Prog 2008:197.
Thomas, ED, Lochte, HL, Jr., Lu, WC, Ferrebee, JW. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med 1957;257:491–496.CrossRefGoogle ScholarPubMed
Gatti, RA, Meuwissen, HJ, Allen, HD, Hong, R, Good, RA. Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet 1968;2:1366–1369.CrossRefGoogle ScholarPubMed
Rolinson, GN, Sutherland, R. Carbenicillin, a new semisynthetic penicillin active against Pseudomonas aeruginosa. Antimicrob Agents Chemother 1967;7:609–613.Google ScholarPubMed
Pizzo, PA, Robichaud, KJ, Gill, FA, Witebsky, FG. Empiric antibiotic and antifungal therapy for cancer patients with prolonged fever and granulocytopenia. Am J Med 1982;72:101–111.CrossRefGoogle ScholarPubMed
Dausset, J.[Iso-leuko-antibodies.]Acta Haematol 1958;20:156–166.CrossRefGoogle Scholar
van Rood, JJ, Eernisse, JG, van Leeuwen, A. Leucocyte antibodies in sera from pregnant women. Nature 1958;181:1735–1736.CrossRefGoogle ScholarPubMed
Thomas, ED, Storb, R, Fefer, A, et al. Aplastic anaemia treated by marrow transplantation. Lancet 1972;1:284–289.CrossRefGoogle ScholarPubMed
Cleaver, SA. The Anthony Nolan Research Centre. Bone Marrow Transplant 1993;11(Suppl 1): 38–40.Google ScholarPubMed
Thomas, ED, Fefer, A, Buckner, CD, Storb, R. Current status of bone marrow transplantation for aplastic anemia and acute leukemia. Blood 1977;49: 671–681.Google ScholarPubMed
Thomas, ED, Buckner, CD, Clift, RA, et al. Marrow transplantation for acute nonlymphoblastic leukemia in first remission. N Engl J Med 1979;301:597–599.CrossRefGoogle ScholarPubMed
McCullough, J, Perkins, HA, Hansen, J. The National Marrow Donor Program with emphasis on the early years. Transfusion 2006;46:1248–1255.CrossRefGoogle ScholarPubMed
Fisher, BS. The National Marrow Donor Program with emphasis on the early years. Transfusion 2007;47:1101–1102.CrossRefGoogle ScholarPubMed
Gluckman, E, Broxmeyer, HE, Auerbach, AD, et al. Hematopoietic reconstitution in a patient with Fanconi's anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 1989;321:1174–1178.CrossRefGoogle Scholar
Greenwalt, TJ. A short history of transfusion medicine. Transfusion 1997;37:550–563.CrossRefGoogle Scholar
Myhre, BA. James Blundell “pioneer transfusionist.” Transfusion 1995;35:74–78.CrossRefGoogle Scholar
McKusick, VA. From Karl Landsteiner to Peter Agre: 100 years in the history of blood group genetics. Transfusion 2004;44:1370–1376.CrossRefGoogle Scholar
Brand, A, Novotny, V, Tomson, B. Platelet transfusion therapy: from 1973 to 2005. Hum Immunol 2006;67:413–418.CrossRefGoogle ScholarPubMed
Alvarado, J, Djerassi, I, Farber, S. Transfusion of fresh concentrated platelets to children with acute leukemia. J Pediatr 1965;67:13–22.CrossRefGoogle ScholarPubMed
Rundles, RW. The development of allopurinol. Arch Intern Med 1985;145:1492–1503.CrossRefGoogle ScholarPubMed
Cairo, MS, Coiffier, B, Reiter, A, Younes, A, For the TLS Expert Panel. Recommendations for the evaluation of risk and prophylaxis of tumour lysis syndrome (TLS) in adults and children with malignant diseases: an expert TLS panel consensus. Br J Haematol 2010;149:578–586.CrossRefGoogle Scholar
Frei, E, 3rd, Levin, RH, Bodey, GP, Morse, EE, Freireich, EJ. The nature and control of infections in patients with acute leukemia. Cancer Res 1965;25:1511–1515.Google ScholarPubMed
Boggs, DR. The significance of fever and infection in malignant neoplastic disease. Med Sci 1963;14:64–74.Google ScholarPubMed
Bodey, GP, Buckley, M, Sathe, YS, Freireich, EJ. Quantitative relationships between circulating leukocytes and infection in patients with acute leukemia. Ann Intern Med 1966;64:328–340.CrossRefGoogle ScholarPubMed
Raab, SO, Hoeprich, PD, Wintrobe, MM, Cartwright, GE. The clinical significance of fever in acute leukemia. Blood 1960;16:1609–1628.Google ScholarPubMed
Hersh, EM, Bodey, GP, Nies, BA, Freireich, EJ. Causes of death in acute leukemia: a ten-year study of 414 patients from 1954–1963. JAMA 1965;193:105–109.CrossRefGoogle ScholarPubMed
Bodey, GP. Fever and neutropenia: the early years. J Antimicrob Chemother 2009;63:i3–i13.CrossRefGoogle ScholarPubMed
Bow, EJ. Management of the febrile neutropenic cancer patient: lessons from 40 years of study. Clin Microbiol Infect 2005;11:24–29.CrossRefGoogle Scholar
Pizzo, PA, Ladisch, S, Simon, RM, Gill, F, Levine, AS. Increasing incidence of Gram-positive sepsis in cancer patients. Med Pediatr Oncol 1978;5:241–244.CrossRefGoogle ScholarPubMed
Pizzo, PA. Granulocytopenia and cancer therapy. Past problems, current solutions, future challenges. Cancer 1984;54:2649–2661.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Bennett, JE. Management of mycoses in neutropenic patients: a brief history. J Antimicrob Chemother 2009;63: i23–i26.CrossRefGoogle ScholarPubMed
Feldman, S, Hughes, WT, Daniel, CB. Varicella in children with cancer: seventy-seven cases. Pediatrics 1975;56:388–397.Google ScholarPubMed
Zaia, JA, Levin, MJ, Preblud, SR, et al. Evaluation of varicella-zoster immune globulin: protection of immunosuppressed children after household exposure to varicella. J Infect Dis 1983;147:737–743.CrossRefGoogle ScholarPubMed
Biron, KK, Elion, GB. In vitro susceptibility of varicella-zoster virus to acyclovir. Antimicrob Agents Chemother 1980;18:443–447.CrossRefGoogle ScholarPubMed
Prober, CG, Kirk, LE, Keeney, RE. Acyclovir therapy of chickenpox in immunosuppressed children: a collaborative study. J Pediatr 1982;101:622–625.CrossRefGoogle ScholarPubMed
Feldman, S, Lott, L. Varicella in children with cancer: impact of antiviral therapy and prophylaxis. Pediatrics 1987;80:465–472.Google ScholarPubMed
Levin, MJ. Varicella vaccination of immunocompromised children. J Infect Dis 2008;197(Suppl): S200–S206.CrossRefGoogle ScholarPubMed
Aur, RJ, Simone, JV, Verzosa, MS, et al. Childhood acute lymphocytic leukemia: study VIII. Cancer 1978;42:2123–2134.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Pyrgos, V, Shoham, S, Roilides, E, Walsh, TJ. Pneumocystis pneumonia in children. Paediatr Resp Rev 2009;10:192–198.CrossRefGoogle ScholarPubMed
Perera, DR, Western, KA, Johnson, HD, et al. Pneumocystis carinii pneumonia in a hospital for children. Epidemiologic aspects. JAMA 1970;214:1074–1078.CrossRefGoogle Scholar
Western, KA, Perera, DR, Schultz, MG. Pentamidine isethionate in the treatment of Pneumocystis carinii pneumonia. Ann Intern Med 1970;73:695–702.CrossRefGoogle ScholarPubMed
Hughes, WT, Feldman, S, Sanyal, SK. Treatment of Pneumocystis carinii pneumonitis with trimethoprim- sulfamethoxazole. CMAJ 1975;112:47–50.Google ScholarPubMed
Hughes, WT, Kuhn, S, Chaudhary, S, et al. Successful chemoprophylaxis for Pneumocystis carinii pneumonitis. N Engl J Med 1977;297:1419–1426.CrossRefGoogle ScholarPubMed
Barnes, DW, Corp, MJ, Loutit, JF, Neal, FE. Treatment of murine leukaemia with X rays and homologous bone marrow; preliminary communication. BMJ 1956;2:626–627.CrossRefGoogle ScholarPubMed
Carosella, ED. Jean Dausset 1916–2009. Nat Immunol 2009;10:797.CrossRefGoogle Scholar
Thomas, E, Storb, R, Clift, RA, et al. Bone-marrow transplantation (first of two parts). N Engl J Med 1975;292:832–843.CrossRefGoogle Scholar
Thomas, ED, Storb, R, Clift, RA, et al. Bone-marrow transplantation (second of two parts). N Engl J Med 1975;292:895–902.CrossRefGoogle Scholar
Thomas, ED. Landmarks in the development of hematopoietic cell transplantation. World J Surg 2000;24:815–818.CrossRefGoogle ScholarPubMed
Pinkel, D. Bone marrow transplant in acute myeloid leukemia. J Clin Oncol 1994;12:1737.Google ScholarPubMed
Pinkel, D. Role of bone marrow transplantation for acute lymphoid leukemia. J Pediatr 1994;125:506–507.CrossRefGoogle ScholarPubMed
Sun, C-L, Francisco, L, Kawashima, T, et al. Prevalence and predictors of chronic health conditions after hematopoietic cell transplantation: a report from the Bone Marrow Transplant Survivor Study. Blood 2010;116:3129–3139.CrossRefGoogle ScholarPubMed
Niemeyer, CM, Kratz, CP. Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia: molecular classification and treatment options. Br J Haematol 2008;140:610–624.CrossRefGoogle ScholarPubMed
Bunin, NJ, Davies, SM, Aplenc, R, et al. Unrelated donor bone marrow transplantation for children with acute myeloid leukemia beyond first remission or refractory to chemotherapy. J Clin Oncol 2008;26:4326–4332.CrossRefGoogle ScholarPubMed
Eapen, M, Raetz, E, Zhang, M-J, et al. Outcomes after HLA-matched sibling transplantation or chemotherapy in children with B-precursor acute lymphoblastic leukemia in a second remission: a collaborative study of the Children's Oncology Group and the Center for International Blood and Marrow Transplant Research. Blood 2006;107:4961–4967.CrossRefGoogle ScholarPubMed
Simon, W, Segel, GB, Lichtman, MA. Early allogeneic stem cell transplantation for chronic myelogenous leukemia in the imatinib era: a preliminary assessment. Blood Cells Mol Dis 2006;37:116–124.CrossRefGoogle ScholarPubMed
Gibson, BE, Wheatley, K, Hann, IM, et al. Treatment strategy and long-term results in paediatric patients treated in consecutive UK AML trials. Leukemia 2005;19:2130–2138.CrossRefGoogle ScholarPubMed
Creutzig, U, Zimmermann, M, Ritter, J, et al. Treatment strategies and long-term results in paediatric patients treated in four consecutive AML-BFM trials. Leukemia 2005;19: 2030–2042.CrossRefGoogle ScholarPubMed
Farber, S, Pinkel, D, Sears, EM, Toch, R. Advances in chemotherapy of cancer in man. Adv Cancer Res 1956;4:1–71.CrossRefGoogle ScholarPubMed
Vernick, J, Karon, M. Who's afraid of death on a leukemia ward?Am J Dis Child 1965;109:393–397.Google ScholarPubMed
Soni, SS, Marten, GW, Pitner, SE, Duenas, DA, Powazek, M. Effects of central-nervous-system irradiation on neuropsychologic functioning of children with acute lymphocytic leukemia. N Engl J Med 1975;293:113–118.CrossRefGoogle ScholarPubMed
Fuller, H. Encephaloid tumour of the abdomen. Trans Pathol Soc Lond 1850;4:224–225.Google Scholar
Holland, JF. Karnofsky Memorial Lecture. Breaking the cure barrier. J Clin Oncol 1983;1:75–90.CrossRefGoogle ScholarPubMed
Acute Leukemia Group B. New treatment schedule with improved survival in childhood leukemia. Intermittent parenteral vs daily oral administration of methotrexate for maintenance of induced remission. JAMA 1965;194:75–81.CrossRefGoogle Scholar
Pinkel, D. The ninth annual David Karnofsky Lecture. Treatment of acute lymphocytic leukemia. Cancer 1979;43:1128–1137.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Freeman, AI, Boyett, JM, Glicksman, AS, et al. Intermediate-dose methotrexate versus cranial irradiation in childhood acute lymphoblastic leukemia: a ten-year follow-up. Med Pediatr Oncol 1997;28:98–107.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Freeman, AI, Weinberg, V, Brecher, ML, et al. Comparison of intermediate-dose methotrexate with cranial irradiation for the post-induction treatment of acute lymphocytic leukemia in children. N Engl J Med 1983;308:477–484.CrossRefGoogle ScholarPubMed
Jacquillat, C, Weil, M, Gemon, MF, et al. Combination therapy in 130 patients with acute lymphoblastic leukemia (protocol 06 LA 66-Paris). Cancer Res 1973;33:3278–3284.Google Scholar
Murphy, SB, Borella, L, Sen, L, Mauer, A. Lack of correlation of lymphoblast cell size with presence of T-cell markers or with outcome in childhood acute lymphoblastic leukaemia. Br J Haematol 1975;31:95–101.CrossRefGoogle ScholarPubMed
Pullen, DJ, Boyett, JM, Crist, WM, et al. Pediatric oncology group utilization of immunologic markers in the designation of acute lymphocytic leukemia subgroups: influence on treatment response. Ann N Y Acad Sci 1984;428:26–48.CrossRefGoogle ScholarPubMed
Henze, G, Langermann, HJ, Bramswig, J, et al. [The BFM 76/79 acute lymphoblastic leukemia therapy study (author's transl).]Klin Padiatr 1981;193:145–154.CrossRefGoogle Scholar
Sallan, SE, Hitchcock-Bryan, S, Gelber, R, Cassady, JR, Frei, E, 3rd, Nathan, DG. Influence of intensive asparaginase in the treatment of childhood non-T-cell acute lymphoblastic leukemia. Cancer Res 1983;43:5601–5607.Google ScholarPubMed
Kersey, JH, LeBien, TW, Abramson, CS, et al. P-24: a human leukemia- associated and lymphohemopoietic progenitor cell surface structure identified with monoclonal antibody. J Exp Med 1981;153:726–731.CrossRefGoogle ScholarPubMed
Schrappe, M, Reiter, A, Zimmermann, M, et al. Long-term results of four consecutive trials in childhood ALL performed by the ALL-BFM study group from 1981 to 1995. Berlin–Frankfurt–Münster. Leukemia 2000;14:2205–2222.CrossRefGoogle Scholar
Nachman, JB, Sather, HN, Sensel, MG, et al. Augmented post-induction therapy for children with high-risk acute lymphoblastic leukemia and a slow response to initial therapy. N Engl J Med 1998;338:1663–1671.CrossRefGoogle Scholar
Ford, AM, Ridge, SA, Cabrera, ME, et al. In utero rearrangements in the trithorax-related oncogene in infant leukaemias. Nature 1993;363:358–360.CrossRefGoogle ScholarPubMed
Pui, CH, Behm, FG, Downing, JR, et al. 11q23/MLL rearrangement confers a poor prognosis in infants with acute lymphoblastic leukemia. J Clin Oncol 1994;12:909–915.CrossRefGoogle ScholarPubMed
Ford, AM, Bennett, CA, Price, CM, et al. Fetal origins of the TEL-AML1 fusion gene in identical twins with leukemia. Proc Natl Acad Sci USA 1998;95: 4584–4588.CrossRefGoogle ScholarPubMed
Wiemels, JL, Ford, AM, van Wering, ER, Postma, A, Greaves, M. Protracted and variable latency of acute lymphoblastic leukemia after TEL-AML1 gene fusion in utero. Blood 1999;94:1057–1062.Google ScholarPubMed
Sun, L, Heerema, N, Crotty, L, et al. Expression of dominant-negative and mutant isoforms of the antileukemic transcription factor Ikaros in infant acute lymphoblastic leukemia. Proc Natl Acad Sci USA 1999;96:680–685.CrossRefGoogle ScholarPubMed
Sun, L, Crotty, ML, Sensel, M, et al. Expression of dominant-negative Ikaros isoforms in T-cell acute lymphoblastic leukemia. Clin Cancer Res 1999;5:2112–2120.Google ScholarPubMed
Pui, C-H, Campana, D, Pei, D, et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med 2009;360:2730–2741.CrossRefGoogle ScholarPubMed
Coustan-Smith, E, Mullighan, CG, Onciu, M, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol 2009;10:147–156.CrossRefGoogle ScholarPubMed
Evans, AE, Farber, S, Brunet, S, Mariano, PJ. Vincristine in the treatment of acute leukemia in children. Cancer 1963;16:1302–1306.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Karon, M, Freireich, EJ, Frei, E, 3rd, et al. The role of vincristine in the treatment of childhood acute leukemia. Clin Pharmacol Ther 1966;7:332–339.CrossRefGoogle ScholarPubMed
Skipper, HE, Bennett, LL, Jr., Edwards, PC, et al. Anti-leukemic assays on certain pyrimidines, purines, benzimidazoles, and related compounds. Cancer Res 1950;10: 166–169.Google ScholarPubMed
Skipper, HE, Chapman, JB, Bell, M. The anti-leukemic action of combinations of certain known anti-leukemic agents. Cancer Res 1951;11:109–112.Google ScholarPubMed
Skipper, HE, Schabel, FM, Jr., Bell, M, Thomson, JR, Johnson, S. On the curability of experimental neoplasms. I. Amethopterin and mouse leukemias. Cancer Res 1957;17:717–726.Google ScholarPubMed
Goldin, A, Humphreys, SR, Mantel, N, Venditti, JM. Combined treatment of advanced leukemia (L1210) in mice with amethopterin and 6-mercaptopurine. J Natl Cancer Inst 1956;17:631–638.Google ScholarPubMed
Goldin, A, Venditti, JM, Humphreys, SR, Mantel, N. Quantitative evaluation of chemotherapeutic agents against advanced leukemia in mice. J Natl Cancer Inst 1958;21: 495–511.Google ScholarPubMed
Goldin, A. Rationale of combination chemotherapy based on preclinical experiments. Cancer Chemother Rep 3 1973;4:189–198.Google ScholarPubMed
Devita, VT, Jr., Serpick, AA, Carbone, PP. Combination chemotherapy in the treatment of advanced Hodgkin's disease. Ann Intern Med 1970;73:881–895.Google ScholarPubMed
Hardisty, RM, McElwain, TJ, Darby, CW. Vincristine and prednisone for the induction of remissions in acute childhood leukaemia. BMJ 1969;2:662–665.CrossRefGoogle ScholarPubMed
Crowther, D. Blood and neoplastic diseases. A rational approach to the chemotherapy of human malignant disease, I. BMJ 1974;4:156–159.CrossRefGoogle Scholar
Hill, JM, Roberts, J, Loeb, E, Khan, A, MacLellan, A, Hill, RW. l-Asparaginase therapy for leukemia and other malignant neoplasms. Remission in human leukemia. JAMA 1967;202:882–888.CrossRefGoogle ScholarPubMed
Oettgen, HF, Old, LJ, Boyse, EA, et al. Inhibition of leukemias in man by l-asparaginase. Cancer Res 1967;27:2619–2631.Google Scholar
Broome, J. Evidence that the l-asparaginase activity of guinea pig serum is responsible for its antilymphoma effects. Nature 1961;191:1114–1115.CrossRefGoogle Scholar
Sutow, W, Sullivan, M, Taylor, G. Status of present treatment for acute leukemia in children. Cancer Res 1965;25:1481–1490.Google ScholarPubMed
Hustu, HO, Aur, RJ, Verzosa, MS, Simone, JV, Pinkel, D. Prevention of central nervous system leukemia by irradiation. Cancer 1973;32:585–597.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Jones, B, Holland, JF, Glidewell, O, et al. Optimal use of l-asparaginase (NSC-109229) in acute lymphocytic leukemia. Med Pediatr Oncol 1977;3:387–400.CrossRefGoogle Scholar
Tubergen, D, Gilchrist, G, O'Brien, R, et al. Improved outcome with delayed intensification for children with acute lymphoblastic leukemia and intermediate presenting features: a Childrens Cancer Group phase III trial. J Clin Oncol 1993;11:527–537.CrossRefGoogle ScholarPubMed
Mitchell, C, Payne, J, Wade, R, et al. The impact of risk stratification by early bone-marrow response in childhood lymphoblastic leukaemia: results from the United Kingdom Medical Research Council trials ALL97 and ALL97/99. Br J Haematol 2009;146:424–436.CrossRefGoogle ScholarPubMed
Kang, H, Chen, IM, Wilson, CS, et al. Gene expression classifiers for relapse-free survival and minimal residual disease improve risk classification and outcome prediction in pediatric B-precursor acute lymphoblastic leukemia. Blood 2010;115:1394–1405.CrossRefGoogle ScholarPubMed
Cohen, MH, Johnson, JR, Justice, R, Pazdur, R. FDA drug approval summary: nelarabine (Arranon) for the treatment of T-cell lymphoblastic leukemia/lymphoma. Oncologist 2008;13:709–714.CrossRefGoogle ScholarPubMed
DeAngelo, DJ. Nelarabine for the treatment of patients with relapsed or refractory T-cell acute lymphoblastic leukemia or lymphoblastic lymphoma. Hematol Oncol Clin North Am 2009;23:1121–1135.CrossRefGoogle ScholarPubMed
Takeshita, A, Yamakage, N, Shinjo, K, et al. CMC-544 (inotuzumab ozogamicin), an anti-CD22 immuno-conjugate of calicheamicin, alters the levels of target molecules of malignant B-cells. Leukemia 2009;23:1329–1336.CrossRefGoogle Scholar
Nguyen, K, Devidas, M, Cheng, S-C, et al. Factors influencing survival after relapse from acute lymphoblastic leukemia: a Children's Oncology Group study. Leukemia 2008;22:2142–2150.CrossRefGoogle ScholarPubMed
Vardiman, JW, Harris, NL, Brunning, RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 2002;100:2292–2302.CrossRefGoogle ScholarPubMed
Frohling, S, Scholl, C, Gilliland, DG, Levine, RL. Genetics of myeloid malignancies: pathogenetic and clinical implications. J Clin Oncol 2005;23:6285–6295.CrossRefGoogle ScholarPubMed
Alvarez, S, Cigudosa, JC. Gains, losses and complex karyotypes in myeloid disorders: a light at the end of the tunnel. Hematol Oncol 2005;23:18–25.CrossRefGoogle ScholarPubMed
Creutzig, U, Ritter, J, Zimmermann, M, et al. Improved treatment results in high-risk pediatric acute myeloid leukemia patients after intensification with high-dose cytarabine and mitoxantrone: results of Study Acute Myeloid Leukemia-Berlin–Frankfurt–Münster 93. J Clin Oncol 2001;19:2705–2713.CrossRefGoogle ScholarPubMed
Lange, BJ, Kobrinsky, N, Barnard, DR, et al. Distinctive demography, biology, and outcome of acute myeloid leukemia and myelodysplastic syndrome in children with Down syndrome: Children's Cancer Group Studies 2861 and 2891. Blood 1998;91:608–615.Google ScholarPubMed
Webb, DK, Harrison, G, Stevens, RF, et al. Relationships between age at diagnosis, clinical features, and outcome of therapy in children treated in the Medical Research Council AML 10 and 12 trials for acute myeloid leukemia. Blood 2001;98:1714–1720.CrossRefGoogle ScholarPubMed
Krivit, W, Good, RA. Simultaneous occurrence of mongolism and leukemia; report of a nationwide survey. Am J Dis Child 1957;94:289–293.CrossRefGoogle ScholarPubMed
Ravindranath, Y, Abella, E, Krischer, JP, et al. Acute myeloid leukemia (AML) in Down's syndrome is highly responsive to chemotherapy: experience on Pediatric Oncology Group AML Study 8498. Blood 1992;80:2210–2214.Google ScholarPubMed
Cohen, SS. Sponges, cancer chemotherapy, and cellular aging. Perspect Biol Med 1963;6:215–227.CrossRefGoogle ScholarPubMed
Ellison, RR, Holland, JF, Weil, M, et al. Arabinosyl cytosine: a useful agent in the treatment of acute leukemia in adults. Blood 1968;32:507–523.Google ScholarPubMed
Boiron, M, Weil, M, Jacquillat, C, et al. Daunorubicin in the treatment of acute myelocytic leukaemia. Lancet 1969;1:330–333.CrossRefGoogle ScholarPubMed
Carey, RW, Ribas-Mundo, M, Ellison, RR, et al. Comparative study of cytosine arabinoside therapy alone and combined with thioguanine, mercaptopurine, or daunorubicin in acute myelocytic leukemia. Cancer 1975;36:1560–1566.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Rowley, JD, Golomb, HM, Vardiman, J, et al. Further evidence for a non-random chromosomal abnormality in acute promyelocytic leukemia. Int J Cancer 1977;20:869–872.CrossRefGoogle ScholarPubMed
Sachs, L. Control of normal cell differentiation and the phenotypic reversion of malignancy in myeloid leukaemia. Nature 1978;274:535–539.CrossRefGoogle ScholarPubMed
Larson, RA, Le Beau, MM, Vardiman, JW, Testa, JR, Golomb, HM, Rowley, JD. The predictive value of initial cytogenetic studies in 148 adults with acute nonlymphocytic leukemia: a 12-year study (1970–1982). Cancer Genet Cytogenet 1983;10:219–236.CrossRefGoogle Scholar
de Thé, H, Chomienne, C, Lanotte, M, Degos, L, Dejean, A. The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor [alpha] gene to a novel transcribed locus. Nature 1990;347:558–561.CrossRefGoogle Scholar
Lo-Coco, F, Diverio, D, Pandolfi, PP, et al. Molecular evaluation of residual disease as a predictor of relapse in acute promyelocytic leukaemia. Lancet 1992;340:1437–1438.CrossRefGoogle ScholarPubMed
Mayer, RJ, Davis, RB, Schiffer, CA, et al. Intensive postremission chemotherapy in adults with acute myeloid leukemia. N Engl J Med 1994;331:896–903.CrossRefGoogle ScholarPubMed
Rogan, PK, Close, P, Blouin, JL, et al. Duplication and loss of chromosome 21 in two children with Down syndrome and acute leukemia. Am J Med Genet 1995;59:174–181.CrossRefGoogle ScholarPubMed
Kondo, M, Horibe, K, Takahashi, Y, et al. Prognostic value of internal tandem duplication of the FLT3 gene in childhood acute myelogenous leukemia. Med Pediatr Oncol 1999;33:525–529.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Wiemels, JL, Xiao, Z, Buffler, PA, et al. In utero origin of t(8;21) AML1-ETO translocations in childhood acute myeloid leukemia. Blood 2002;99:3801–3805.CrossRefGoogle Scholar
Speck, NA, Gilliland, DG. Core-binding factors in haematopoiesis and leukaemia. Nat Rev Cancer 2002;2:502–513.CrossRefGoogle ScholarPubMed
Raghavan, M, Lillington, DM, Skoulakis, S, et al. Genome-wide single nucleotide polymorphism analysis reveals frequent partial uniparental disomy due to somatic recombination in acute myeloid leukemias. Cancer Res 2005;65:375–378.Google ScholarPubMed
Grimwade, D, Jovanovic, JV, Hills, RK, et al. Prospective minimal residual disease monitoring to predict relapse of acute promyelocytic leukemia and to direct pre-emptive arsenic trioxide therapy. J Clin Oncol 2009;27:3650–3658.CrossRefGoogle ScholarPubMed
Bodey, GP, Freireich, EJ, Monto, RW, Hewlett, JS. Cytosine arabinoside (NSC-63878) therapy for acute leukemia in adults. Cancer Chemother Rep 1969;53:59–66.Google ScholarPubMed
Gee, TS, Yu, KP, Clarkson, BD. Treatment of adult acute leukemia with arabinosylcytosine and thioguanine. Cancer 1969;23:1019–1032.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Whitecar, JP, Jr., Bodey, GP, Freireich, EJ, McCredie, KB, Hart, JS. Cyclophosphamide (NSC-26271), vincristine (NSC-67574), cytosine arabinoside (NSC-63878), and prednisone (NSC-10023) (COAP) combination chemotherapy for acute leukemia in adults. Cancer Chemother Rep 1972;56:543–550.Google ScholarPubMed
Wiernik, PH, Glidewell, OJ, Hoagland, HC, et al. A comparative trial of daunorubicin, cytosine arabinoside, and thioguanine, and a combination of the three agents for the treatment of acute myelocytic leukemia. Med Pediatr Oncol 1979;6:261–277.CrossRefGoogle Scholar
Dahl, GV, Kalwinsky, DK, Mirro, J, Look, AT. A comparison of cytokinetically based versus intensive chemotherapy for childhood acute myelogenous leukemia. Haematol Blood Transfus 1987;30:83–87.Google ScholarPubMed
Lie, SO, Abrahamsson, J, Clausen, N, et al. Long-term results in children with AML: NOPHO-AML Study Group – report of three consecutive trials. Leukemia 2005;19:2090–2100.CrossRefGoogle Scholar
Perel, Y, Auvrignon, A, Leblanc, T, et al. Treatment of childhood acute myeloblastic leukemia: dose intensification improves outcome and maintenance therapy is of no benefit: multicenter studies of the French LAME (Leucemie Aigue Myeloblastique Enfant) Cooperative Group. Leukemia 2005;19: 2082–2089.CrossRefGoogle ScholarPubMed
Kaspers, GJ, Creutzig, U. Pediatric acute myeloid leukemia: international progress and future directions. Leukemia 2005;19:2025–2029.CrossRefGoogle ScholarPubMed
van Dalen, EC, van der Pal, HJ, Kok, WE, Caron, HN, Kremer, LC. Clinical heart failure in a cohort of children treated with anthracyclines: a long-term follow-up study. Eur J Cancer 2006;42:3191–3198.CrossRefGoogle Scholar
Burnett, AK, Hills, RK, Milligan, DW, et al. Attempts to optimize induction and consolidation treatment in acute myeloid leukemia: results of the MRC AML12 trial. J Clin Oncol 2010;28:586–595.CrossRefGoogle ScholarPubMed
Burnett, AK, Kell, WJ, Goldstone, AH, et al. The addition of gemtuzumab ozogamicin to induction chemotherapy for AML improves disease free survival without extra toxicity: preliminary analysis of 1115 patients in the MRC AML15 trial. Blood 2006;108:13.Google Scholar
Dohner, H, Estey, EH, Amadori, S, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2010;115:453–474.CrossRefGoogle Scholar
Hillestad, LK. Acute promyelocytic leukemia. Acta Med Scand 1957;159:189–194.CrossRefGoogle ScholarPubMed
Koeffler, H. Induction of differentiation of human acute myelogenous leukemia cells: therapeutic implications. Blood 1983;62:709–721.Google ScholarPubMed
de Thé, H, Chen, Z. Acute promyelocytic leukaemia: novel insights into the mechanisms of cure. Nat Rev Cancer 2010;10:775–783.CrossRefGoogle Scholar
Sanz, MA, Lo-Coco, F. Modern approaches to treating acute promyelocytic leukemia. J Clin Oncol 2011;29:495–503.CrossRefGoogle ScholarPubMed
Tallman, MS. What is the role of arsenic in newly diagnosed APL?Best Pract Res Clin Haematol 2008;21:659–666.CrossRefGoogle ScholarPubMed
Minot, G, Buckman, T, Isaacs, R. Chronic myelogenous leukemia. Age, incidence, duration, and benefit derived from radiation. JAMA 1924;82: 1489–1494.CrossRefGoogle Scholar
Haddow, A, Timmis, GM. Myleran in chronic myeloid leukaemia; chemical constitution and biological action. Lancet 1953;264:207–208.CrossRefGoogle ScholarPubMed
Quaglino, D, Torelli, U, Emilia, G. A preliminary clinical evaluation of the therapeutic effects of hydroxyurea in patients with myelogenous leukaemia. Eur J Cancer 1966;2:69–74.CrossRefGoogle ScholarPubMed
Rowley, JD. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973;243:290–293.CrossRefGoogle ScholarPubMed
Talpaz, M, McCredie, KB, Mavligit, GM, Gutterman, JU. Leukocyte interferon-induced myeloid cytoreduction in chronic myelogenous leukemia. Blood 1983;62:689–692.Google ScholarPubMed
Heisterkamp, N, Stam, K, Groffen, J, de Klein, A, Grosveld, G. Structural organization of the bcr gene and its role in the Ph′ translocation. Nature 1985;315:758–761.CrossRefGoogle ScholarPubMed
Goldman, JM, Apperley, JF, Jones, L, et al. Bone marrow transplantation for patients with chronic myeloid leukemia. N Engl J Med 1986;314:202–207.CrossRefGoogle ScholarPubMed
Thomas, ED, Clift, RA, Fefer, A, et al. Marrow transplantation for the treatment of chronic myelogenous leukemia. Ann Intern Med 1986;104:155–163.CrossRefGoogle ScholarPubMed
Hehlmann, R, Heimpel, H, Hasford, J, et al. Randomized comparison of busulfan and hydroxyurea in chronic myelogenous leukemia: prolongation of survival by hydroxyurea. The German CML Study Group. Blood 1993;82:398–407.Google ScholarPubMed
Italian Cooperative Study Group on Chronic Myeloid Leukemia. Interferon alfa-2a as compared with conventional chemotherapy for the treatment of chronic myeloid leukemia. N Engl J Med 1994;330:820–825.CrossRefGoogle Scholar
Hehlmann, R, Heimpel, H, Hasford, J, et al. Randomized comparison of interferon-alpha with busulfan and hydroxyurea in chronic myelogenous leukemia. The German CML Study Group. [See comments.]Blood 1994;84:4064–4077.Google Scholar
Travis, J. Gleevec, chapter two: new leukemia drug aims to overcome resistance. Science 2004;305:319–321.CrossRefGoogle ScholarPubMed
Tauchi, T, Kizaki, M, Okamoto, S, et al. Seven-year follow-up of patients receiving imatinib for the treatment of newly diagnosed chronic myelogenous leukemia by the TARGET system. Leuk Res 2011;35:585–590.CrossRefGoogle ScholarPubMed
de Klein, A, Hagemeijer, A, Bartram, CR, et al. bcr rearrangement and translocation of the c-abl oncogene in Philadelphia positive acute lymphoblastic leukemia. Blood 1986;68:1369–1375.Google ScholarPubMed
Daley, GQ, van Etten, RA, Baltimore, D. Induction of chronic myelogenous leukemia in mice by the P210 bcr/abl gene of the Philadelphia chromosome. Science 1990;247:824–830.CrossRefGoogle Scholar
Daley, GQ. Animal models of BCR/ABL-induced leukemias. Leuk Lymphoma 1993;11(Suppl 1):57–60.CrossRefGoogle ScholarPubMed
Lydon, NB, Druker, BJ. Lessons learned from the development of imatinib. Leuk Res 2004;28(Suppl 1):S29–S38.CrossRefGoogle ScholarPubMed
Hochhaus, A, O'Brien, SG, Guilhot, F, et al. Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia. Leukemia 2009;23:1054–1061.CrossRefGoogle ScholarPubMed
Apperley, JF. Part I: mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol 2007;8:1018–1029.CrossRefGoogle ScholarPubMed
Apperley, JF.Part II: management of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol 2007;8:1116–1128.CrossRefGoogle ScholarPubMed
Marin, D, Bazeos, A, Mahon, F-X, et al. Adherence is the critical factor for achieving molecular responses in patients with chronic myeloid leukemia who achieve complete cytogenetic responses on imatinib. J Clin Oncol 2010;28:2381–2388.CrossRefGoogle ScholarPubMed
Santos, FP, Quintas-Cardama, A. New drugs for chronic myelogenous leukemia. Curr Hematol Malig Rep 2011;6:96–103.CrossRef
Quintas-Cardama, A, Kantarjian, H, Cortes, J. Third-generation tyrosine kinase inhibitors and beyond. Semin Hematol 2010;47:371–380.CrossRefGoogle ScholarPubMed
Deininger, MW. Milestones and monitoring in patients with CML treated with imatinib. Hematology Am Soc Hematol Educ Program 2008: 419–426.Google ScholarPubMed
Cortes, J, Quintas-Cardama, A, Kantarjian, HM. Monitoring molecular response in chronic myeloid leukemia. Cancer 2011;117:1113–1122.CrossRefGoogle ScholarPubMed
Farber, S. Some observations on the effect of folic acid antagonists on acute leukemia and other forms of incurable cancer. Blood 1949;4:160–167.Google ScholarPubMed
Pinkel, D. Curing children of leukemia. Cancer 1987;59:1683–1691.3.0.CO;2-G>CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×