Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-07T23:01:38.387Z Has data issue: false hasContentIssue false

26 - Gene transfer: methods and applications

from Section 3 - Evaluation and treatment

Published online by Cambridge University Press:  05 April 2013

Ching-Hon Pui
Affiliation:
St Jude's Children's Research Hospital
Get access

Summary

Introduction

The concept of using gene transfer techniques to express a new gene in the somatic cells of a patient has stimulated considerable interest, speculation, and hyperbole. The inevitable backlash against promises that so far have not been fulfilled has led to much confusion about the aims and achievements of gene transfer and to a lurking suspicion that the entire field is simply a “South Sea bubble” waiting to burst. This chapter seeks to provide a balanced account of the current status of gene transfer as applied to leukemia and related disorders, and to review the accomplishments of the field as well as the impediments to progress. Most importantly, it will try to give an idea of the incremental way in which gene transfer technologies will supplement, long before they supplant, current therapeutic approaches to hematologic malignancies.

There are two broad strategies of gene transfer applicable to the treatment of leukemia and lymphoma. First, the tumor cell itself can be genetically modified to “repair” its intrinsic molecular defect. Alternatively, a toxic gene can be introduced to destroy the tumor cell, or it can be transduced to express molecules that trigger an immune response against it. Second, the host's T-cells can be redirected or their anti-tumor activity augmented, and they can be transduced with suicide genes to terminate potentially harmful immune reactions. The drug sensitivity of normal host tissues can be decreased by delivering genes encoding cytotoxic drug resistance to sensitive tissues, thereby increasing the therapeutic index of chemotherapy. Host cells may also be transduced with marker genes, not for any direct therapeutic benefit, but simply as a means to track their behavior and persistence.

Type
Chapter
Information
Childhood Leukemias , pp. 593 - 615
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bender, MA, Palmer, TD, Gelinas, RE, et al. Evidence that the packaging signal of Moloney murine leukemia virus extends into the gag region. J Virol 1987;61:1639–1646.Google ScholarPubMed
Brenner, MK, Rill, DR, Holladay, MS, et al. Gene marking to determine whether autologous marrow infusion restores long-term haemopoiesis in cancer patients. Lancet 1993;342:1134–1137.CrossRefGoogle ScholarPubMed
Hacein-Bey-Abina, S, Le Deist, F, Carlier, F, et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 2002;346:1185–1193.CrossRefGoogle ScholarPubMed
Hacein-Bey-Abina, S, von Kalle, C, Schmidt, M, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003;302:415–419.CrossRefGoogle ScholarPubMed
Qasim, W, Gaspar, HB, Thrasher, AJ.Progress and prospects: gene therapy for inherited immunodeficiencies. Gene Ther 2009;16:1285–1291.CrossRefGoogle ScholarPubMed
Howe, SJ, Mansour, MR, Schwarzwaelder, K, et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 2008;118:3143–3150.CrossRefGoogle ScholarPubMed
Deichmann, A, Brugman, MH, Bartholomae, CC, et al. Insertion sites in engrafted cells cluster within a limited repertoire of genomic areas after gamma retroviral vector gene therapy. Mol Ther 2011;19:2031–2039.CrossRefGoogle Scholar
Amado, RG, Chen, IS.Lentiviral vectors: the promise of gene therapy within reach?Science 1999;285:674–676.CrossRefGoogle ScholarPubMed
Sutton, RE, Wu, HT, Rigg, R, et al. Human immunodeficiency virus type 1 vectors efficiently transduce human hematopoietic stem cells. J Virol 1998;72:5781–5788.Google ScholarPubMed
Mascarenhas, L, Stripecke, R, Case, SS, et al. Gene delivery to human B-precursor acute lymphoblastic leukemia cells. Blood 1998;92:3537–3545.Google ScholarPubMed
Case, SS, Price, MA, Jordan, CT, et al. Stable transduction of quiescent CD34(+)CD38(−) human hematopoietic cells by HIV-1-based lentiviral vectors. Proc Natl Acad Sci USA 1999;96:2988–2993.CrossRefGoogle ScholarPubMed
Buchschacher, GL., Wong-Staal, F.Development of lentiviral vectors for gene therapy for human diseases 2. Blood 2000;95:2499–2504.Google Scholar
Cartier, N, Hacein-Bey-Abina, S, Bartholomae, CC, et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 2009;326:818–823.CrossRefGoogle ScholarPubMed
Rethwilm, A.Foamy virus vectors: an awaited alternative to gammaretro- and lentiviral vectors. Curr Gene Ther 2007;7:261–271.CrossRefGoogle ScholarPubMed
Jordan, I, Enssle, J, Guttler, E, et al. Expression of human foamy virus reverse transcriptase involves a spliced pol mRNA. Virology 1996;224:314–319.CrossRefGoogle ScholarPubMed
Enssle, J, Jordan, I, Mauer, B, et al. Foamy virus reverse transcriptase is expressed independently from the Gag protein. Proc Natl Acad Sci USA 1996;93:4137–4141.CrossRefGoogle ScholarPubMed
Murray, SM, Linial, ML.Foamy virus infection in primates. J Med Primatol 2006;35:225–235.CrossRefGoogle ScholarPubMed
Wolfe, ND, Switzer, WM, Carr, JK, et al. Naturally acquired simian retrovirus infections in central African hunters. Lancet 2004;363:932–937.CrossRefGoogle ScholarPubMed
Heneine, W, Schweizer, M, Sandstrom, P, et al. Human infection with foamy viruses. CurrTop Microbiol Immunol 2003;277:181–196.Google Scholar
Switzer, WM, Salemi, M, Shanmugam, V, et al. Ancient co-speciation of simian foamy viruses and primates. Nature 2005;434:376–380.CrossRefGoogle ScholarPubMed
Zenger, E, Brown, WC, Song, W, et al. Evaluation of cofactor effect of feline syncytium-forming virus on feline immunodeficiency virus infection. Am J Vet Res 1993;54:713–718.Google ScholarPubMed
Mergia, A, Leung, NJ, Blackwell, J.Cell tropism of the simian foamy virus type 1 (SFV-1). J Med Primatol 1996;25:2–7.CrossRefGoogle Scholar
Mikovits, JA, Hoffman, PM, Rethwilm, A, et al. In vitro infection of primary and retrovirus-infected human leukocytes by human foamy virus. J Virol 1996;70:2774–2780.Google ScholarPubMed
Ali, M, Taylor, GP, Pitman, RJ, et al. No evidence of antibody to human foamy virus in widespread human populations. AIDS Res Hum Retroviruses 1996;12:1473–1483.CrossRefGoogle ScholarPubMed
Schweizer, M, Turek, R, Hahn, H, et al. Markers of foamy virus infections in monkeys, apes, and accidentally infected humans: appropriate testing fails to confirm suspected foamy virus prevalence in humans. AIDS Res Hum Retroviruses 1995;11:161–170.CrossRefGoogle ScholarPubMed
Russell, DW, Miller, AD.Foamy virus vectors. J Virol 1996;70:217–222.Google ScholarPubMed
Si, Y, Pulliam, AC, Linka, Y, et al. Overnight transduction with foamyviral vectors restores the long-term repopulating activity of Fancc−/− stem cells. Blood 2008;112:4458–4465.CrossRefGoogle ScholarPubMed
Bauer, TR, Jr., Allen, JM, Hai, M, et al. Successful treatment of canine leukocyte adhesion deficiency by foamy virus vectors. Nat Med 2008;14:93–97.CrossRefGoogle ScholarPubMed
Leurs, C, Jansen, M, Pollok, KE, et al. Comparison of three retroviral vector systems for transduction of nonobese diabetic/severe combined immunodeficiency mice repopulating human CD34+ cord blood cells. Hum Gene Ther 2003;14:509–519.CrossRefGoogle ScholarPubMed
Beard, BC, Keyser, KA, Trobridge, GD, et al. Unique integration profiles in a canine model of long-term repopulating cells transduced with gammaretrovirus, lentivirus, or foamy virus. Hum Gene Ther 2007;18:423–434.CrossRefGoogle ScholarPubMed
Trobridge, GD, Miller, DG, Jacobs, MA, et al. Foamy virus vector integration sites in normal human cells. Proc Natl Acad Sci USA 2006;103:1498–1503.CrossRefGoogle ScholarPubMed
Mergia, A, Heinkelein, M.Foamy virus vectors. Curr Top Microbiol Immunol 2003;277:131–159.Google ScholarPubMed
Picard-Maureau, M, Jarmy, G, Berg, A, et al. Foamy virus envelope glycoprotein-mediated entry involves a pH-dependent fusion process. J Virol 2003;77:4722–4730.CrossRefGoogle ScholarPubMed
Engelhardt, JF, Yang, Y, Stratford-Perricaudet, LD, et al. Direct gene transfer of human CFTR into human bronchial epithelia of xenografts with E1-deleted adenoviruses. Nat Genet 1993;4:27–34.CrossRefGoogle ScholarPubMed
Le Gal La, SG, Robert, JJ, Berrard, S, et al. An adenovirus vector for gene transfer into neurons and glia in the brain. Science 1993;259:988–990.CrossRefGoogle Scholar
Smith, TA, Mehaffey, MG, Kayda, DB, et al. Adenovirus mediated expression of therapeutic plasma levels of human factor IX in mice. Nat Genet 1993;5:397–402.CrossRefGoogle ScholarPubMed
Amin, R, Wilmott, R, Schwarz, Y, et al. Replication-deficient adenovirus induces expression of interleukin-8 by airway epithelial cells in vitro. Hum Gene Ther 1995;6:145–153.CrossRefGoogle ScholarPubMed
Abbink, P, Lemckert, AA, Ewald, BA, et al. Comparative seroprevalence and immunogenicity of six rare serotype recombinant adenovirus vaccine vectors from subgroups B and D. J Virol 2007;81:4654–4663.CrossRefGoogle Scholar
Lasaro, MO, Ertl, HC.New insights on adenovirus as vaccine vectors. Mol Ther 2009;17:1333–1339.CrossRefGoogle ScholarPubMed
Mastrangeli, A, Harvey, BG, Yao, J, et al. “Sero-switch” adenovirus-mediated in vivo gene transfer: circumvention of anti-adenovirus humoral immune defenses against repeat adenovirus vector administration by changing the adenovirus serotype. Hum Gene Ther 1996;7:79–87.CrossRefGoogle ScholarPubMed
Nayak, S, Herzog, RW.Progress and prospects: immune responses to viral vectors. Gene Ther 2010;17:295–304.CrossRefGoogle ScholarPubMed
Seregin, SS, Appledorn, DM, McBride, AJ, et al. Transient pretreatment with glucocorticoid ablates innate toxicity of systemically delivered adenoviral vectors without reducing efficacy. Mol Ther 2009;17:685–696.CrossRefGoogle ScholarPubMed
Sack, BK, Herzog, RW.Evading the immune response upon in vivo gene therapy with viral vectors. Curr Opin Mol Ther 2009;11:493–503.Google ScholarPubMed
Singh, R, Tian, B, Kostarelos, K.Artificial envelopment of nonenveloped viruses: enhancing adenovirus tumor targeting in vivo. FASEB J 2008;22:3389–3402.CrossRefGoogle ScholarPubMed
Muzyczka, N.Use of adeno-associated virus as a general transduction vector for mammalian cells. Curr Top Microbiol Immunol 1992;158:97–129.Google ScholarPubMed
Clark, KR, Voulgaropoulou, F, Johnson, PR.A stable cell line carrying adenovirus-inducible rep and cap genes allows for infectivity titration of adeno-associated virus vectors. Gene Ther 1996;3:1124–1132.Google ScholarPubMed
Conway, JE, Rhys, CM, Zolotukhin, I, et al. High-titer recombinant adeno-associated virus production utilizing a recombinant herpes simplex virus type I vector expressing AAV-2 Rep and Cap. Gene Ther 1999;6:986–993.CrossRefGoogle ScholarPubMed
Flotte, TR, Zeitlin, PL, Reynolds, TC, et al. Phase I trial of intranasal and endobronchial administration of a recombinant adeno-associated virus serotype 2 (rAAV2)–CFTR vector in adult cystic fibrosis patients: a two-part clinical study. Hum Gene Ther 2003;14:1079–1088.CrossRefGoogle ScholarPubMed
Zhou, J, Shen, X, Huang, J, et al. Telomere length of transferred lymphocytes correlates with in vivo persistence and tumor regression in melanoma patients receiving cell transfer therapy. J Immunol 2005;175:7046–7052.CrossRefGoogle ScholarPubMed
Wagner, JA, Moran, ML, Messner, AH, et al. A phase I/II study of tgAAV-CF for the treatment of chronic sinusitis in patients with cystic fibrosis. Hum Gene Ther 1998;9:889–909.CrossRefGoogle ScholarPubMed
Wagner, JA, Nepomuceno, IB, Messner, AH, et al. A phase II, double-blind, randomized, placebo-controlled clinical trial of tgAAVCF using maxillary sinus delivery in patients with cystic fibrosis with antrostomies. Hum Gene Ther 2002;13:1349–1359.CrossRefGoogle ScholarPubMed
Wagner, JA, Reynolds, T, Moran, ML, et al. Efficient and persistent gene transfer of AAV–CFTR in maxillary sinus. Lancet 1998;351:1702–1703.CrossRefGoogle ScholarPubMed
van Gool, SW, Barcy, S, Devos, S, et al. CD80 (B7-1) and CD86 (B7-2): potential targets for immunotherapy?Res Immunol 1995;146:183–196.CrossRefGoogle ScholarPubMed
Su, H, Chang, JC, Xu, SM, et al. Selective killing of AFP-positive hepatocellular carcinoma cells by adeno-associated virus transfer of the herpes simplex virus thymidine kinase gene. Hum Gene Ther 1996;7:463–470.CrossRefGoogle ScholarPubMed
Mingozzi, F, Meulenberg, JJ, Hui, DJ, et al. AAV-1-mediated gene transfer to skeletal muscle in humans results in dose-dependent activation of capsid-specific T cells. Blood 2009;114:2077–2086.CrossRefGoogle ScholarPubMed
Manno, CS, Pierce, GF, Arruda, VR, et al. Successful transduction of liver in hemophilia by AAV–factor IX and limitations imposed by the host immune response. Nat Med 2006;12:342–347.CrossRefGoogle ScholarPubMed
Brenner, M.The eyes have it. Mol Ther 2010;18:451–452.CrossRefGoogle Scholar
Simonelli, F, Maguire, AM, Testa, F, et al. Gene therapy for Leber's congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol Ther 2010;18:643–650.CrossRefGoogle ScholarPubMed
Maguire, AM, High, KA, Auricchio, A, et al. Age-dependent effects of RPE65 gene therapy for Leber's congenital amaurosis: a phase 1 dose-escalation trial. Lancet 2009;374:1597–1605.CrossRefGoogle ScholarPubMed
Maguire, AM, Simonelli, F, Pierce, EA, et al. Safety and efficacy of gene transfer for Leber's congenital amaurosis. N Engl J Med 2008;358:2240–2248.CrossRefGoogle ScholarPubMed
Boutin, S, Monteilhet, V, Veron, P, et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus types 1, 2, 5, 6, 8 and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther 2010;21:704–712.CrossRefGoogle ScholarPubMed
van Vliet, KM, Blouin, V, Brument, N, et al. The role of the adeno-associated virus capsid in gene transfer. Methods Mol Biol 2008;437:51–91.CrossRefGoogle ScholarPubMed
Atkinson, H, Chalmers, R. Delivering the goods: viral and non-viral gene therapy systems and the inherent limits on cargo DNA and internal sequences. Genetica 2010;138:485–498.CrossRefGoogle ScholarPubMed
Li, J, Sun, W, Wang, B, et al. Protein trans-splicing as a means for viral vector-mediated in vivo gene therapy. Hum Gene Ther 2008;19:958–964.CrossRefGoogle ScholarPubMed
Yotnda, P, Chen, DH, Chiu, W, et al. Bilamellar cationic liposomes protect adenovectors from preexisting humoral immune responses. Mol Ther 2002;5:233–241.CrossRefGoogle ScholarPubMed
Nabel, GJ, Nabel, EG, Yang, ZY, et al. Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans. Proc Natl Acad Sci USA 1993;90:11307–11311.CrossRefGoogle ScholarPubMed
Gao, X, Huang, L. A novel cationic liposome reagent for efficient transfection of mammalian cells. Biochem Biophys Res Commun 1991;179:280–285.CrossRefGoogle ScholarPubMed
Templeton, NSCationic liposome-mediated gene delivery in vivo. Biosci Rep 2002;22:283–295.CrossRefGoogle ScholarPubMed
Trubetskoy, VS, Torchilin, VP, Kennel, S, et al. Cationic liposomes enhance targeted delivery and expression of exogenous DNA mediated by N-terminal modified poly(l-lysine)-antibody conjugate in mouse lung endothelial cells. Biochim Biophys Acta 1992;1131:311–313.CrossRefGoogle ScholarPubMed
Ito, K, Ito, K, Shinohara, N, et al. DNA immunization via intramuscular and intradermal routes using a gene gun provides different magnitudes and durations on immune response. Mol Immunol 2003;39:847–854.CrossRefGoogle ScholarPubMed
Vandendriessche, T, Ivics, Z, Izsvak, Z, et al. Emerging potential of transposons for gene therapy and generation of induced pluripotent stem cells. Blood 2009;114:1461–1468.CrossRefGoogle ScholarPubMed
Ivics, Z, Izsvak, Z. Transposons for gene therapy!Curr Gene Ther 2006;6:593–607.CrossRefGoogle ScholarPubMed
Xue, X, Huang, X, Nodland, SE, et al. Stable gene transfer and expression in cord blood-derived CD34+ hematopoietic stem and progenitor cells by a hyperactive Sleeping Beauty transposon system. Blood 2009;114:1319–1330.CrossRefGoogle ScholarPubMed
Mates, L, Chuah, MK, Belay, E, et al. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat Genet 2009;41:753–761.CrossRefGoogle ScholarPubMed
Nakazawa, Y, Huye, LE, Dotti, G, et al. Optimization of the PiggyBac transposon system for the sustained genetic modification of human T lymphocytes. J Immunother 2009;32:826–836.CrossRefGoogle ScholarPubMed
Singh, H, Manuri, PR, Olivares, S, et al. Redirecting specificity of T-cell populations for CD19 using the Sleeping Beauty system. Cancer Res 2008;68:2961–2971.CrossRefGoogle ScholarPubMed
Prestwich, RJ, Harrington, KJ, Pandha, HS, et al. Oncolytic viruses: a novel form of immunotherapy. Expert Rev Anticancer Ther 2008;8:1581–1588.CrossRefGoogle ScholarPubMed
Ganly, I, Kirn, D, Eckhardt, G, et al. A phase I study of Onyx-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer. Clin Cancer Res 2000;6:798–806.Google ScholarPubMed
Aghi, M, Martuza, RLOncolytic viral therapies: the clinical experience. Oncogene 2005;24:7802–7816.CrossRefGoogle ScholarPubMed
Senzer, NN, Kaufman, HL, Amatruda, T, et al. Phase II clinical trial of a granulocyte–macrophage colony-stimulating factor-encoding, second-generation oncolytic herpesvirus in patients with unresectable metastatic melanoma. J Clin Oncol 2009;27:5763–5771.CrossRefGoogle ScholarPubMed
Vidal, L, Pandha, HS, Yap, TA, et al. A phase I study of intravenous oncolytic reovirus type 3 Dearing in patients with advanced cancer. Clin Cancer Res 2008;14:7127–7137.CrossRefGoogle ScholarPubMed
Park, BH, Hwang, T, Liu, TC, et al. Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol 2008;9:533–542.CrossRefGoogle ScholarPubMed
Liu, TC, Hwang, T, Park, BH, et al. The targeted oncolytic poxvirus JX-594 demonstrates antitumoral, antivascular, and anti-HBV activities in patients with hepatocellular carcinoma. Mol Ther 2008;16:1637–1642.CrossRefGoogle ScholarPubMed
Wang, G, Li, G, Liu, H, et al. E1B 55-kDa deleted, Ad5/F35 fiber chimeric adenovirus, a potential oncolytic agent for B-lymphocytic malignancies. J Gene Med 2009;11:477–485.CrossRefGoogle ScholarPubMed
Cesaire, R, Oliere, S, Sharif-Askari, E, et al. Oncolytic activity of vesicular stomatitis virus in primary adult T-cell leukemia. Oncogene 2006;25:349–358.CrossRefGoogle ScholarPubMed
Rossi, JJ.Therapeutic antisense and ribozymes. Br Med Bull 1995;51:217–225.CrossRefGoogle ScholarPubMed
Zhang, Y, Mukhopadhyay, T, Donehower, LA, et al. Retroviral vector-mediated transduction of K-ras antisense RNA into human lung cancer cells inhibits expression of the malignant phenotype. Hum Gene Ther 1993;4:451–460.CrossRefGoogle ScholarPubMed
Heise, C, Sampson-Johannes, A, Williams, A, et al. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 1997;3:639–645.CrossRefGoogle ScholarPubMed
Mitsuyasu, RT, Merigan, TC, Carr, A, et al. Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells. Nat Med 2009;15:285–292.CrossRefGoogle ScholarPubMed
Weng, DE, Masci, PA, Radka, SF, et al. A phase I clinical trial of a ribozyme-based angiogenesis inhibitor targeting vascular endothelial growth factor receptor-1 for patients with refractory solid tumors. Mol Cancer Ther 2005;4:948–955.CrossRefGoogle ScholarPubMed
Wang, H, Cai, Q, Zeng, X, et al. Antitumor activity and pharmacokinetics of a mixed-backbone antisense oligonucleotide targeted to the RIalpha subunit of protein kinase A after oral administration. Proc Natl Acad Sci USA 1999;96:13989–13994.CrossRefGoogle ScholarPubMed
Gewirtz, AM.Myb targeted therapeutics for the treatment of human malignancies. Oncogene 1999;18:3056–3062.CrossRefGoogle ScholarPubMed
Bayever, E, Iversen, PL, Bishop, MR, et al. Systemic administration of a phosphorothioate oligonucleotide with a sequence complementary to p53 for acute myelogenous leukemia and myelodysplastic syndrome: initial results of a phase I trial. Antisense Res Dev 1993;3:383–390.CrossRefGoogle ScholarPubMed
Schimmer, AD, Estey, EH, Borthakur, G, et al. Phase I/II trial of AEG35156 X-linked inhibitor of apoptosis protein antisense oligonucleotide combined with idarubicin and cytarabine in patients with relapsed or primary refractory acute myeloid leukemia. J Clin Oncol 2009;27:4741–4746.CrossRefGoogle ScholarPubMed
Klasa, RJ.Targeting the proapoptotic factor Bcl-2 in non-Hodgkin's lymphoma. Oncology 2004;18:25–31.Google ScholarPubMed
Rheingold, SR, Hogarty, MD, Blaney, SM, et al. Phase I trial of G3139, a bcl-2 antisense oligonucleotide, combined with doxorubicin and cyclophosphamide in children with relapsed solid tumors: a Children's Oncology Group Study. J Clin Oncol 2007;25:1512–1518.CrossRefGoogle ScholarPubMed
Fire, A, Xu, S, Montgomery, MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391:806–811.CrossRefGoogle ScholarPubMed
Elbashir, SM, Harborth, J, Lendeckel, W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001;411:494–498.CrossRefGoogle ScholarPubMed
Brummelkamp, TR, Bernards, R, Agami, R.A system for stable expression of short interfering RNAs in mammalian cells. Science 2002;296:550–553.CrossRefGoogle ScholarPubMed
Beltinger, C, Fulda, S, Kammertoens, T, et al. Herpes simplex virus thymidine kinase/ganciclovir-induced apoptosis involves ligand-independent death receptor aggregation and activation of caspases. Proc Natl Acad Sci USA 1999;96:8699–8704.CrossRefGoogle ScholarPubMed
Hurwitz, MY, Marcus, KT, Chevez-Barrios, P, et al. Suicide gene therapy for treatment of retinoblastoma in a murine model. Hum Gene Ther 1999;10:441–448.CrossRefGoogle Scholar
Hurwitz, A, Finci-Yeheskel, Z, Milwidsky, A, et al. Regulation of cyclooxygenase activity and progesterone production in the rat corpus luteum by inducible nitric oxide synthase. Reproduction 2002;123:663–669.CrossRefGoogle ScholarPubMed
Hurwitz, RL, Brenner, MK, Poplack, DG, et al. Retinoblastoma treatment. Science 1999;285:663–664.CrossRefGoogle ScholarPubMed
Carroll, D.Progress and prospects: zinc-finger nucleases as gene therapy agents. Gene Ther 2008;15:1463–1468.CrossRefGoogle ScholarPubMed
Perez, EE, Wang, J, Miller, JC, et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 2008;26:808–816.CrossRefGoogle ScholarPubMed
Lombardo, A, Genovese, P, Beausejour, CM, et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 2007;25:1298–1306.CrossRefGoogle ScholarPubMed
Bartlett, JS, Kleinschmidt, J, Boucher, RC, et al. Targeted adeno-associated virus vector transduction of nonpermissive cells mediated by a bispecific F(ab′gamma)2 antibody. Nat Biotechnol 1999;17:181–186.CrossRefGoogle ScholarPubMed
Girod, A, Ried, M, Wobus, C, et al. Genetic capsid modifications allow efficient re-targeting of adeno-associated virus type 2. Nat Med 1999;5:1052–1056.CrossRefGoogle ScholarPubMed
Russell, SJ, Cosset, FLModifying the host range properties of retroviral vectors. J Gene Med 1999;1:300–311.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Grill, J, van Beusechem, VW, van der Valk, P, et al. Combined targeting of adenoviruses to integrins and epidermal growth factor receptors increases gene transfer into primary glioma cells and spheroids. Clin Cancer Res 2001;7:641–650.Google ScholarPubMed
Krasnykh, V, Belousova, N, Korokhov, N, et al. Genetic targeting of an adenovirus vector via replacement of the fiber protein with the phage T 2001;4 fibritin. J Virol 2001;75:4176–4183.CrossRefGoogle Scholar
Osaki, T, Tanio, Y, Tachibana, I, et al. Gene therapy for carcinoembryonic antigen-producing human lung cancer cells by cell type-specific expression of herpes simplex virus thymidine kinase gene. Cancer Res 1994;54:5258–5261.Google ScholarPubMed
Barnett, BG, Tillman, BW, Curiel, DT, et al. Dual targeting of adenoviral vectors at the levels of transduction and transcription enhances the specificity of gene expression in cancer cells. Mol Ther 2002;6:377–385.CrossRefGoogle ScholarPubMed
Chen, L, Rao, A, Harrison, SC.Signal integration by transcription-factor assemblies: interactions of NF-AT1 and AP-1 on the IL-2 promoter. Cold Spring Harb Symp Quant Biol 1999;64:527–531.CrossRefGoogle ScholarPubMed
Yui, MA, Hernandez-Hoyos, G, Rothenberg, EV.A new regulatory region of the IL-2 locus that confers position-independent transgene expression. J Immunol 2001;166:1730–1739.CrossRefGoogle ScholarPubMed
Pizzato, M, Marlow, SA, Blair, ED, et al. Initial binding of murine leukemia virus particles to cells does not require specific Env-receptor interaction. J Virol 1999;73:8599–8611.Google Scholar
Tepper, RI, Pattengale, PK, Leder, P.Murine interleukin-4 displays potent anti-tumor activity in vivo. Cell 1989;57:503–512.CrossRefGoogle ScholarPubMed
Golumbek, PT, Lazenby, AJ, Levitsky, HI, et al. Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4. Science 1991;254:713–716.CrossRefGoogle ScholarPubMed
Fearon, ER, Pardoll, DM, Itaya, T, et al. Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell 1990;60:397–403.CrossRefGoogle Scholar
Colombo, MP, Ferrari, G, Stoppacciaro, A, et al. Granulocyte colony-stimulating factor gene transfer suppresses tumorigenicity of a murine adenocarcinoma in vivo. J Exp Med 1991;173:889–897.CrossRefGoogle ScholarPubMed
Dilloo, D, Bacon, K, Holden, W, et al. Combined chemokine and cytokine gene transfer enhances antitumor immunity. Nat Med 1996;2:1090–1095.CrossRefGoogle ScholarPubMed
Soiffer, R, Lynch, T, Mihm, M, et al. Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte–macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc Natl Acad Sci USA 1998;95:13141–13146.CrossRefGoogle ScholarPubMed
Nelson, WG, Simons, JW, Mikhak, B, et al. Cancer cells engineered to secrete granulocyte–macrophage colony-stimulating factor using ex vivo gene transfer as vaccines for the treatment of genitourinary malignancies. Cancer Chemother Pharmacol 2000;46(Suppl): S67–S72.CrossRefGoogle ScholarPubMed
Asher, AL, Mule, JJ, Kasid, A, et al. Murine tumor cells transduced with the gene for tumor necrosis factor-alpha. Evidence for paracrine immune effects of tumor necrosis factor against tumors. J Immunol 1991;146:3227–3234.Google ScholarPubMed
Hock, H, Dorsch, M, Diamantstein, T, et al. Interleukin 7 induces CD4+ T cell-dependent tumor rejection. J Exp Med 1991;174:1291–1298.CrossRefGoogle ScholarPubMed
Watanabe, Y, Kuribayashi, K, Miyatake, S, et al. Exogenous expression of mouse interferon gamma cDNA in mouse neuroblastoma C1300 cells results in reduced tumorigenicity by augmented anti-tumor immunity. Proc Natl Acad Sci USA 1998;86:9456–9460.CrossRefGoogle Scholar
Leimig, T, Foreman, N, Rill, D, et al. Immunomodulatory effects of human neuroblastoma cells transduced with a retroviral vector encoding interleukin-2. Cancer Gene Ther 1994;1:253–258.Google ScholarPubMed
Banchereau, J, Steinman, RM.Dendritic cells and the control of immunity. Nature 1998;392:245–253.CrossRefGoogle ScholarPubMed
Dilloo, D, Brown, M, Roskrow, M, et al. CD40 ligand induces an antileukemia immune response in vivo. Blood 1997;90:1927–1933.Google ScholarPubMed
Fujita, N, Kagamu, H, Yoshizawa, H, et al. CD40 ligand promotes priming of fully potent antitumor CD4(+) T cells in draining lymph nodes in the presence of apoptotic tumor cells. J Immunol 2001;167:5678–5688.CrossRefGoogle ScholarPubMed
Kato, K, Cantwell, MJ, Sharma, S, et al. Gene transfer of CD40-ligand induces autologous immune recognition of chronic lymphocytic leukemia B cells. J Clin Invest 1998;101:1133–1141.CrossRefGoogle ScholarPubMed
van Kooten, C, Banchereau, JCD40-CD40 ligand: a multifunctional receptor-ligand pair. Adv Immunol 1996;61:1–77.CrossRefGoogle ScholarPubMed
Guinan, EC, Gribben, JG, Boussiotis, VA, et al. Pivotal role of the B7:CD28 pathway in transplantation tolerance and tumor immunity. Blood 1994;84:3261–3282.Google ScholarPubMed
Ranheim, EA, Kipps, TJ. Activated T cells induce expression of B7/BB1 on normal or leukemic B cells through a CD40-dependent signal. J Exp Med 1993;177:925–935.CrossRefGoogle ScholarPubMed
Wulf, GG, Wang, RY, Kuehnle, I, et al. A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia. Blood 2001;98:1166–1173.CrossRefGoogle ScholarPubMed
el-Shami, K, Smith, BD.Immunotherapy for myeloid leukemias: current status and future directions. Leukemia 2008;22:1658–1664.CrossRefGoogle ScholarPubMed
Jinushi, M, Hodi, FS, Dranoff, G. Enhancing the clinical activity of granulocyte–macrophage colony-stimulating factor-secreting tumor cell vaccines. Immunol Rev 2008;222:287–298.CrossRefGoogle ScholarPubMed
Rousseau, RF, Biagi, E, Dutour, A, et al. Immunotherapy of high-risk acute leukemia with a recipient (autologous) vaccine expressing transgenic human CD40L and IL-2 after chemotherapy and allogeneic stem cell transplantation. Blood 2006;107:1332–1341.CrossRefGoogle ScholarPubMed
Biagi, E, Rousseau, R, Yvon, E, et al. Responses to human CD40 ligand/human interleukin-2 autologous cell vaccine in patients with B-cell chronic lymphocytic leukemia. Clin Cancer Res 2005;11:6916–6923.CrossRefGoogle ScholarPubMed
Foster, AE, Okur, FV, Biagi, E, et al. Selective elimination of a chemoresistant side population of B-CLL cells by cytotoxic T lymphocytes in subjects receiving an autologous hCD40L/IL-2 tumor vaccine. Leukemia 2010;24:563–572.CrossRefGoogle ScholarPubMed
Luznik, L, Slansky, JE, Jalla, S, et al. Successful therapy of metastatic cancer using tumor vaccines in mixed allogeneic bone marrow chimeras. Blood 2003;101:1645–1652.CrossRefGoogle ScholarPubMed
Raz, E, Carson, DA, Parker, SE, et al. Intradermal gene immunization: the possible role of DNA uptake in the induction of cellular immunity to viruses. Proc Natl Acad Sci USA 1994;91:9519–9523.CrossRefGoogle ScholarPubMed
Kim, JJ, Yang, JS, Lee, DJ, et al. Macrophage colony-stimulating factor can modulate immune responses and attract dendritic cells in vivo. Hum Gene Ther 2000;11:305–321.CrossRefGoogle ScholarPubMed
Syrengelas, AD, Chen, TT, Levy, R. DNA immunization induces protective immunity against B-cell lymphoma. Nat Med 1996;2:1038–1041.CrossRefGoogle ScholarPubMed
Krieg, AM, Wagner, H. Causing a commotion in the blood: immunotherapy progresses from bacteria to bacterial DNA. Immunol Today 2000;21:521–526.CrossRefGoogle ScholarPubMed
Ohashi, T, Hanabuchi, S, Kato, H, et al. Prevention of adult T-cell leukemia-like lymphoproliferative disease in rats by adoptively transferred T cells from a donor immunized with human T-cell leukemia virus type 1 Tax-coding DNA vaccine. J Virol 2000;74:9610–9616.CrossRefGoogle ScholarPubMed
Chaise, C, Buchan, SL, Rice, J, et al. DNA vaccination induces WT1-specific T-cell responses with potential clinical relevance. Blood 2008;112:2956–2964.CrossRefGoogle ScholarPubMed
Lucansky, V, Sobotkova, E, Tachezy, R, et al. DNA vaccination against bcr-abl-positive cells in mice. Int J Oncol 2009;35:941–951.Google ScholarPubMed
Furugaki, K, Pokorna, K, Le, PC, et al. DNA vaccination with all-trans retinoic acid treatment induces long-term survival and elicits specific immune responses requiring CD4+ and CD8+ T-cell activation in an acute promyelocytic leukemia mouse model. Blood 2010;115:653–656.CrossRefGoogle Scholar
Kutzler, MA, Weiner, DB. DNA vaccines: ready for prime time?Nat Rev Genet 2008;9:776–788.CrossRefGoogle ScholarPubMed
Daud, AI, DeConti, RC, Andrews, S, et al. Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol 2008;26:5896–5903.CrossRefGoogle ScholarPubMed
Weber, J, Boswell, W, Smith, J, et al. Phase 1 trial of intranodal injection of a Melan-A/MART-1 DNA plasmid vaccine in patients with stage IV melanoma. J Immunother 2008;31:215–223.CrossRefGoogle ScholarPubMed
Yuan, J, Ku, GY, Gallardo, HF, et al. Safety and immunogenicity of a human and mouse gp100 DNA vaccine in a phase I trial of patients with melanoma. Cancer Immun 2009;9:5.Google Scholar
Heslop, HE, Ng, CYC, Li, C, et al. Long-term restoration of immunity against Epstein–Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nat Med 1996;2:551–555.CrossRefGoogle ScholarPubMed
Rooney, CM, Smith, CA, Ng, C, et al. Use of gene-modified virus-specific T lymphocytes to control Epstein–Barr virus-related lymphoproliferation. Lancet 1995;345:9–13.CrossRefGoogle ScholarPubMed
Heslop, HE, Slobod, KS, Pulé, MA, et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood 2010;115:925–935.CrossRefGoogle ScholarPubMed
Bollard, CM, Gottschalk, S, Huls, MH, et al. In vivo expansion of LMP1- and LMP2-specific T-cells in a patient who received donor-derived EBV-specific T-cells after allogeneic stem cell transplantation. Leuk Lymphoma 2006;47:837–842.CrossRefGoogle Scholar
Bollard, CM, Gottschalk, S, Leen, AM, et al. Complete responses of relapsed lymphoma following genetic modification of tumor-antigen presenting cells and T-lymphocyte transfer. Blood 2007;110:2838–2845.CrossRefGoogle ScholarPubMed
Kolb, H-J, Schattenberg, A, Goldman, JM, et al. Graft-versus-leukemia effect of donor lymphocyte infusions in marrow grafted patients. Blood 1995;86:2041–2050.Google Scholar
Kolb, HJ.Graft-versus-leukemia effects of transplantation and donor lymphocytes. Blood 2008;112:4371–4383.CrossRefGoogle Scholar
Warren, EH, Fujii, N, Akatsuka, Y, et al. Therapy of relapsed leukemia after allogeneic hematopoietic cell transplant with T cells specific for minor histocompatibility antigens. Blood 2010;115:3869–3878.CrossRefGoogle Scholar
Gambacorti-Passerini, C, Grignani, F, Arienti, F, et al. Human CD4 lymphocytes specifically recognize a peptide representing the fusion region of the hybrid protein Pml/RAR alpha present in acute promyelocytic leukemia cells. Blood 1993;81:1369–1375.Google ScholarPubMed
Melief, CJ, Kast, WM. Potential immunogenicity of oncogene and tumor suppressor gene products. Curr Opin Immunol 1993;5:709–713.CrossRefGoogle ScholarPubMed
Yotnda, P, Firat, H, Garcia-Pons, F, et al. Cytotoxic T cell response against the chimeric p210 BCR-ABL protein in patients with chronic myelogenous leukemia. J Clin Invest 1998;101:2290–2296.CrossRefGoogle ScholarPubMed
Makita, M, Azuma, T, Hamaguchi, H, et al. Leukemia-associated fusion proteins, dek-can and bcr-abl, represent immunogenic HLA-DR-restricted epitopes recognized by fusion peptide-specific CD4+ T lymphocytes. Leukemia 2002;16:2400–2407.CrossRefGoogle ScholarPubMed
Yotnda, P, Garcia, F, Peuchmaur, M, et al. Cytotoxic T cell response against the chimeric ETV6–AML1 protein in childhood acute lymphoblastic leukemia. J Clin Invest 1998;102:455–462.CrossRefGoogle ScholarPubMed
Ohminami, H, Yasukawa, M, Fujita, S.HLA class I-restricted lysis of leukemia cells by a CD8(+) cytotoxic T-lymphocyte clone specific for WT1 peptide. Blood 2000;95:286–293.Google ScholarPubMed
Quintarelli, C, Dotti, G, De, AB, et al. Cytotoxic T lymphocytes directed to the preferentially expressed antigen of melanoma (PRAME) target chronic myeloid leukemia. Blood 2008;112:1876–1885.CrossRefGoogle ScholarPubMed
Schmidt, SM, Schag, K, Muller, MR, et al. Survivin is a shared tumor-associated antigen expressed in a broad variety of malignancies and recognized by specific cytotoxic T cells. Blood 2003;102:571–576.CrossRefGoogle Scholar
Gross, G, Gorochov, G, Waks, T, et al. Generation of effector T cells expressing chimeric T cell receptor with antibody type-specificity. Transplant Proc 1989;21:127–130.Google ScholarPubMed
Irving, BA, Weiss, A.The cytoplasmic domain of the T cell receptor zeta chain is sufficient to couple to receptor-associated signal transduction pathways. Cell 1991;64:891–901.CrossRefGoogle Scholar
Brentjens, RJ, Hollyman, D, Weiss, M, et al. A phase I trial for the treatment of chemo-refractory chronic lymphocytic leukemia with CD19-targeted autologous T cells. Mol Ther 2009;16:15.Google Scholar
Jensen, MC, Popplewell, L, Digiusto, DL, et al. A first-in-human clinical trial of adoptive therapy using CD19-specific chimeric antigen receptor re-directed T cells for recurrency/refractory follicular lymphoma. Mol Ther 2007;15:142.Google Scholar
Kershaw, MH, Westwood, JA, Parker, LL, et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 2006;12:6106–6115.CrossRefGoogle ScholarPubMed
Pulé, MA, Savoldo, B, Myers, GD, et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med 2008;14:1264–1270.CrossRefGoogle ScholarPubMed
Anderson, SJ, Levin, SD, Perlmutter, RM. Involvement of the protein tyrosine kinase p56lck in T cell signaling and thymocyte development. Adv Immunol 1994;56:151–178.CrossRefGoogle Scholar
Brocker, T, Karjalainen, K.Signals through T cell receptor-zeta chain alone are insufficient to prime resting T lymphocytes. J Exp Med 1995;181:1653–1659.CrossRefGoogle ScholarPubMed
Finney, HM, Lawson, AD, Bebbington, CR, et al. Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product. J Immunol 1998;161:2791–2797.Google Scholar
Maher, J, Brentjens, RJ, Gunset, G, et al. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta/CD28 receptor. Nat Biotechnol 2002;20:70–75.CrossRefGoogle ScholarPubMed
Geiger, TL, Nguyen, P, Leitenberg, D, et al. Integrated src kinase and costimulatory activity enhances signal transduction through single-chain chimeric receptors in T lymphocytes. Blood 2001;98:2364–2371.CrossRefGoogle ScholarPubMed
Brentjens, RJ, Riviere, I, Hollyman, D, et al. Unexpected toxicity of cyclophosphamide followed by adoptively transferred CD19-targeted T cells in a patient with bulky CLL. Mol Ther 2009;17:S157.Google Scholar
Morgan, RA, Yang, JC, Kitano, M, et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 2010;18:843–851.CrossRefGoogle ScholarPubMed
Porter, DL, Levine, BL, Kalos, M, et al. Chimeric antigen receptor-modified T-cells in chronic lymphoid leukemia. N Engl J Med 2011;365:725–733.CrossRefGoogle ScholarPubMed
Kershaw, MH, Westwood, JA, Hwu, P.Dual-specific T cells combine proliferation and antitumor activity. Nat Biotechnol 2002;20:1221–1227.CrossRefGoogle ScholarPubMed
Rossig, C, Bollard, CM, Nuchtern, JG, et al. Epstein–Barr virus-specific human T lymphocytes expressing antitumor chimeric T-cell receptors: potential for improved immunotherapy. Blood 2002;99:2009–2016.CrossRefGoogle Scholar
Abad, JD, Wrzensinski, C, Overwijk, W, et al. T-cell receptor gene therapy of established tumors in a murine melanoma model. J Immunother 2008;31:1–6.CrossRefGoogle Scholar
Xue, SA, Gao, L, Hart, D, et al. Elimination of human leukemia cells in NOD/SCID mice by WT1-TCR gene-transduced human T cells. Blood 2005;106:3062–3067.CrossRefGoogle ScholarPubMed
Stauss, HJ, Cesco-Gaspere, M, Thomas, S, et al. Monoclonal T-cell receptors: new reagents for cancer therapy. Mol Ther 2007;15:1744–1750.CrossRefGoogle ScholarPubMed
Bendle, GM, Haanen, JB, Schumacher, TN.Preclinical development of T cell receptor gene therapy. Curr Opin Immunol 2009;21:209–214.CrossRefGoogle ScholarPubMed
Cohen, CJ, Li, YF, El-Gamil, M, et al. Enhanced antitumor activity of T cells engineered to express T-cell receptors with a second disulfide bond. Cancer Res 2007;67:3898–3903.CrossRefGoogle ScholarPubMed
Hiasa, A, Nishikawa, H, Hirayama, M, et al. Rapid alphabeta TCR-mediated responses in gammadelta T cells transduced with cancer-specific TCR genes. Gene Ther 2009;16:620–628.CrossRefGoogle ScholarPubMed
Morgan, RA, Dudley, ME, Wunderlich, JR, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006;314:126–129.CrossRefGoogle ScholarPubMed
Rosenberg, SA, Yannelli, JR, Yang, JC, et al. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J Natl Cancer Inst 1994;86:1159–1166.CrossRefGoogle ScholarPubMed
Johnson, LA, Morgan, RA, Dudley, ME, et al. Gene therapy with human and mouse T cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 2009;114:535–546.CrossRefGoogle Scholar
Rosenberg, SA, Lotze, MT, Yang, JC, et al. Experience with the use of high-dose interleukin-2 in the treatment of 652 cancer patients. Ann Surg 1989;210:474–484.CrossRefGoogle ScholarPubMed
Liu, K, Rosenberg, SA.Transduction of an IL-2 gene into human melanoma-reactive lymphocytes results in their continued growth in the absence of exogenous IL-2 and maintenance of specific antitumor activity. J Immunol 2001;167:6356–6365.CrossRefGoogle ScholarPubMed
Ahmadzadeh, M, Rosenberg, SA.IL-2 administration increases CD4+ CD25(hi) Foxp3 +regulatory T cells in cancer patients. Blood 2006;107:2409–2414.CrossRefGoogle ScholarPubMed
Quintarelli, C, Vera, JF, Savoldo, B, et al. Co-expression of cytokine and suicide genes to enhance the activity and safety of tumor-specific cytotoxic T lymphocytes. Blood 2007;110:2793–2802.CrossRefGoogle ScholarPubMed
Vera, JF, Hoyos, V, Savoldo, B, et al. Genetic manipulation of tumor-specific cytotoxic T lymphocytes to restore responsiveness to IL-7. Mol Ther 2009;17:880–888.CrossRefGoogle ScholarPubMed
Eaton, D, Gilham, DE, O'Neill, A, et al. Retroviral transduction of human peripheral blood lymphocytes with Bcl-X(L) promotes in vitro lymphocyte survival in pro-apoptotic conditions. Gene Ther 2002;9:527–535.CrossRefGoogle ScholarPubMed
Dotti, G, Savoldo, B, Pulé, M, et al. Human cytotoxic T lymphocytes with reduced sensitivity to Fas-induced apoptosis. Blood 2005;105:4677–4684.CrossRefGoogle ScholarPubMed
Gorelik, L, Flavell, RA.Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med 2001;7:1118–1122.CrossRefGoogle Scholar
Bollard, CM, Rossig, C, Calonge, MJ, et al. Adapting a transforming growth factor beta-related tumor protection strategy to enhance antitumor immunity. Blood 2002;99:3179–3187.CrossRefGoogle ScholarPubMed
Bonini, C, Ferrari, G, Verzeletti, S, et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft versus leukemia. Science 1997;276:1719–1724.CrossRefGoogle ScholarPubMed
Tiberghien, P, Ferrand, C, Lioure, B, et al. Administration of herpes simplex-thymidine kinase-expressing donor T cells with a T-cell-depleted allogeneic marrow graft. Blood 2001;97:63–72.CrossRefGoogle ScholarPubMed
Riddell, SR, Elliott, M, Lewinsohn, DA, et al. T-cell mediated rejection of gene-modified HIV-specific cytotoxic T lymphocytes in HIV-infected patients. Nat Med 1996;2:216–223.CrossRefGoogle ScholarPubMed
Clackson, T, Yang, W, Rozamus, LW, et al. Redesigning an FKBP-ligand interface to generate chemical dimerizers with novel specificity. Proc Natl Acad Sci USA 1998;95:10437–10442.CrossRefGoogle ScholarPubMed
Thomis, DC, Marktel, S, Bonini, C, et al. A Fas-based suicide switch in human T cells for the treatment of graft-versus-host disease. Blood 2001;97:1249–1257.CrossRefGoogle Scholar
Iuliucci, JD, Oliver, SD, Morley, S, et al. Intravenous safety and pharmacokinetics of a novel dimerizer drug, AP1903, in healthy volunteers. J Clin Pharmacol 2001;41:870–879.CrossRefGoogle ScholarPubMed
Straathof, KC, Pulé, MA, Yotnda, P, et al. An inducible caspase 9 safety switch for T-cell therapy. Blood 2005;105:4247–4254.CrossRefGoogle ScholarPubMed
Di Stasi, A, Tey, SK, Dotti, G, et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med 2011;365:1673–1683.CrossRefGoogle ScholarPubMed
Introna, M, Barbui, AM, Bambacioni, F, et al. Genetic modification of human T cells with CD20: a strategy to purify and lyse transduced cells with anti-CD20 antibodies. Hum Gene Ther 2000;11:611–620.CrossRefGoogle Scholar
Klump, H, Schiedlmeier, B, Vogt, B, et al. Retroviral vector-mediated expression of HoxB4 in hematopoietic cells using a novel coexpression strategy. Gene Ther 2001;8:811–817.CrossRefGoogle ScholarPubMed
Levin, L, Simon, R, Hryniuk, W.Importance of multiagent chemotherapy regimens in ovarian carcinoma: dose intensity analysis. J Natl Cancer Inst 1993;85:1732–1742.CrossRefGoogle ScholarPubMed
Levin, L, Hryniuk, WM.Dose intensity analysis of chemotherapy regimens in ovarian carcinoma. J Clin Oncol 1987;5:756–767.CrossRefGoogle ScholarPubMed
Murphy, D, Crowther, D, Renninson, J, et al. A randomised dose intensity study in ovarian carcinoma comparing chemotherapy given at four week intervals for six cycles with half dose chemotherapy given for twelve cycles. Ann Oncol 1993;4:377–383.CrossRefGoogle ScholarPubMed
Pastan, I, Gottesman, MMMultidrug resistance. Annu Rev Med 1991;42:277–286.CrossRefGoogle ScholarPubMed
Mickisch, GH, Licht, T, Merlino, GT, et al. Chemotherapy and chemosensitization of transgenic mice which express the human multidrug resistance gene in bone marrow: efficacy, potency, and toxicity. Cancer Res 1991;51:5417–5424.Google ScholarPubMed
Mickisch, GH, Merlino, GT, Galski, H, et al. Transgenic mice that express the human multidrug-resistance gene in bone marrow enable a rapid identification of agents that reverse drug resistance. Proc Natl Acad Sci USA 1991;88:547–551.CrossRefGoogle ScholarPubMed
Moscow, JA, Huang, H, Carter, C, et al. Engraftment of MDR1 and NeoR gene-transduced hematopoietic cells after breast cancer chemotherapy. Blood 1999;94:52–61.Google ScholarPubMed
Appelbaum, FR, Buckner, CD.Overview of the clinical relevance of autologous bone marrow transplantation. Clin Haematol 1986;15:1–18.CrossRefGoogle ScholarPubMed
Burnett, AK, Tansey, P, Watkins, R, et al. Transplantation of unpurged autologous bone-marrow in acute myeloid leukaemia in first remission. Lancet 1984;ii:1068–1070.CrossRefGoogle Scholar
Goldstone, AH, Anderson, CC, Linch, DC, et al. Autologous bone marrow transplantation following high dose chemotherapy for the treatment of adult patients with acute myeloid leukaemia. Br J Haematol 1986;64:529–537.CrossRefGoogle ScholarPubMed
Shpall, EJ, Jones, RB. Release of tumor cells from bone marrow. Blood 1994;83:623–625.Google ScholarPubMed
Brugger, W, Bross, KJ, Glatt, M, et al. Mobilization of tumor cells and hematopoietic progenitor cells into peripheral blood of patients with solid tumors. Blood 1994;83:636–640.Google ScholarPubMed
Rill, DR, Santana, VM, Roberts, WM, et al. Direct demonstration that autologous bone marrow transplantation for solid tumors can return a multiplicity of tumorigenic cells. Blood 1994;84:380–383.Google ScholarPubMed
de Fabritiis, P, Ferrero, D, Sandrelli, A, et al. Monoclonal antibody purging and autologous bone marrow transplantation in acute myelogenous leukemia in complete remission. Bone Marrow Transplant 1989;4:669–674.Google ScholarPubMed
Gambacorti-Passerini, C, Rivoltini, L, Fizzotti, M, et al. Selective purging by human interleukin-2 activated lymphocytes of bone marrows contaminated with a lymphoma line or autologous leukaemic cells. Br J Haematol 1991;78:197–205.CrossRefGoogle ScholarPubMed
Gorin, NC, Aegerter, P, Auvert, B, et al. Autologous bone marrow transplantation for acute myelocytic leukemia in first remission: a European survey of the role of marrow purging. Blood 1990;75:1606–1614.Google ScholarPubMed
Santos, GW, Yeager, AM, Jones, RJ.Autologous bone marrow transplantation. Annu Rev Med 1989;40:99–112.CrossRefGoogle ScholarPubMed
Gribben, JG, Freedman, AS, Neuberg, D, et al. Immunologic purging of marrow assessed by PCR before autologous bone marrow transplantation for B-cell lymphoma. N Engl J Med 1991;325:1525–1533.CrossRefGoogle ScholarPubMed
Brenner, M, Krance, R, Heslop, HE, et al. Assessment of the efficacy of purging by using gene marked autologous marrow transplantation for children with AML in first complete remission. Hum Gene Ther 1994;5:481–499.CrossRefGoogle ScholarPubMed
Cai, Q, Rubin, JT, Lotze, MT. Genetically marking human cells: results of the first clinical gene transfer studies. Cancer Gene Ther 1995;2:125–136.Google ScholarPubMed
Cornetta, K, Tricot, G, Broun, ER, et al. Retroviral-mediated gene transfer of bone marrow cells during autologous bone marrow transplantation for acute leukemia. Hum Gene Ther 1992;3:305–318.CrossRefGoogle ScholarPubMed
Deisseroth, AB, Zu, Z, Claxton, D, et al. Genetic marking shows that Ph+ cells present in autologous transplants of chronic myelogenous leukemia (CML) contribute to relapse after autologous bone marrow in CML. Blood 1994;83:3068–3076.Google ScholarPubMed
Tey, SK, Brenner, MK.The continuing contribution of gene marking to cell and gene therapy. Mol Ther 2007;15:666–676.CrossRefGoogle ScholarPubMed
Dunbar, CE, Bodine, DM, Sorrentino, B, et al. Gene transfer into hematopoietic cells. Implications for cancer therapy. Ann N Y Acad Sci 1994;716: 216–224.CrossRefGoogle ScholarPubMed
Moritz, T, Mackay, W, Glassner, BJ, et al. Retrovirus-mediated expression of a DNA repair protein in bone marrow protects hematopoietic cells from nitrosourea-induced toxicity in vitro and in vivo. Cancer Res 1995;55:2608–2614.Google ScholarPubMed
Dunbar, CE, Cottler-Fox, M, O'Shaunessy, JA, et al. Retrovirally marked CD34-enriched peripheral blood and marrow cells contribute to long term engraftment after autologous transplantation. Blood 1995;85:3048–3057.Google Scholar
Brenner, MK, Rill, DR, Heslop, HE, et al. Gene marking after bone marrow transplantation. Eur J Cancer 1994;30A:1171–1176.CrossRefGoogle ScholarPubMed
Rooney, CM, Smith, CA, Ng, CY, et al. Infusion of cytotoxic T cells for the prevention and treatment of Epstein–Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 1998;92:1549–1555.Google ScholarPubMed
Roskrow, MA, Rooney, CM, Heslop, HE, et al. Administration of neomycin resistance gene marked EBV specific cytotoxic T-lymphocytes to patients with relapsed EBV-positive Hodgkin disease. Hum Gene Ther 1998;9:1237–1250.CrossRefGoogle ScholarPubMed
Schmidt, M, Hoffmann, G, Wissler, M, et al. Detection and direct genomic sequencing of multiple rare unknown flanking DNA in highly complex samples. Hum Gene Ther 2001;12:743–749.CrossRefGoogle ScholarPubMed
Vanin, EF, Kaloss, M, Broscius, C, et al. Characterization of replication-competent retroviruses from nonhuman primates with virus-induced T-cell lymphomas and observations regarding the mechanism of oncogenesis. J Virol 1994;68:4241–4250.Google ScholarPubMed
Hacein-Bey-Abina, S, von Kalle, C, Schmidt, M, et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2003;348:255–256.CrossRefGoogle ScholarPubMed
Dave, UP, Jenkins, NA, Copeland, NG. Gene therapy insertional mutagenesis insights. Science 2004;303:333.CrossRefGoogle ScholarPubMed
Li, Z, Dullmann, J, Schiedlmeier, B, et al. Murine leukemia induced by retroviral gene marking. Science 2002;296: 497.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×