Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-11T21:25:28.610Z Has data issue: false hasContentIssue false

16 - Acute myeloid leukemia

from Section 3 - Evaluation and treatment

Published online by Cambridge University Press:  05 April 2013

Ching-Hon Pui
Affiliation:
St Jude's Children's Research Hospital
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Childhood Leukemias , pp. 395 - 420
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Vardiman, JW, Thiele, J, Arber, DA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2009;114:937–951.CrossRefGoogle ScholarPubMed
Rubnitz, JE, Inaba, H, Dahl, G, et al. Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: results of the AML02 multicentre trial. Lancet Oncol 2010;11:543–552.CrossRefGoogle ScholarPubMed
Radtke, I, Mullighan, CG, Ishii, M, et al. Genomic analysis reveals few genetic alterations in pediatric acute myeloid leukemia. Proc Natl Acad Sci USA 2009;106:12944–12949.CrossRefGoogle ScholarPubMed
Mrozek, K, Radmacher, MD, Bloomfield, CD, et al. Molecular signatures in acute myeloid leukemia. Curr Opin Hematol 2009;16:64–69.CrossRefGoogle ScholarPubMed
Walter, MJ, Payton, JE, Ries, RE, et al. Acquired copy number alterations in adult acute myeloid leukemia genomes. Proc Natl Acad Sci USA 2009;106:12950–12955.CrossRefGoogle ScholarPubMed
Mardis, ER, Ding, L, Dooling, DJ, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 2009;361:1058–1066.CrossRefGoogle ScholarPubMed
Roumier, C, Cheok, MH. Pharmacogenomics in acute myeloid leukemia. Pharmacogenomics 2009;10:1839–1851.CrossRefGoogle ScholarPubMed
Schlenk, RF, Dohner, K, Krauter, J, et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med 2008;358:1909–1918.CrossRefGoogle ScholarPubMed
Horner, MJ, Ries, LAG, Krapcho, M, et al. SEER Cancer Statistics Review, 1975–2006. Bethesda, MD: National Cancer Institute, 2010 (, accessed 7 December 2011).
Matasar, MJ, Ritchie, EK, Consedine, N, et al. Incidence rates of acute promyelocytic leukemia among Hispanics, blacks, Asians, and non-Hispanic whites in the United States. Eur J Cancer Prev 2006;15:367–370.CrossRefGoogle ScholarPubMed
Athale, UH, Razzouk, BI, Raimondi, SC, et al. Biology and outcome of childhood acute megakaryoblastic leukemia: a single institution's experience. Blood 2001;97:3727–3732.CrossRefGoogle ScholarPubMed
Coebergh, JW, Reedijk AM, de Vries E, et al. Leukaemia incidence and survival in children and adolescents in Europe during 1978–1997. Report from the Automated Childhood Cancer Information System project. Eur J Cancer 2006;42:2019–2036.CrossRefGoogle ScholarPubMed
Pulte, D, Gondos, A, Brenner, H. Trends in 5- and 10-year survival after diagnosis with childhood hematologic malignancies in the United States, 1990–2004. J Natl Cancer Inst 2008;100:1301–1309.CrossRefGoogle ScholarPubMed
Pocock, SJ, Clayton, TC, Altman, DG. Survival plots of time-to-event outcomes in clinical trials: good practice and pitfalls. Lancet 2002;359:1686–1689.CrossRefGoogle ScholarPubMed
Maule, MM, Dama, E, Mosso, ML, et al. High incidence of acute promyelocytic leukemia in children in northwest Italy, 1980–2003: a report from the Childhood Cancer Registry of Piedmont. Leukemia 2008;22:439–441.CrossRefGoogle ScholarPubMed
Gozdasoglu, S, Yavuz, G, Unal, E, et al. Orbital granulocytic sarcoma and AML with poor prognosis in Turkish children. Leukemia 2002;16:962.Google ScholarPubMed
Xavier, AC, Ge, Y, Taub, JW. Down syndrome and malignancies: a unique clinical relationship: a paper from the 2008 william beaumont hospital symposium on molecular pathology. J Mol Diagn 2009;11:371–380.CrossRefGoogle Scholar
Moldovan, GL, D'Andrea, AD. How the Fanconi anemia pathway guards the genome. Annu Rev Genet 2009;43:223–249.CrossRefGoogle ScholarPubMed
Payne, M, Hickson, ID. Genomic instability and cancer: lessons from analysis of Bloom's syndrome. Biochem Soc Trans 2009;37:553–559.CrossRefGoogle ScholarPubMed
Walker, L, Thompson, D, Easton, D, et al. A prospective study of neurofibromatosis type 1 cancer incidence in the UK. Br J Cancer 2006;95:233–238.CrossRefGoogle ScholarPubMed
Hasle, H. Malignant diseases in Noonan syndrome and related disorders. Horm Res 2009;72(Suppl 2): 8–14.CrossRefGoogle ScholarPubMed
Welte, K, Zeidler, C. Severe congenital neutropenia. Hematol Oncol Clin North Am 2009;23:307–320.CrossRefGoogle ScholarPubMed
Owen, CJ, Toze, CL, Koochin, A, et al. Five new pedigrees with inherited RUNX1 mutations causing familial platelet disorder with propensity to myeloid malignancy. Blood 2008;112:4639–4645.CrossRefGoogle ScholarPubMed
Gilbert, ES. Ionising radiation and cancer risks: what have we learned from epidemiology?Int J Radiat Biol 2009;85:467–482.CrossRefGoogle ScholarPubMed
Ng, AK, Kenney, LB, Gilbert, ES, et al. Secondary malignancies across the age spectrum. Semin Radiat Oncol 2010;20:67–78.CrossRefGoogle ScholarPubMed
Hijiya, N, Ness, KK, Ribeiro, RC, et al. Acute leukemia as a secondary malignancy in children and adolescents: current findings and issues. Cancer 2009;115:23–35.CrossRefGoogle ScholarPubMed
Snyder, R. Benzene's toxicity: a consolidated short review of human and animal studies by HA Khan. Hum Exp Toxicol 2007;26:687–696.CrossRefGoogle ScholarPubMed
Ahlbom, IC, Cardis, E, Green, A, et al. Review of the epidemiologic literature on EMF and Health. Environ Health Perspect 2001;109(Suppl 6):911–933.CrossRefGoogle ScholarPubMed
Vlaanderen, J, Vermeulen, R, Heederik, D, et al. Guidelines to evaluate human observational studies for quantitative risk assessment. Environ Health Perspect 2008;116:1700–1705.CrossRefGoogle ScholarPubMed
Schuz, J, Lagorio, S, Bersani, F. Electromagnetic fields and epidemiology: an overview inspired by the fourth course at the International School of Bioelectromagnetics. Bioelectromagnetics 2009;30:511–524.CrossRefGoogle ScholarPubMed
Deschler, B, Lubbert, M. Acute myeloid leukemia: epidemiology and etiology. Cancer 2006;107:2099–2107.CrossRefGoogle ScholarPubMed
Belson, M, Kingsley, B, Holmes, A. Risk factors for acute leukemia in children: a review. Environ Health Perspect 2007;115:138–145.CrossRefGoogle ScholarPubMed
Yang, JJ, Cheng, C, Yang, W, et al. Genome-wide interrogation of germline genetic variation associated with treatment response in childhood acute lymphoblastic leukemia. JAMA 2009;301:393–403.CrossRefGoogle ScholarPubMed
Guha, N, Chang, JS, Chokkalingam, AP, et al. NQO1 polymorphisms and de novo childhood leukemia: a HuGE review and meta-analysis. Am J Epidemiol 2008;168:1221–1232.CrossRefGoogle ScholarPubMed
Treviño, LR, Yang, W, French, D, et al. Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat Genet 2009;41:1001–1005.CrossRefGoogle ScholarPubMed
Burjanivova, T, Madzo, J, Muzikova, K, et al. Prenatal origin of childhood AML occurs less frequently than in childhood ALL. BMC Cancer 2006;6:100.CrossRefGoogle ScholarPubMed
Wiemels, J. Chromosomal translocations in childhood leukemia: natural history, mechanisms, and epidemiology. J Natl Cancer Inst Monogr 2008;87–90.CrossRefGoogle ScholarPubMed
Ross, JA. Environmental and genetic susceptibility to MLL-defined infant leukemia. J Natl Cancer Inst Monogr 2008;83–86.CrossRefGoogle ScholarPubMed
Bonnet, D, Dick, JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997;3:730–737.CrossRefGoogle ScholarPubMed
Jordan, CT, Guzman, ML, Noble, M. Cancer stem cells. N Engl J Med 2006;355:1253–1261.CrossRefGoogle ScholarPubMed
Lane, SW, Scadden, DT, Gilliland, DG. The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood 2009;114:1150–1157.CrossRefGoogle ScholarPubMed
Ritchie, DS, Smyth, MJ. A new therapeutic target for leukemia comes to the surface. Cell 2009;138:226–228.CrossRefGoogle Scholar
Majeti, R, Chao, MP, Alizadeh, AA, et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 2009;138:286–299.CrossRefGoogle ScholarPubMed
Jaiswal, S, Jamieson, CH, Pang, WW, et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 2009;138:271–285.CrossRefGoogle ScholarPubMed
Majeti, R, Becker, MW, Tian, Q, et al. Dysregulated gene expression networks in human acute myelogenous leukemia stem cells. Proc Natl Acad Sci USA 2009;106:3396–3401.CrossRefGoogle ScholarPubMed
Downing, JR. Cancer genomes: continuing progress. N Engl J Med 2009;361:1111–1112.CrossRefGoogle ScholarPubMed
Wouters, BJ, Löwenberg, B, Delwel, R. A decade of genome-wide gene expression profiling in acute myeloid leukemia: flashback and prospects. Blood 2009;113:291–298.CrossRefGoogle ScholarPubMed
Koschmieder, S, Halmos, B, Levantini, E, et al. Dysregulation of the C/EBPalpha differentiation pathway in human cancer. J Clin Oncol 2009;27:619–628.CrossRefGoogle Scholar
Krivtsov, AV, Twomey, D, Feng, Z, et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 2006;442:818–822.CrossRefGoogle ScholarPubMed
Downing, JR. Can treating the SYK cell cure leukemia?Cancer Cell 2009;16:270–271.CrossRefGoogle ScholarPubMed
Chevallier, P, Mohty, M, Lioure, B, et al. Allogeneic hematopoietic stem-cell transplantation for myeloid sarcoma: a retrospective study from the SFGM-TC. J Clin Oncol 2008;26:4940–4943.CrossRefGoogle ScholarPubMed
Cronin, DM, George, TI, Sundram, UN. An updated approach to the diagnosis of myeloid leukemia cutis. Am J Clin Pathol 2009;132:101–110.CrossRefGoogle Scholar
D'Orazio, JA, Pulliam, JF, Moscow, JA. Spontaneous resolution of a single lesion of myeloid leukemia cutis in an infant: case report and discussion. Pediatr Hematol Oncol 2008;25:457–468.CrossRefGoogle Scholar
Athale, UH, Kaste, SC, Razzouk, BI, et al. Skeletal manifestations of pediatric acute megakaryoblastic leukemia. J Pediatr Hematol Oncol 2002;24:561–565.CrossRefGoogle ScholarPubMed
Abbott, BL, Rubnitz, JE, Tong, X, et al. Clinical significance of central nervous system involvement at diagnosis of pediatric acute myeloid leukemia: a single institution's experience. Leukemia 2003;17:2090–2096.CrossRefGoogle ScholarPubMed
Vardiman, JW, Harris, NL, Brunning, RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 2002;100:2292–2302.CrossRefGoogle ScholarPubMed
Sanz, MA, Grimwade, D, Tallman, MS, et al. Management of acute promyelocytic leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood 2009;113:1875–1891.CrossRefGoogle Scholar
Balgobind, BV, Raimondi, SC, Harbott, J, et al. Novel prognostic subgroups in childhood 11q23/MLL-rearranged acute myeloid leukemia: results of an international retrospective study. Blood 2009;114:2489–2496.CrossRefGoogle ScholarPubMed
Dastugue, N, Lafage-Pochitaloff, M, Pages, MP, et al. Cytogenetic profile of childhood and adult megakaryoblastic leukemia (M7): a study of the Groupe Francais de Cytogenetique Hematologique (GFCH). Blood 2002;100:618–626.CrossRefGoogle Scholar
Brown, P, McIntyre, E, Rau, R, et al. The incidence and clinical significance of nucleophosmin mutations in childhood AML. Blood 2007;110:979–985.CrossRefGoogle ScholarPubMed
Ho, PA, Alonzo, TA, Gerbing, RB, et al. Prevalence and prognostic implications of CEBPA mutations in pediatric acute myeloid leukemia (AML): a report from the Children's Oncology Group. Blood 2009;113:6558–6566.CrossRefGoogle ScholarPubMed
Creutzig, U, Zimmermann, M, Lehrnbecher, T, et al. Less toxicity by optimizing chemotherapy, but not by addition of granulocyte colony-stimulating factor in children and adolescents with acute myeloid leukemia: results of AML-BFM 98. J Clin Oncol 2006;24:4499–4506.CrossRefGoogle Scholar
Lange, BJ, Smith, FO, Feusner, J, et al. Outcomes in CCG-2961, a Children's Oncology Group phase 3 trial for untreated pediatric acute myeloid leukemia: a report from the Children's Oncology Group. Blood 2008;111:1044–1053.CrossRefGoogle ScholarPubMed
Raimondi, SC, Chang, MN, Ravindranath, Y, et al. Chromosomal abnormalities in 478 children with acute myeloid leukemia: clinical characteristics and treatment outcome in a cooperative Pediatric Oncology Group study POG 8821. Blood 1999;94:3707–3716.Google Scholar
Tsukimoto, I, Tawa, A, Horibe, K, et al. Risk-stratified therapy and the intensive use of cytarabine improves the outcome in childhood acute myeloid leukemia: the AML99 trial from the Japanese Childhood AML Cooperative Study Group. J Clin Oncol 2009;27:4007–4013.CrossRefGoogle ScholarPubMed
Nakase, K, Bradstock, K, Sartor, M, et al. Geographic heterogeneity of cellular characteristics of acute myeloid leukemia: a comparative study of Australian and Japanese adult cases. Leukemia 2000;14:163–168.CrossRefGoogle ScholarPubMed
Downing, JR. The core-binding factor leukemias: lessons learned from murine models. Curr Opin Genet Dev 2003;13:48–54.CrossRefGoogle ScholarPubMed
Peterson, LF, Boyapati, A, Ahn, EY, et al. Acute myeloid leukemia with the 8q22;21q22 translocation: secondary mutational events and alternative t(8;21) transcripts. Blood 2007;110:799–805.CrossRefGoogle Scholar
Mrozek, K, Marcucci, G, Paschka, P, et al. Advances in molecular genetics and treatment of core-binding factor acute myeloid leukemia. Curr Opin Oncol 2008;20:711–718.CrossRefGoogle ScholarPubMed
Andrieu, V, Radford-Weiss, I, Troussard, X, et al. Molecular detection of t(8;21)/AML1-ETO in AML M1/M2: correlation with cytogenetics, morphology and immunophenotype. Br J Haematol 1996;92:855–865.CrossRefGoogle Scholar
Miyamoto, T, Weissman, IL, Akashi, K. AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc Natl Acad Sci USA 2000;97:7521–7526.CrossRefGoogle ScholarPubMed
Byrd, JC, Dodge, RK, Carroll, A, et al. Patients with t(8;21)(q22;q22) and acute myeloid leukemia have superior failure-free and overall survival when repetitive cycles of high-dose cytarabine are administered. J Clin Oncol 1999;17:3767–3775.CrossRefGoogle Scholar
Bloomfield, CD, Lawrence, D, Byrd, JC, et al. Frequency of prolonged remission duration after high-dose cytarabine intensification in acute myeloid leukemia varies by cytogenetic subtype. Cancer Res 1998;58:4173–4179.Google ScholarPubMed
Schnittger, S, Kohl, T, Haferlach, T, et al. KIT-D816 mutations in AML1-ETO-positive AML are associated with impaired event-free and overall survival. Blood 2006;107:1791–1799.CrossRefGoogle ScholarPubMed
Cairoli, R, Beghini, A, Grillo, G, et al. Prognostic impact of c-KIT mutations in core binding factor leukemias: an Italian retrospective study. Blood 2007;107:3463–3468.CrossRefGoogle Scholar
Pollard, JA, Alonzo, TA, Gerbing, RB, et al. Prevalence and prognostic significance of KIT mutations in pediatric core binding factor AML patients enrolled on serial pediatric cooperative trials for de novo AML. Blood 2010;115:2372–2379.CrossRefGoogle ScholarPubMed
Shimada, A, Taki, T, Tabuchi, K, et al. KIT mutations, and not FLT3 internal tandem duplication, are strongly associated with a poor prognosis in pediatric acute myeloid leukemia with t(8;21); a study of the Japanese Childhood AML Cooperative Study Group. Blood 2006;107:1806–1809.CrossRefGoogle ScholarPubMed
Grimwade, D, Walker, H, Oliver, F, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood 1998;92:2322–2333.Google ScholarPubMed
Marcucci, G, Mrozek, K, Ruppert, AS, et al. Prognostic factors and outcome of core binding factor acute myeloid leukemia patients with t(8;21) differ from those of patients with inv(16): a Cancer and Leukemia Group B study. J Clin Oncol 2005;23:5705–5717.CrossRefGoogle Scholar
Schlenk, RF, Benner, A, Krauter, J, et al. Individual patient data-based meta-analysis of patients aged 16 to 60 years with core binding factor acute myeloid leukemia: a survey of the German Acute Myeloid Leukemia Intergroup. J Clin Oncol 2004;22:3741–3750.CrossRefGoogle ScholarPubMed
Haferlach, T, Winkemann, M, Loffler, H, et al. The abnormal eosinophils are part of the leukemic cell population in acute myelomonocytic leukemia with abnormal eosinophils (AML M4Eo) and carry the pericentric inversion 16: a combination of May–Grunwald–Giemsa staining and fluorescence in situ hybridization. Blood 1996;87:2459–2463.Google ScholarPubMed
Liu, P, Tarle, SA, Hajra, A, et al. Fusion between transcription factor CBFb/PEBP2b and a myosin heavy chain in acute myeloid leukemia. Science 1993;261:1041–1044.CrossRefGoogle Scholar
Byrd, JC, Ruppert, AS, Mrozek, K, et al. Repetitive cycles of high-dose cytarabine benefit patients with acute myeloid leukemia and inv(16)(p13q22) or t(16;16)(p13;q22): results from CALGB 8461. J Clin Oncol 2004;22:1087–1094.CrossRefGoogle ScholarPubMed
Paschka, P, Marcucci, G, Ruppert, AS, et al. Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): a Cancer and Leukemia Group B Study. J Clin Oncol 2006;24:3904–3911.CrossRefGoogle Scholar
Goemans, BF, Zwaan, CM, Miller, M, et al. Mutations in KIT and RAS are frequent events in pediatric core-binding factor acute myeloid leukemia. Leukemia 2005;19:1536–1542.CrossRefGoogle ScholarPubMed
Boissel, N, Leroy, H, Brethon, B, et al. Incidence and prognostic impact of c-Kit, FLT3, and Ras gene mutations in core binding factor acute myeloid leukemia (CBF-AML). Leukemia 2006;20:965–970.CrossRefGoogle Scholar
van der Burg, M, Beverloo, HB, Langerak, AW, et al. Rapid and sensitive detection of all types of MLL gene translocations with a single FISH probe set. Leukemia 1999;13:2107–2113.Google Scholar
van Dongen, JJ, Macintyre, EA, Gabert, JA, et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia 1999;13:1901–1928.CrossRefGoogle ScholarPubMed
Liedtke, M, Cleary, ML. Therapeutic targeting of MLL. Blood 2009;113:6061–6068.CrossRefGoogle ScholarPubMed
Yokoyama, A, Somervaille, TC, Smith, KS, et al. The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell 2005;123:207–218.CrossRefGoogle ScholarPubMed
Faber, J, Krivtsov, AV, Stubbs, MC, et al. HOXA9 is required for survival in human MLL-rearranged acute leukemias. Blood 2009;113:2375–2385.CrossRefGoogle ScholarPubMed
Entz-Werle, N, Suciu, S, van der Werff, ten, Bosch, et al. Results of 58872 and 58921 trials in acute myeloblastic leukemia and relative value of chemotherapy vs allogeneic bone marrow transplantation in first complete remission: the EORTC Children Leukemia Group report. Leukemia 2005;19:2072–2081.CrossRefGoogle ScholarPubMed
Kudo, K, Kojima, S, Tabuchi, K, et al. Prospective study of a pirarubicin, intermediate-dose cytarabine, and etoposide regimen in children with Down syndrome and acute myeloid leukemia: the Japanese Childhood AML Cooperative Study Group. J Clin Oncol 2007;25:5442–5447.CrossRefGoogle ScholarPubMed
Oki, Y, Kantarjian, H, Zhou, X, et al. Adult acute megakaryocytic leukemia: an analysis of 37 patients treated at M.D. Anderson Cancer Center. Blood 2006;107:880–884.CrossRefGoogle ScholarPubMed
Reinhardt, D, Diekamp, S, Langebrake, C, et al. Acute megakaryoblastic leukemia in children and adolescents, excluding Down's syndrome: improved outcome with intensified induction treatment. Leukemia 2005;19:1495–1496.CrossRefGoogle ScholarPubMed
Hama, A, Yagasaki, H, Takahashi, Y, et al. Acute megakaryoblastic leukaemia (AMKL) in children: a comparison of AMKL with and without Down syndrome. Br J Haematol 2008;140:552–561.CrossRefGoogle ScholarPubMed
Grignani, F, Fagioli, M, Alcalay, M, et al. Acute promyelocytic leukemia: from genetics to treatment. Blood 1994;83:10–25.Google Scholar
Castaigne, S, Chomienne, C, Daniel, MT, et al. All-trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia I. clinical results. Blood 1990;76:1704–1709.Google ScholarPubMed
Douer, D, Preston-Martin, S, Chang, E, et al. High frequency of acute promyelocytic leukemia among Latinos with acute myeloid leukemia. Blood 1996;87:308–313.Google ScholarPubMed
Estey, E, Thall, P, Kantarjian, H, et al. Association between increased body mass index and a diagnosis of acute promyelocytic leukemia in patients with acute myeloid leukemia. Leukemia 1997;11:1661–1664.CrossRefGoogle Scholar
Thomas, X, Fiere, D, Archimbaud, E. Influence of increased body mass index on drug toxicity in patients with acute promyelocytic leukemia. Leukemia 1998;12:1503–1506.CrossRefGoogle ScholarPubMed
Konopleva, M, Mikhail, A, Estrov, Z, et al. Expression and function of leptin receptor isoforms in myeloid leukemia and myelodysplastic syndromes: proliferative and anti-apoptotic activities. Blood 1999;93:1668–1676.Google ScholarPubMed
Grimwade, D, Jovanovic, JV, Hills, RK, et al. Prospective minimal residual disease monitoring to predict relapse of acute promyelocytic leukemia and to direct pre-emptive arsenic trioxide therapy. J Clin Oncol 2009;27:3650–3658.CrossRefGoogle ScholarPubMed
Culligan, DJ, Stevenson, D, Chee, YL, et al. Acute promyelocytic leukaemia with t(11;17)(q23;q12–21) and a good initial response to prolonged ATRA and combination chemotherapy. Br J Haematol 1998;100:328–330.CrossRefGoogle Scholar
Redner, RL, Rush, EA, Faas, S, et al. The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin–retinoic acid receptor fusion. Blood 1996;87:882–886.Google Scholar
Wells, RA, Catzavelos, C, Kamel-Reid, S. Fusion of retinoic acid receptor alpha to NuMA, the nuclear mitotic apparatus protein, by a variant translocation in acute promyelocytic leukaemia. Nat Genet 1997;17:109–113.CrossRefGoogle ScholarPubMed
Arnould, C, Philippe, C, Bourdon, V, et al. The signal transducer and activator of transcription STAT5b gene is a new partner of retinoic acid receptor alpha in acute promyelocytic-like leukaemia. Hum Mol Genet 1999;8:1741–1749.CrossRefGoogle ScholarPubMed
Testi, AM, Biondi, A, Lo, CF, et al. GIMEMA-AIEOP AIDA protocol for the treatment of newly diagnosed acute promyelocytic leukemia (APL) in children. Blood 2005;106:447–453.CrossRefGoogle Scholar
Kaspers, G, Gibson, B, Grimwade, D, et al. Central nervous system involvement in relapsed acute promyelocytic leukemia. Pediatr Blood Cancer 2009;53:235–236.CrossRefGoogle ScholarPubMed
Katsura, Y. Redefinition of lymphoid progenitors. Nat Rev Immunol 2002;2:127–132.CrossRefGoogle ScholarPubMed
Barbaric, D, Alonzo, TA, Gerbing, RB, et al. Minimally differentiated acute myeloid leukemia (FAB AML-M0) is associated with an adverse outcome in children: a report from the Children's Oncology Group, studies CCG-2891 and CCG-2961. Blood 2007;109:2314–2321.CrossRefGoogle ScholarPubMed
Bennett, JM, Catovsky, D, Daniel, MT, et al. Proposal for the recognition of minimally differentiated acute myeloid leukaemia (AML-MO). Br J Haematol 1991;78:325–329.CrossRefGoogle Scholar
Silva, FP, Swagemakers, SM, Erpelinck-Verschueren, C, et al. Gene expression profiling of minimally differentiated acute myeloid leukemia: M0 is a distinct entity subdivided by RUNX1 mutation status. Blood 2009;114:3001–3007.CrossRefGoogle ScholarPubMed
Roumier, C, Eclache, V, Imbert, M, et al. M0 AML, clinical and biologic features of the disease, including AML1 gene mutations: a report of 59 cases by the Groupe Francais d'Hematologie Cellulaire (GFHC) and the Groupe Francais de Cytogenetique Hematologique (GFCH). Blood 2003;101:1277–1283.CrossRefGoogle Scholar
Pui, CH, Raimondi, SC, Head, DR, et al. Characterization of childhood acute leukemia with multiple myeloid and lymphoid markers at diagnosis and at relapse. Blood 1991;78:1327–1337.Google ScholarPubMed
Rubnitz, JE, Onciu, M, Pounds, S, et al. Acute mixed lineage leukemia in children: the experience of St. Jude Children's Research Hospital. Blood 2009;113:5083–5089.CrossRefGoogle ScholarPubMed
Al-Seraihy, AS, Owaidah, TM, Ayas, M, et al. Clinical characteristics and outcome of children with biphenotypic acute leukemia. Haematologica 2009;94:1682–1690.CrossRefGoogle ScholarPubMed
Pui, CH, Ribeiro, RC, Hancock, ML, et al. Acute myeloid leukemia in children treated with epipodophyllotoxins for acute lymphoblastic leukemia. N Engl J Med 1991;325:1682–1687.CrossRefGoogle ScholarPubMed
Bhatia, S, Krailo, MD, Chen, Z, et al. Therapy-related myelodysplasia and acute myeloid leukemia after Ewing sarcoma and primitive neuroectodermal tumor of bone: a report from the Children's Oncology Group. Blood 2007;109:46–51.CrossRefGoogle ScholarPubMed
Winick, NJ, McKenna, RW, Shuster, JJ, et al. Secondary acute myeloid leukemia in children with acute lymphoblastic leukemia treated with etoposide [see comments]. J Clin Oncol 1993;11:209–217.CrossRefGoogle Scholar
Pui, CH, Relling, MV. Topoisomerase II inhibitor-related acute myeloid leukaemia. Br J Haematol 2000;109:13–23.CrossRefGoogle ScholarPubMed
Hale, GA, Heslop, HE, Bowman, LC, et al. Bone marrow transplantation for therapy-induced acute myeloid leukemia in children with previous lymphoid malignancies. Bone Marrow Transplant 1999;24:735–739.CrossRefGoogle ScholarPubMed
Pulsoni, A, Pagano, L, Lo, CF, et al. Clinicobiological features and outcome of acute promyelocytic leukemia occurring as a second tumor: the GIMEMA experience. Blood 2002;100:1972–1976.CrossRefGoogle ScholarPubMed
Beaumont, M, Sanz, M, Carli, PM, et al. Therapy-related acute promyelocytic leukemia. J Clin Oncol 2003;21:2123–2137.CrossRefGoogle ScholarPubMed
Dohner, H, Estey, EH, Amadori, S, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2010;115:453–474.CrossRefGoogle Scholar
Rubnitz, JE, Crews, KR, Pounds, S, et al. Combination of cladribine and cytarabine is effective for childhood acute myeloid leukemia: results of the St. Jude AML97 trial. Leukemia 2009;23:1410–1416.CrossRefGoogle ScholarPubMed
Gale, RE, Hills, R, Pizzey, AR, et al. Relationship between FLT3 mutation status, biologic characteristics, and response to targeted therapy in acute promyelocytic leukemia. Blood 2005;106:3768–3776.CrossRefGoogle ScholarPubMed
Creutzig, U, Ritter, J, Zimmermann, M, et al. Idarubicin improves blast cell clearance during induction therapy in children with AML: results of study AML-BFM 93. AML-BFM Study Group. Leukemia 2001;15:348–354.CrossRefGoogle ScholarPubMed
Creutzig, U, Ritter, J, Zimmermann, M, et al. Improved treatment results in high-risk pediatric acute myeloid leukemia patients after intensification with high-dose cytarabine and mitoxantrone: results of Study Acute Myeloid Leukemia Berlin–Frankfurt–Münster 93. J Clin Oncol 2001;19:2705–2713.CrossRefGoogle ScholarPubMed
Lehrnbecher, T, Zimmermann, M, Reinhardt, D, et al. Prophylactic human granulocyte colony-stimulating factor after induction therapy in pediatric acute myeloid leukemia. Blood 2007;109:936–943.CrossRefGoogle ScholarPubMed
Perel, Y, Auvrignon, A, Leblanc, T, et al. Impact of addition of maintenance therapy to intensive induction and consolidation chemotherapy for childhood acute myeloblastic leukemia: results of a prospective randomized trial, LAME 89/91. Leucamie Aique Myeloide Enfant. J Clin Oncol 2002;20:2774–2782.CrossRefGoogle ScholarPubMed
Perel, Y, Auvrignon, A, Leblanc, T, et al. Treatment of childhood acute myeloblastic leukemia: dose intensification improves outcome and maintenance therapy is of no benefit – multicenter studies of the French LAME (Leucemie Aigue Myeloblastique Enfant) Cooperative Group. Leukemia 2005;19:2082–2089.CrossRefGoogle ScholarPubMed
Stevens, RF, Hann, IM, Wheatley, K, et al. Marked improvements in outcome with chemotherapy alone in paediatric acute myeloid leukemia: results of the United Kingdom Medical Research Council's 10th AML trial. MRC Childhood Leukaemia Working Party. Br J Haematol 1998;101:130–140.CrossRefGoogle ScholarPubMed
Hann, IM, Stevens, RF, Goldstone, AH, et al. Randomized comparison of DAT versus ADE as induction chemotherapy in children and younger adults with acute myeloid leukemia. Results of the Medical Research Council's 10th AML trial (MRC AML10). Adult and Childhood Leukaemia Working Parties of the Medical Research Council. Blood 1997;89:2311–2318.Google Scholar
Gibson, BE, Wheatley, K, Hann, IM, et al. Treatment strategy and long-term results in paediatric patients treated in consecutive UK AML trials. Leukemia 2005;19:2130–2138.CrossRefGoogle ScholarPubMed
Lie, SO, Abrahamsson, J, Clausen, N, et al. Treatment stratification based on initial in vivo response in acute myeloid leukaemia in children without Down's syndrome: results of NOPHO-AML trials. Br J Haematol 2003;122:217–225.CrossRefGoogle ScholarPubMed
Tomizawa, D, Tabuchi, K, Kinoshita, A, et al. Repetitive cycles of high-dose cytarabine are effective for childhood acute myeloid leukemia: long-term outcome of the children with AML treated on two consecutive trials of Tokyo Children's Cancer Study Group. Pediatr Blood Cancer 2007;49:127–132.CrossRefGoogle ScholarPubMed
O'Brien, TA, Russell, SJ, Vowels, MR, et al. Results of consecutive trials for children newly diagnosed with acute myeloid leukemia from the Australian and New Zealand Children's Cancer Study Group. Blood 2002;100:2708–2716.CrossRefGoogle ScholarPubMed
Burnett, AK, Hills, RK, Milligan, DW, et al. Attempts to optimize induction and consolidation treatment in acute myeloid leukemia: results of the MRC AML12 trial. J Clin Oncol 2010;28:586–595.CrossRefGoogle ScholarPubMed
Fernandez, HF, Sun, Z, Yao, X, et al. Anthracycline dose intensification in acute myeloid leukemia. N Engl J Med 2009;361:1249–1259.CrossRefGoogle ScholarPubMed
Löwenberg, B, Ossenkoppele, GJ, van Putten, W, et al. High-dose daunorubicin in older patients with acute myeloid leukemia. N Engl J Med 2009;361:1235–1248.CrossRefGoogle ScholarPubMed
Cassileth, PA, Lynch, E, Hines, JD, et al. Varying intensity of postremission therapy in acute myeloid leukemia. Blood 1992;79:1924–1930.Google ScholarPubMed
Wells, RJ, Woods, WG, Lampkin, BC, et al. Impact of high-dose cytarabine and asparaginase intensification on childhood acute myeloid leukemia: a report from the Childrens Cancer Group. J Clin Oncol 1993;11:538–545.CrossRefGoogle ScholarPubMed
Ravindranath, Y, Steuber, CP, Krischer, J, et al. High-dose cytarabine for intensification of early therapy of childhood acute myeloid leukemia: a Pediatric Oncology Group study. J Clin Oncol 1991;9:572–580.CrossRefGoogle ScholarPubMed
Wells, RJ, Woods, WG, Buckley, JD, et al. Treatment of newly diagnosed children and adolescents with acute myeloid leukemia: a Childrens Cancer Group study. J Clin Oncol 1994;12:2367–2377.CrossRefGoogle ScholarPubMed
Santos, GW, Tutschka, PJ, Brookmeyer, R, et al. Marrow transplantation for acute nonlymphocytic leukemia after treatment with busulfan and cyclophosphamide. N Engl J Med 1983;309:1347–1353.CrossRefGoogle ScholarPubMed
Forman, SJ, Spruce, WE, Farbstein, MJ, et al. Bone marrow ablation followed by allogeneic marrow grafting during first complete remission of acute nonlymphocytic leukemia. Blood 1983;61:439–442.Google ScholarPubMed
Dahl, GV, Kalwinsky, DK, Mirro, J, Jr., et al. Allogeneic bone marrow transplantation in a program of intensive sequential chemotherapy for children and young adults with acute nonlymphocytic leukemia in first remission. J Clin Oncol 1990;8:295–303.CrossRefGoogle Scholar
Cassileth, PA, Harrington, DP, Appelbaum, FR, et al. Chemotherapy compared with autologous or allogeneic bone marrow transplantation in the management of acute myeloid leukemia in first remission. N Engl J Med 1998;339:1649–1700.CrossRefGoogle ScholarPubMed
Burnett, AK, Goldstone, AH, Stevens, RM, et al. Randomised comparison of addition of autologous bone-marrow transplantation to intensive chemotherapy for acute myeloid leukaemia in first remission: results of MRC AML 10 trial. UK Medical Research Council Adult and Children's Leukaemia Working Parties. Lancet 1998;351:700–708.CrossRefGoogle ScholarPubMed
Burnett, AK, Wheatley, K, Goldstone, AH, et al. The value of allogeneic bone marrow transplant in patients with acute myeloid leukaemia at differing risk of relapse: results of the UK MRC AML 10 trial. Br J Haematol 2002;118:385–400.CrossRefGoogle ScholarPubMed
Woods, WG, Neudorf, S, Gold, S, et al. A comparison of allogeneic bone marrow transplantation, autologous bone marrow transplantation, and aggressive chemotherapy in children with acute myeloid leukemia in remission. Blood 2001;97:56–62.CrossRefGoogle ScholarPubMed
Horan, JT, Alonzo, TA, Lyman, GH, et al. Impact of disease risk on efficacy of matched related bone marrow transplantation for pediatric acute myeloid leukemia: the Children's Oncology Group. J Clin Oncol 2008;26:5797–5801.CrossRefGoogle ScholarPubMed
Koreth, J, Schlenk, R, Kopecky, KJ, et al. Allogeneic stem cell transplantation for acute myeloid leukemia in first complete remission: systematic review and meta-analysis of prospective clinical trials. JAMA 2009;301:2349–2361.CrossRefGoogle ScholarPubMed
Creutzig, U, Zimmermann, M, Ritter, J, et al. Treatment strategies and long-term results in paediatric patients treated in four consecutive AML-BFM trials. Leukemia 2005;19:2030–2042.CrossRefGoogle ScholarPubMed
Tallman, MS, Altman, JK. How I treat acute promyelocytic leukemia. Blood 2009;114:5126–5135.CrossRefGoogle Scholar
Ades, L, Guerci, A, Raffoux, E, et al. Very long-term outcome of acute promyelocytic leukemia after treatment with all-trans retinoic acid and chemotherapy: the European APL Group experience. Blood 2010;115:1690–1696.CrossRefGoogle ScholarPubMed
Ortega, JJ, Madero, L, Martin, G, et al. Treatment with all-trans retinoic acid and anthracycline monochemotherapy for children with acute promyelocytic leukemia: a multicenter study by the PETHEMA Group. J Clin Oncol 2005;23:7632–7640.CrossRefGoogle ScholarPubMed
De Botton, S, Coiteux, V, Chevret, S, et al. Outcome of childhood acute promyelocytic leukemia with all-trans-retinoic acid and chemotherapy. J Clin Oncol 2004;22:1404–1412.CrossRefGoogle ScholarPubMed
Zhou, J, Zhang, Y, Li, J, et al. Single-agent arsenic trioxide in the treatment of children with newly diagnosed acute promyelocytic leukemia. Blood 2010;115:1697–1702.CrossRefGoogle ScholarPubMed
Mathews, V, George, B, Lakshmi, KM, et al. Single-agent arsenic trioxide in the treatment of newly diagnosed acute promyelocytic leukemia: durable remissions with minimal toxicity. Blood 2006;107:2627–2632.CrossRefGoogle ScholarPubMed
Shen, ZX, Shi, ZZ, Fang, J, et al. All-trans retinoic acid/As2O3 combination yields a high quality remission and survival in newly diagnosed acute promyelocytic leukemia. Proc Natl Acad Sci USA 2004;101:5328–5335.CrossRefGoogle ScholarPubMed
Ge, Y, Jensen, TL, Matherly, LH, et al. Transcriptional regulation of the cystathionine-beta-synthase gene in Down syndrome and non-Down syndrome megakaryocytic leukemia cell lines. Blood 2003;101:1551–1557.CrossRefGoogle ScholarPubMed
Ge, Y, Dombkowski, AA, Lafiura, KM, et al. Differential gene expression, GATA1 target genes, and the chemotherapy sensitivity of Down syndrome megakaryocytic leukemia. Blood 2006;107:1570–1581.CrossRefGoogle ScholarPubMed
Ge, Y, Jensen, T, James, SJ, et al. High frequency of the 844ins68 cystathionine-beta-synthase gene variant in Down syndrome children with acute myeloid leukemia. Leukemia 2002;16:2339–2341.CrossRefGoogle ScholarPubMed
Ge, Y, Stout, ML, Tatman, DA, et al. GATA1, cytidine deaminase, and the high cure rate of Down syndrome children with acute megakaryocytic leukemia. J Natl Cancer Inst 2005;97:226–231.CrossRefGoogle ScholarPubMed
Bhatla, D, Gerbing, RB, Alonzo, TA, et al. Cytidine deaminase genotype and toxicity of cytosine arabinoside therapy in children with acute myeloid leukemia. Br J Haematol 2009;144:388–394.CrossRefGoogle ScholarPubMed
Davies, SM, Robison, LL, Buckley, JD, et al. Glutathione S-transferase polymorphisms and outcome of chemotherapy in childhood acute myeloid leukemia. J Clin Oncol 2001;19:1279–1287.CrossRefGoogle ScholarPubMed
Bhatla, D, Gerbing, RB, Alonzo, TA, et al. DNA repair polymorphisms and outcome of chemotherapy for acute myelogenous leukemia: a report from the Children's Oncology Group. Leukemia 2008;22:265–272.CrossRefGoogle ScholarPubMed
Grimwade, D, Hills, RK. Independent prognostic factors for AML outcome. Hematology Am Soc Hematol Educ Program 2009:385–395.Google ScholarPubMed
von Neuhoff, C, Reinhardt, D, Sander, B, et al. Prognostic impact of specific chromosomal aberrations in a large group of pediatric patients with acute myeloid leukemia treated uniformly according to trial AML-BFM 98. J Clin Oncol 2010;28:2682–2689.CrossRefGoogle Scholar
Frohling, S, Schlenk, RF, Stolze, I, et al. CEBPA mutations in younger adults with acute myeloid leukemia and normal cytogenetics: prognostic relevance and analysis of cooperating mutations. J Clin Oncol 2004;22:624–633.CrossRefGoogle ScholarPubMed
Preudhomme, C, Sagot, C, Boissel, N, et al. Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood 2002;100:2717–2723.CrossRefGoogle Scholar
Renneville, A, Boissel, N, Gachard, N, et al. The favorable impact of CEBPA mutations in patients with acute myeloid leukemia is only observed in the absence of associated cytogenetic abnormalities and FLT3 internal duplication. Blood 2009;113:5090–5093.CrossRefGoogle ScholarPubMed
Dufour, A, Schneider, F, Metzeler, KH, et al. Acute myeloid leukemia with biallelic CEBPA gene mutations and normal karyotype represents a distinct genetic entity associated with a favorable clinical outcome. J Clin Oncol 2010;28:570–577.CrossRefGoogle ScholarPubMed
Green, C, Koo, K, Hills, R, et al. Prognostic significance of CEBPA mutations in a large cohort of younger adult patients with acute myeloid leukemia: impact of double CEBPA mutations and the interaction with FLT3 and NPM1 mutations. J Clin Oncol 2010;28:2739–2747.CrossRefGoogle Scholar
Boissel, N, Renneville, A, Biggio, V, et al. Prevalence, clinical profile, and prognosis of NPM mutations in AML with normal karyotype. Blood 2005;106:3618–3620.CrossRefGoogle ScholarPubMed
Thiede, C, Koch, S, Creutzig, E, et al. Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood 2006;107:4011–4020.CrossRefGoogle Scholar
Verhaak, RG, Goudswaard, CS, van Putten, W, et al. Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood 2005;106:3747–3754.CrossRefGoogle ScholarPubMed
Schnittger, S, Schoch, C, Kern, W, et al. Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood 2005;106:3733–3739.CrossRefGoogle ScholarPubMed
Hollink, IH, Zwaan, CM, Zimmermann, M, et al. Favorable prognostic impact of NPM1 gene mutations in childhood acute myeloid leukemia, with emphasis on cytogenetically normal AML. Leukemia 2009;23:262–270.CrossRefGoogle ScholarPubMed
Kiyoi, H, Naoe, T, Nakano, Y, et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood 1999;93:3074–3080.Google ScholarPubMed
Whitman, SP, Archer, KJ, Feng, L, et al. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a cancer and leukemia group B study. Cancer Res 2001;61:7233–7239.Google ScholarPubMed
Schnittger, S, Schoch, C, Dugas, M, et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 2002;100:59–66.CrossRefGoogle ScholarPubMed
Thiede, C, Steudel, C, Mohr, B, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002;99:4326–4335.CrossRefGoogle ScholarPubMed
Zwaan, CM, Meshinchi, S, Radich, JP, et al. FLT3 internal tandem duplication in 234 children with acute myeloid leukemia: prognostic significance and relation to cellular drug resistance. Blood 2003;102:2387–2394.CrossRefGoogle ScholarPubMed
Meshinchi, S, Woods, WG, Stirewalt, DL, et al. Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood 2001;97:89–94.CrossRefGoogle ScholarPubMed
Iwai, T, Yokota, S, Nakao, M, et al. Internal tandem duplication of the FLT3 gene and clinical evaluation in childhood acute myeloid leukemia. The Children's Cancer and Leukemia Study Group, Japan. Leukemia 1999;13:38–43.CrossRefGoogle ScholarPubMed
Meshinchi, S, Alonzo, TA, Stirewalt, DL, et al. Clinical implications of FLT3 mutations in pediatric AML. Blood 2006;108:3654–3661.CrossRefGoogle ScholarPubMed
Pollard, JA, Alonzo, TA, Gerbing, RB, et al. FLT3 internal tandem duplication in CD34+/CD33− precursors predicts poor outcome in acute myeloid leukemia. Blood 2006;108:2764–2769.CrossRefGoogle ScholarPubMed
Hasle, H, Alonzo, TA, Auvrignon, A, et al. Monosomy 7 and deletion 7q in children and adolescents with acute myeloid leukemia: an international retrospective study. Blood 2007;109:4641–4647.CrossRefGoogle Scholar
Slovak, ML, Gundacker, H, Bloomfield, CD, et al. A retrospective study of 69 patients with t(6;9)(p23;q34) AML emphasizes the need for a prospective, multicenter initiative for rare “poor prognosis” myeloid malignancies. Leukemia 2006;20:1295–1297.CrossRefGoogle Scholar
Haferlach, T, Kohlmann, A, Klein, HU, et al. AML with translocation t(8;16)(p11;p13) demonstrates unique cytomorphological, cytogenetic, molecular and prognostic features. Leukemia 2009;23:934–943.CrossRefGoogle Scholar
Gaidzik, VI, Schlenk, RF, Moschny, S, et al. Prognostic impact of WT1 mutations in cytogenetically normal acute myeloid leukemia: a study of the German-Austrian AML Study Group. Blood 2009;113:4505–4511.CrossRefGoogle ScholarPubMed
Paschka, P, Marcucci, G, Ruppert, AS, et al. Wilms' tumor 1 gene mutations independently predict poor outcome in adults with cytogenetically normal acute myeloid leukemia: a cancer and leukemia group B study. J Clin Oncol 2008;26:4595–4602.CrossRefGoogle ScholarPubMed
Hollink, IH, van den Heuvel-Eibrink, MM, Zimmermann, M, et al. Clinical relevance of Wilms' tumor 1 gene mutations in childhood acute myeloid leukemia. Blood 2009;113:5951--5960.CrossRefGoogle ScholarPubMed
Damm, F, Heuser, M, Morgan, M, et al. Single nucleotide polymorphism in the mutational hotspot of WT1 predicts a favorable outcome in patients with cytogenetically normal acute myeloid leukemia. J Clin Oncol 2010;28:578–585.CrossRefGoogle ScholarPubMed
Breems, DA, van Putten, WL, de Greef, GE, et al. Monosomal karyotype in acute myeloid leukemia: a better indicator of poor prognosis than a complex karyotype. J Clin Oncol 2008;26:4791–4797.CrossRefGoogle ScholarPubMed
Tang, JL, Hou, HA, Chen, CY, et al. AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: prognostic implication and interaction with other gene alterations. Blood 2009;114:5352–5361.CrossRefGoogle ScholarPubMed
Baldus, CD, Thiede, C, Soucek, S, et al. BAALC expression and FLT3 internal tandem duplication mutations in acute myeloid leukemia patients with normal cytogenetics: prognostic implications. J Clin Oncol 2006;24:790–797.CrossRefGoogle ScholarPubMed
Marcucci, G, Maharry, K, Whitman, SP, et al. High expression levels of the ETS-related gene, ERG, predict adverse outcome and improve molecular risk-based classification of cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B Study. J Clin Oncol 2007;25:3337–3343.CrossRefGoogle ScholarPubMed
Marcucci, G, Baldus, CD, Ruppert, AS, et al. Overexpression of the ETS-related gene, ERG, predicts a worse outcome in acute myeloid leukemia with normal karyotype: a Cancer and Leukemia Group B study. J Clin Oncol 2005;23:9234–9242.CrossRefGoogle ScholarPubMed
Harrison, C, Hills, R, Moorman, AV, et al. Cytogenetics of childhood acute myeloid leukemia: United Kingdom Medical Research Council treatment trials AML 10 and 12. J Clin Oncol 2010;28:2674–2681.CrossRefGoogle ScholarPubMed
Walter, RB, Alonzo, TA, Gerbing, RB, et al. High expression of the very late antigen-4 integrin independently predicts reduced risk of relapse and improved outcome in pediatric acute myeloid leukemia: a report from the Children's Oncology Group. J Clin Oncol 2010;28:2831–2838.CrossRefGoogle ScholarPubMed
Krauter, J, Wagner, K, Schafer, I, et al. Prognostic factors in adult patients up to 60 years old with acute myeloid leukemia and translocations of chromosome band 11q23: individual patient data-based meta-analysis of the German Acute Myeloid Leukemia Intergroup. J Clin Oncol 2009;27:3000–3006.CrossRefGoogle ScholarPubMed
Schoch, C, Schnittger, S, Klaus, M, et al. AML with 11q23/MLL abnormalities as defined by the WHO classification: incidence, partner chromosomes, FAB subtype, age distribution, and prognostic impact in an unselected series of 1897 cytogenetically analyzed AML cases. Blood 2003;102:2395–2402.CrossRefGoogle Scholar
Rubnitz, JE, Raimondi, SC, Tong, X, et al. Favorable impact of the t(9;11) in childhood acute myeloid leukemia. J Clin Oncol 2002;20:2302–2309.CrossRefGoogle Scholar
Lange, BJ, Gerbing, RB, Feusner, J, et al. Mortality in overweight and underweight children with acute myeloid leukemia. JAMA 2005;293:203–211.CrossRefGoogle ScholarPubMed
Aplenc, R, Alonzo, TA, Gerbing, RB, et al. Ethnicity and survival in childhood acute myeloid leukemia: a report from the Children's Oncology Group. Blood 2006;108:74–80.CrossRefGoogle ScholarPubMed
Barnard, D, Alonzo, TA, Gerbing, R, et al. Comparison of childhood myelodysplastic syndrome, AML FAB M6 or M7, CCG 2891: report from the Children's Oncology Group. Pediatr Blood Cancer 2007;49:17–22.CrossRefGoogle ScholarPubMed
Schlenk, RF, Dohner, K. Impact of new prognostic markers in treatment decisions in acute myeloid leukemia. Curr Opin Hematol 2009;16:98–104.CrossRefGoogle ScholarPubMed
Santamaria, CM, Chillon, MC, Garcia-Sanz, R, et al. Molecular stratification model for prognosis in cytogenetically normal acute myeloid leukemia. Blood 2009;114:148–152.CrossRefGoogle ScholarPubMed
Campana, D. Status of minimal residual disease testing in childhood haematological malignancies. Br J Haematol 2008;143:481–489.Google ScholarPubMed
Shook, D, Coustan-Smith, E, Ribeiro, RC, et al. Minimal residual disease quantitation in acute myeloid leukemia. Clin Lymphoma Myeloma 2009;9(Suppl 3): S281–S285.CrossRefGoogle ScholarPubMed
Krauter, J, Gorlich, K, Ottmann, O, et al. Prognostic value of minimal residual disease quantification by real-time reverse transcriptase polymerase chain reaction in patients with core binding factor leukemias. J Clin Oncol 2003;21:4413–4422.CrossRefGoogle ScholarPubMed
Perea, G, Lasa, A, Aventin, A, et al. Prognostic value of minimal residual disease (MRD) in acute myeloid leukemia (AML) with favorable cytogenetics [t(8;21) and inv(16)]. Leukemia 2006;20:87–94.CrossRefGoogle Scholar
Weisser, M, Haferlach, C, Hiddemann, W, et al. The quality of molecular response to chemotherapy is predictive for the outcome of AML1-ETO-positive AML and is independent of pretreatment risk factors. Leukemia 2007;21:1177–1182.CrossRefGoogle ScholarPubMed
Langebrake, C, Creutzig, U, Dworzak, M, et al. Residual disease monitoring in childhood acute myeloid leukemia by multiparameter flow cytometry: the MRD-AML-BFM Study Group. J Clin Oncol 2006;24:3686–3692.CrossRefGoogle ScholarPubMed
Sievers, EL, Lange, BJ, Alonzo, TA, et al. Immunophenotypic evidence of leukemia after induction therapy predicts relapse: results from a prospective Children's Cancer Group study of 252 patients with acute myeloid leukemia. Blood 2003;101:3398–3406.CrossRefGoogle ScholarPubMed
Coustan-Smith, E, Ribeiro, RC, Rubnitz, JE, et al. Clinical significance of residual disease during treatment in childhood acute myeloid leukaemia. Br J Haematol 2003;123:243–252.CrossRefGoogle ScholarPubMed
Hijiya, N, Metzger, ML, Pounds, S, et al. Severe cardiopulmonary complications consistent with systemic inflammatory response syndrome caused by leukemia cell lysis in childhood acute myelomonocytic or monocytic leukemia. Pediatr Blood Cancer 2005;44:63–69.CrossRefGoogle ScholarPubMed
Okamoto, Y, Ribeiro, RC, Srivastava, DK, et al. Viridans streptococcal sepsis: clinical features and complications in childhood acute myeloid leukemia. J Pediatr Hematol Oncol 2003;25:696–703.CrossRefGoogle ScholarPubMed
Gamis, AS, Howells, WB, DeSwarte-Wallace, J, et al. Alpha hemolytic streptococcal infection during intensive treatment for acute myeloid leukemia: a report from the Children's Cancer Group study CCG-2891. J Clin Oncol 2000;18:1845–1855.CrossRefGoogle ScholarPubMed
Kurt, B, Flynn, P, Shenep, JL, et al. Prophylactic antibiotics reduce morbidity due to septicemia during intensive treatment for pediatric acute myeloid leukemia. Cancer 2008;113:376–382.CrossRefGoogle ScholarPubMed
Smith, MA, Seibel, NL, Altekruse, SF, et al. Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J Clin Oncol 2010;28:2625–2634.CrossRefGoogle ScholarPubMed
Yoo, CB, Jones, PA. Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov 2006;5:37–50.CrossRefGoogle ScholarPubMed
Genin, E, Reboud-Ravaux, M, Vidal, J. Proteasome inhibitors: recent advances and new perspectives in medicinal chemistry. Curr Top Med Chem 2010;10:232–256.CrossRefGoogle ScholarPubMed
Sanz, M, Burnett, A, Lo-Coco, F, et al. FLT3 inhibition as a targeted therapy for acute myeloid leukemia. Curr Opin Oncol 2009;21:594–600.CrossRefGoogle ScholarPubMed
Rizzolio, F, Tuccinardi, T, Caligiuri, I, et al. CDK inhibitors: from the bench to clinical trials. Curr Drug Targets 2010;11:279–290.CrossRefGoogle ScholarPubMed
Perl, AE, Kasner, MT, Tsai, DE, et al. A phase I study of the mammalian target of rapamycin inhibitor sirolimus and MEC chemotherapy in relapsed and refractory acute myelogenous leukemia. Clin Cancer Res 2009;15:6732–6739.CrossRefGoogle ScholarPubMed
Ji, M, Li, J, Yu, H, et al. Simultaneous targeting of MCL1 and ABCB1 as a novel strategy to overcome drug resistance in human leukaemia. Br J Haematol 2009;145:648–656.CrossRefGoogle ScholarPubMed
Burnett, AK, Kell, W, Goldstone, AH. The addition of gemtuzumab ozogamicin to induction chemotherapy for AML improves disease free survival without extra toxicity: preliminary analysis of 1115 patients in the MRC AML15 Trial. Blood 2006;108:8.Google Scholar
Lodewyck, T, Cornelissen, JJ. Allogeneic stem cell transplantation in acute myeloid leukemia: a risk-adapted approach. Blood Rev 2008;22:293–302.CrossRefGoogle ScholarPubMed
Rubnitz, JE, Inaba, H, Ribeiro, RC, et al. NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J Clin Oncol 2010;28:955–959.CrossRefGoogle ScholarPubMed
el-Shami, K, Smith, BD. Immunotherapy for myeloid leukemias: current status and future directions. Leukemia 2008;22:1658–1664.CrossRefGoogle ScholarPubMed
Faderl, S, Ferrajoli, A, Wierda, W, et al. Clofarabine combinations as acute myeloid leukemia salvage therapy. Cancer 2008;113:2090–2096.CrossRefGoogle ScholarPubMed
Brown, P, Hunger, SP, Smith, FO, et al. Novel targeted drug therapies for the treatment of childhood acute leukemia. Expert Rev Hematol 2009;2:145–158.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×