Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-11T21:22:53.010Z Has data issue: false hasContentIssue false

13 - Acute lymphoblastic leukemia

from Section 3 - Evaluation and treatment

Published online by Cambridge University Press:  05 April 2013

Ching-Hon Pui
Affiliation:
St Jude's Children's Research Hospital
Get access

Summary

Introduction

Childhood acute lymphoblastic leukemia (ALL) has served as a model for cancer research and treatment for at least six decades. With more precise diagnostic criteria and risk classifications, more effective therapy administered in controlled clinical trials, and better supportive care, the outlook for children with ALL has improved dramatically. Today, 80 to 90% of children treated for this disease in developed countries will be cured. Remarkably, this high cure rate has been achieved mainly by optimizing risk-directed therapy, using drugs that were discovered before 1980. Because of the ease with which samples of leukemic lymphoblasts can be obtained from the bone marrow and blood, laboratory studies of childhood ALL have consistently been at the fore of efforts to elucidate the principles of cancer cell biology and to boost therapeutic results still further. This chapter seeks to integrate key advances in the biologic understanding of ALL with accepted principles of clinical management.

Pathogenesis and pathophysiology

Leukemic transformation of hematopoietic cells requires subversion of the controls of normal proliferation, a block in differentiation, resistance to apoptotic signals, and enhanced self-renewal. The prevailing theory of leukemia pathogenesis is that a single mutant hematopoietic cell, capable of indefinite self-renewal, gives rise to malignant, poorly differentiated hematopoietic precursors. Although leukemic transformation may occur in a stem cell, it more likely arises from a more differentiated cell that acquires stem-cell-like properties. Several lines of research support the clonal origin of leukemia, including glucose-6-phosphate dehydrogenase studies and recombinant DNA analysis based on X-linked restriction fragment length polymorphisms in heterozygous females (whose normal tissues have a mosaic pattern of X chromosome expression yet whose leukemic cells show a single active parental allele).

Type
Chapter
Information
Childhood Leukemias , pp. 332 - 366
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pui, CH, Carroll, WL, Meshinchi, S, Arceci, RJ. Biology, risk stratification, and therapy of pediatric leukemias: an update. J Clin Oncol 2011;29:551–565.CrossRefGoogle ScholarPubMed
Stanulla M, Schrappe M. Treatment of childhood acute lymphoblastic leukemia, Semin Hematol 2009;46:52–63.CrossRefGoogle ScholarPubMed
Pui, CH, Relling, MV, Downing, JR. Acute lymphoblastic leukemia. N Engl J Med 2004;350:1535–1548.CrossRefGoogle ScholarPubMed
Pui, CH, Raskind, WH, Kitchingman, GR, et al. Clonal analysis of childhood acute lymphoblastic leukemia with “cytogenetically independent” cell populations. J Clin Invest 1989;83:1971–1977.CrossRefGoogle ScholarPubMed
Gale, RE, Wainscoat, JS. Annotation: clonal analysis using X-linked DNA polymorphisms. Br J Haematol 1993;85:2–8.CrossRefGoogle Scholar
Raskind, WH, Fialkow, PJ. The use of cell markers in the study of human hematopoietic neoplasia. Adv Cancer Res 1987;49:127–167.CrossRefGoogle Scholar
Pui, CH, Robison, LL, Look, AT. Acute lymphoblastic leukaemia. Lancet 2008;371:1030–1043.CrossRefGoogle ScholarPubMed
Mullighan, CG, Goorha, S, Radtke, I, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007;446:758–764.CrossRefGoogle ScholarPubMed
Mullighan, CG, Collins-Underwood, JR, Phillips, LA, et al. Rearrangement of. CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemiaNat Genet 2009;41:1243–1246.CrossRefGoogle ScholarPubMed
Mullighan, CG, Miller, CB, Radtke, I, et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 2008;453:110–114.CrossRefGoogle ScholarPubMed
Mullighan, CG, Su, X, Zhang, J, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med 2009;360:470–480.CrossRefGoogle ScholarPubMed
Mullighan, CG, Zhang, J, Harvey, RC, et al. JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc Natl Acad Sci USA 2009;106:9414–9418.CrossRefGoogle ScholarPubMed
Harvey, RC, Mullighan, CG, Chen, IM, et al. Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood 2010;115:5312–5321.CrossRefGoogle Scholar
Cario, G, Zimmermann, M, Romey, R, et al. Presence of the P2RY8-CRLF2 rearrangement is associated with a poor prognosis in non-high-risk precursor B-cell acute lymphoblastic leukemia in children treated according to the ALL-BFM 2000 protocolBlood 2010;115:5393–5397.CrossRefGoogle Scholar
Mullighan, CG, Zhang, J, Kasper, LH, et al. CREBBP mutations in relapsed acute lymphoblastic leukemia. Nature 2011;471:235–239.CrossRefGoogle Scholar
Greaves, MF, Wiemels, J. Origins of chromosome translocations in childhood leukaemia. Nat Rev Cancer 2003;3:639–649.CrossRefGoogle ScholarPubMed
Hong, D, Gupta, R, Ancliff, P, et al. Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia. Science 2008;319:336–339.CrossRefGoogle ScholarPubMed
Lausten-Thomsen, U, Madsen HO, Vestergaard TR, et al. Prevalence of t(12;21)[ETV6-RUNX1]-positive cell in healthy neonates. Blood 2011;117:186–189.CrossRefGoogle Scholar
Wiemels, JL, Leonard, BC, Wang, Y, et al. Site-specific translocation and evidence of postnatal origin of the t(1;19) E2A-PBX1 fusion in childhood acute lymphoblastic leukemia. Proc Natl Acad Sci USA 2002;99:15101–15106.CrossRefGoogle Scholar
Pui, CH, Relling, MV. Topoisomerase II inhibitor-related acute myeloid leukaemia. Br J Haematol 2000;109:13–23.CrossRefGoogle ScholarPubMed
Biondi, A, Cimino, G, Pieters, R, Pui, CH. Biological and therapeutic aspects of infant leukemia. Blood 2000;96:24–33.Google ScholarPubMed
Alexander, FE, Patheal, SL, Biondi, A, et al. Transplacental chemical exposure and risk of infant leukemia with MLL gene fusion. Cancer Res 2001;61:2542–2546.Google ScholarPubMed
Pui, CH, Campana, D, Evans, WE. Childhood acute lymphoblastic leukaemia: current status and future perspectives. Lancet Oncol 2001;2:597–607.CrossRefGoogle ScholarPubMed
Liberzon, E, Avigad, S, Stark, B, et al. Germ-line ATM gene alterations are associated with susceptibility to sporadic T-cell acute lymphoblastic leukemia in children. Genes Chromosomes Cancer 2004;39:161–166.CrossRefGoogle ScholarPubMed
Chen, C-L, Liu, Q, Pui, CH, et al. Higher frequency of glutathione S-transferase deletions in black children with acute lymphoblastic leukemia. Blood 1997;89:1701–1707.Google ScholarPubMed
Krajinovic, M, Labuda, D, Richer, C, et al. Susceptibility to childhood acute lymphoblastic leukemia: influence of CYP1A1, CYP2D6, GSTM1, and GSTT1 polymorphisms. Blood 1999;93:1496–1501.Google Scholar
Krajinovic, M, Sinnett, H, Richer, C, Labuda, D, Sinnett, D. Role of NQO1, MPO and CYP2E1 genetic polymorphisms in the susceptibility to childhood acute lymphoblastic leukemia. Int J Cancer 2002;97:230–236.CrossRefGoogle ScholarPubMed
Smith, MT, Wang, Y, Skibola, CF, et al. Low NAD(P)H: quinone oxidoreductase activity is associated with increased risk of leukemia with MLL translocations in infants and children. Blood 2002;100:4590–4593.CrossRefGoogle ScholarPubMed
Wiemels, JL, Smith, RN, Taylor, GM, et al. Methylenetetrahydrofolate reductase (MTHFR) polymorphisms and risk of molecularly defined subtype of childhood acute leukemia. Proc Natl Acad Sci USA 2001;98:4004–4009.CrossRefGoogle Scholar
Krajinovic, M, Lamothe, S, Labuda, D, et al. Role of MTHFR genetic polymorphisms in the susceptibility to childhood acute lymphoblastic leukemia. Blood 2004;103:252–257.CrossRefGoogle ScholarPubMed
Skibola, CF, Smith, MT, Hubbard, A, et al. Polymorphisms in the thymidylate synthase and serine hydroxymethyltransferase genes and risk of adult acute lymphocytic leukemia. Blood 2002;99:3786–3791.CrossRefGoogle ScholarPubMed
de Jonge, R, Tissing, WJE, Hooijberg, JH, et al. Polymorphisms in folate-related genes and risk of pediatric acute lymphoblastic leukemia. Blood 2009;113:2284–2289.CrossRefGoogle ScholarPubMed
Treviño, LR, Yang, W, French, D, et al. Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat Genet 2009;41:1001–1005.CrossRefGoogle ScholarPubMed
Papaemmanuil, E, Hosking, FJ, Vijayakrishnan, J, et al. Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat Genet 2009;41:1006–1010.CrossRefGoogle ScholarPubMed
Yang, W, Treviño, LR, Yang, JJ, et al. ARID5B SNP rs10821936 is associated with risk of childhood acute lymphoblastic leukemia in blacks and contributes to racial differences in leukemia incidence. Leukemia 2010;24:894–896.CrossRefGoogle ScholarPubMed
Saunders, EF, Lampkin, BC, Mauer, AM. Variation of proliferative activity in leukemic cell populations of patients with acute leukemia. J Clin Invest 1967;46:1356–1363.CrossRefGoogle ScholarPubMed
Coustan-Smith, E, Sancho, J, Hancock, ML, et al. Use of peripheral blood instead of bone marrow to monitor residual disease in children with acute lymphoblastic leukemia. Blood 2002;100:2399–2402.CrossRefGoogle ScholarPubMed
Kosmidis, HV, Lusher, JM, Shope, TC, et al. Infections in leukemic children: a prospective analysis. J Pediatr 1980;96:814–819.CrossRefGoogle ScholarPubMed
Jonsson, OG, Sartain, P, Ducore, JM, et al. Bone pain as an initial symptom of childhood acute lymphoblastic leukemia: association with nearly normal hematologic indexes. J Pediatr 1990;117:233–237.CrossRefGoogle ScholarPubMed
Pui, CH, Stass, S, Green, A. Bone marrow necrosis in children with malignant disease. Cancer 1985;56:1522–1525.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Bunin, N, Rivera, G, Goode, F, et al. Ocular relapse in the anterior chamber in childhood acute lymphoblastic leukemia. J Clin Oncol 1987;5:299–303.CrossRefGoogle ScholarPubMed
Lo Curto, M, D'Angelo, P, Lumia, F, et al. Leukemic ophthalmopathy: a report of 21 pediatric cases. Med Pediatr Oncol 1994;23:8–13.CrossRefGoogle ScholarPubMed
Kim, TH, Hargreaves, HK, Chan, WC, et al. Sequential testicular biopsies in childhood acute lymphocytic leukemia. Cancer 1986;57:1038–1041.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Gajjar, A, Ribeiro, RC, Mahmoud, HH, et al. Overt testicular disease at diagnosis is associated with high risk features and a poor prognosis in patients with childhood acute lymphoblastic leukemia. Cancer 1996;78:2437–2442.3.0.CO;2-0>CrossRefGoogle Scholar
Möricke, A, Zimmermann, M, Reiter, A, et al. Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia 2010;24:265–284.CrossRefGoogle Scholar
Silverman, LB, Stevenson, KE, O'Brien, JE, et al. Long-term results of Dana-Farber Cancer Institute ALL Consortium protocols for children with newly diagnosed acute lymphoblastic leukemia (1985–2000). Leukemia 2010;24:320–334.CrossRefGoogle Scholar
Pui, CH, Campana, D, Pei, D, et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med 2009;360:2730–2741.CrossRefGoogle ScholarPubMed
Pui, CH, Dahl, GV, Hustu, MO, et al. Epidural spinal cord compression as the initial finding in childhood acute leukemia and non-Hodgkin lymphoma. J Pediatr 1985;106:788–792.CrossRefGoogle ScholarPubMed
Taylor, AMR, Metcalfe, JA, Thick, J, et al. Leukemia and lymphoma in ataxia telangiectasia. Blood 1996;87:423–438.Google ScholarPubMed
Ziino, O, Rondelli, R, Micalizzi, C, et al. Acute lymphoblastic leukemia in children with associated genetic conditions other than Down's syndrome. The AIEOP experience. Haematologica 2006;91:139–140.Google ScholarPubMed
Sandoval, C, Swift, M. Treatment of lymphoid malignancies in patients with ataxia-telangiectasia. Med Pediatr Oncol 1998;31:491–497.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Bain, BJ. Review: eosinophilic leukaemias and the idiopathic hypereosinophilic syndrome. Br J Haematol 1996;95:2–9.Google ScholarPubMed
Huang, MS, Hasserjian, RP. Case 19-2004: a 12-year-old boy with fatigue and eosinophilia. N Engl J Med 2004;350:2604–2612.CrossRefGoogle ScholarPubMed
La Starza, R, Trubia, M, Testoni, N, et al. Clonal eosinophils are a morphologic hallmark of ETV6/ABL1 positive acute myeloid leukemia. Haematologica 2002;87:789–794.Google ScholarPubMed
Dubansky, AS, Boyett, JM, Falletta, J, et al. Isolated thrombocytopenia in children with acute lymphoblastic leukemia: a rare event in a Pediatric Oncology Group Study. Pediatrics 1989;84:1068–1071.Google Scholar
Beutler, E. Platelet transfusions: the 20 000/µL trigger. Blood 1993;81:1411–1413.Google ScholarPubMed
Blatt, J, Penchansky, L, Horn, MThrombocytosis as a presenting feature of acute lymphoblastic leukemia in childhood. Am J Hematol 1989;31:46–49.CrossRefGoogle ScholarPubMed
Ribeiro, RC, Pui, CH. The clinical and biological correlates of coagulopathy in children with acute leukemia. J Clin Oncol 1986;4:1212–1218.CrossRefGoogle ScholarPubMed
Pui, CH, Behm, FG, Singh, B, et al. Heterogeneity of presenting features and their relation to treatment outcome in 120 children with T-cell acute lymphoblastic leukemia. Blood 1990;75:174–179.Google ScholarPubMed
Hasle, H, Heim, S, Schroeder, H, et al. Transient pancytopenia preceding acute lymphoblastic leukemia (pre-ALL). Leukemia 1995;9:605–608.Google Scholar
Morley, AA, Brisco, MJ, Rice, M, et al. Leukaemia presenting as marrow hypoplasia: molecular detection of the leukaemic clone at the time of initial presentation. Br J Haematol 1997;98:940–944.CrossRefGoogle ScholarPubMed
Pui, CH, Dodge, RK, Dahl, GV, et al. Serum lactic dehydrogenase level has prognostic value in childhood acute lymphoblastic leukemia. Blood 1985;66:778–782.Google ScholarPubMed
Neglia, JP, Day, DL, Swanson, TV, et al. Kidney size at diagnosis of childhood acute lymphocytic leukemia: lack of prognostic significance for outcome. Am J Pediatr Hematol Oncol 1988;10:296–300.CrossRefGoogle ScholarPubMed
Jones, DP, Stapleton, FB, Kalwinsky, D, et al. Renal dysfunction and hyperuricemia at presentation and relapse of acute lymphoblastic leukemia. Med Pediatr Oncol 1990;18:283–286.CrossRefGoogle ScholarPubMed
Trehan, A, Cheetham, T, Bailey, SHypercalcemia in acute lymphoblastic leukemia: an overview. J Pediatr Hematol Oncol 2009;31:424–427.CrossRefGoogle ScholarPubMed
Pui, CH, Dodge, RK. Serum transaminase level at diagnosis has no prognostic value in childhood acute lymphoblastic leukemia. Leukemia 1987;1:571.Google ScholarPubMed
Kelleher, JF, Monteleone, PM, Steele, DA, et al. Hepatic dysfunction as the presenting feature of acute lymphoblastic leukemia. J Pediatr Hematol Oncol 2001;23:117–121.CrossRefGoogle ScholarPubMed
Maruo, Y, Sato, H, Bamba, N, et al. Chemotherapy-induced unconjugated hyperbilirubinemia caused by a mutation of the bilirubin uridine-5′-diphosphate-glucuronosyltransferase gene. J Pediatr Hematol Oncol 2001;23:45–47.CrossRefGoogle ScholarPubMed
Relling, MV, Dervieux, TPharmacogenetics and cancer therapy. Nat Rev 2001;1:99–108.CrossRefGoogle ScholarPubMed
Welch, JC, Lilleyman, JS. Immunoglobulin concentrations in untreated lymphoblastic leukemia. Pediatr Hematol Oncol 1995;12:545–549.CrossRefGoogle ScholarPubMed
Ingram, L, Rivera, GK, Shapiro, DN. Superior vena cava syndrome associated with childhood malignancy: analysis of 24 cases. Med Pediatr Oncol 1990;18:476–481.CrossRefGoogle ScholarPubMed
Müller, HL, Horwitz, AE, Kühl, J.Acute lymphoblastic leukemia with severe skeletal involvement: a subset of childhood leukemia with a good prognosis. Pediatr Hematol Oncol 1998;15:121–133.CrossRefGoogle ScholarPubMed
Ribeiro, RC, Pui, CH, Schell, MJ. Vertebral compression fracture as a presenting feature of acute lymphoblastic leukemia in children. Cancer 1988;61:589–592.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Mastrangelo, R, Poplack, D, Bleyer, A, et al. Report and recommendations of the Rome workshop concerning poor-prognosis acute lymphoblastic leukemia in children: biologic bases for staging, stratification, and treatment. Med Pediatr Oncol 1986;14:191–194.CrossRefGoogle ScholarPubMed
Mahmoud, HH, Rivera, GK, Hancock, ML, et al. Low leukocyte counts with blast cells in cerebrospinal fluid of children with newly diagnosed acute lymphoblastic leukemia. N Engl J Med 1993;329:314–319.CrossRefGoogle ScholarPubMed
Gajjar, A, Harrison, PL, Sandlund, JT, et al. Traumatic lumbar puncture leukemia at diagnosis adversely affects outcome in childhood acute lymphoblastic leukemia. Blood 2000;96:3381–3384.Google ScholarPubMed
Bürger, B, Zimmermann, M, Mann, G, et al. Diagnostic cerebrospinal fluid (CSF) examination in children with acute lymphoblastic leukemia (ALL): significance of low leukocyte counts with blasts or traumatic lumbar puncture. J Clin Oncol 2003;21:184–188.CrossRefGoogle ScholarPubMed
Dutch Childhood Oncology Group, te Loo, DM, Kamps, WA, et al. Prognostic significance of blasts in the cerebrospinal fluid without pleiocytosis or a traumatic lumbar puncture in children with acute lymphoblastic leukemia: the experience of the Dutch Childhood Oncology Group. J Clin Oncol 2006;24:2332–2336.CrossRefGoogle ScholarPubMed
Moghrabi, A, Levy, DE, Asselin, B, et al. Results of the Dana-Farber Cancer Institute ALL Consortium Protocol 95-01 for children with acute lymphoblastic leukemia. Blood 2007;109:896–904.CrossRefGoogle ScholarPubMed
Pui, CH, Mahmoud, HH, Rivera, GK, et al. Early intensification of intrathecal chemotherapy virtually eliminates central nevous system relapse in children with acute lymphoblastic leukemia. Blood 1998;92:411–415.Google Scholar
Gilchrist, GS, Tubergen, DG, Sather, HN, et al. Low numbers of CSF blasts at diagnosis do not predict for the development of CNS leukemia in children with intermediate-risk acute lymphoblastic leukemia: a Children's Cancer Group report. J Clin Oncol 1994;12:2594–2600.CrossRefGoogle ScholarPubMed
van den Berg, H, Vet, R, den Ouden, E, et al. Significance of lymphoblasts in cerebrospinal fluid in newly diagnosed pediatric acute lymphoblastic malignancies with bone marrow involvement: possible benefit of dexamethasone. Med Pediatr Oncol 1995;25:22–27.CrossRefGoogle ScholarPubMed
Vilmer, E, Suciu, S, Ferster, A, et al. Long-term results of three randomized trials (58831, 58832, 58881) in childhood acute lymphoblastic leukemia: a CLCG-EORTC report. Leukemia 2000;14:2257–2266.CrossRefGoogle ScholarPubMed
Pui, CH, Sandlund, JT, Pei, D, et al. Improved outcome for children with acute lymphoblastic leukemia: results of Total Therapy Study XIIIB at St. Jude Children's Research Hospital. Blood 2004;104:2690–2696.CrossRefGoogle ScholarPubMed
Pui, CH, Howard, SC. Current management and challenges of malignant disease in the CNS in paediatric leukaemia. Lancet Oncol 2008;9:257–268.CrossRefGoogle ScholarPubMed
Howard, SC, Gajjar, AJ, Cheng, C, et al. Risk factors for traumatic and bloody lumbar puncture in children with acute lymphoblastic leukemia. JAMA 2002;228:2001–2007.CrossRefGoogle Scholar
Manabe, A, Tsuchida, M, Hanada, R, et al. Delay of the diagnostic lumbar puncture and intrathecal chemotherapy in children with acute lymphoblastic leukemia who undergo routine corticosteroid testing: Tokyo Children's Cancer Study Group study L89-12. J Clin Oncol 2001;19:3182–3187.CrossRefGoogle Scholar
Stiffler, KA, Jwayyed, S, Wilber, ST, Robinson, A. The use of ultrasound to identify pertinent landmarks for lumbar puncture. Am J Emerg Med 2007;25:331–334.CrossRefGoogle ScholarPubMed
Tubergen, DG, Cullen, JW, Boyett, JM, et al. Blasts in CSF with a normal cell count do not justify alteration of therapy for acute lymphoblastic leukemia in remission: a Children's Cancer Group study. J Clin Oncol 1994;12:273–278.CrossRefGoogle ScholarPubMed
Pui, CH, Evans, WE. Treatment of acute lymphoblastic leukemia. N Engl J Med 2006;354:166–178.CrossRefGoogle ScholarPubMed
Reiter, A, Schrappe, M, Tiemann, M, et al. Improved treatment results in childhood B-cell neoplasms with tailored intensification of therapy: a report of the Berlin–Frankfurt–Münster Group Trial NHL-BFM 90. Blood 1999;94:3294–3306.Google ScholarPubMed
Cairo, MS, Gerrard, M, Sposto, R, et al. Results of a randomized international study of high-risk central nervous system B non-Hodgkin lymphoma and B acute lymphoblastic leukemia in children and adolescents. Blood 2007;109:2736–2743.Google Scholar
Hunger, SP. Chromosomal translocations involving the E2A gene in acute lymphoblastic leukemia: clinical features and molecular pathogenesis. Blood 1996;87:1211–1224.Google ScholarPubMed
Pui, CH, Raimondi, SC, Hancock, ML, et al. Immunologic, cytogenetic, and clinical characterization of childhood acute lymphoblastic leukemia with the t(1;19)(q23;p13) or its derivative. J Clin Oncol 1994;12:2601–2606.CrossRefGoogle ScholarPubMed
Koehler, M, Behm, FG, Shuster, J, et al. Transitional pre-B-cell acute lymphoblastic leukemia of childhood is associated with favorable prognostic clinical features and an excellent outcome: a Pediatric Oncology Group study. Leukemia 1993;7:2064–2068.Google ScholarPubMed
Ferrando, AA, Look, AT. Gene expression profiling in T-cell acute lymphoblastic leukemia. Semin Hematol 2003;40:274–280.CrossRefGoogle ScholarPubMed
Goldberg, JM, Silverman, LB, Levy, DE, et al. Childhood T-cell acute lymphoblastic leukemia: the Dana-Farber Cancer Institute acute lymphoblastic leukemia consortium experience. J Clin Oncol 2003;21:3616–3622.CrossRefGoogle ScholarPubMed
Coustan-Smith, E, Mullighan, CG, Onciu, M, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol 2009;10:147–156.CrossRefGoogle ScholarPubMed
Pui, CH, Dahl, GV, Melvin, S, et al. Acute leukaemia with mixed lymphoid and myeloid phenotype. Br J Haematol 1984;56:121–130.CrossRefGoogle ScholarPubMed
Pui, CH, Raimondi, SC, Head, DR, et al. Characterization of childhood acute leukemia with multiple myeloid and lymphoid markers at diagnosis and at relapse. Blood 1991;78:1327–1337.Google ScholarPubMed
Borkhardt, A, Cazzaniga, G, Viehmann, S, et al. Incidence and clinical relevance of TEL/AML1 fusion genes in children with acute lymphoblastic leukemia enrolled in the German and Italian multicenter therapy trials. Blood 1997;90:571–577.Google ScholarPubMed
Baruchel, A, Cayuela, JM, Ballerini, P, et al. The majority of myeloid-antigen positive (My+) childhood B-cell precursor acute lymphoblastic leukemias express TEL-AML1 fusion transcripts. Br J Haematol 1997;99:101–106.CrossRefGoogle ScholarPubMed
Pui, CH, Rubnitz, JE, Hancock, ML, et al. Reappraisal of the clinical and biologic significance of myeloid-associated antigen expression in childhood acute lymphoblastic leukemic. J Clin Oncol 1998;16:3768–3773.CrossRefGoogle Scholar
Rubnitz, JE, Onciu, M, Pounds, S, et al. Acute mixed lineage leukemia in children: the experience of St. Jude Children's Research Hospital. Blood 2009;113:5083–5089.CrossRefGoogle ScholarPubMed
Pui, CH, Campana, D. New definition of remission in childhood acute lymphoblastic leukemia. Leukemia 2000;14:783–785.CrossRefGoogle ScholarPubMed
Conter, V, Bartram, CR, Valsecchi, MG, et al. Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFM ALL 2000 study. Blood 2010;115:3206–3214.CrossRefGoogle ScholarPubMed
Campana, D. Minimal residual disease in acute lymphoblastic leukemia. Semin Hematol 2009;46:100–106.CrossRefGoogle ScholarPubMed
Stow, P, Key, L, Cjen, X, et al. Clinical significance of low levels of minimal residual disease at the end of remission induction therapy in childhood acute lymphoblastic leukemia. Blood 2010;115:4657–4663.CrossRefGoogle ScholarPubMed
Meijerink, JP, den Boer, ML, Pieters, R. New genetic abnormalities and treatment response in acute lymphoblastic leukemia. Semin Hematol 2009;46:16–23.CrossRefGoogle ScholarPubMed
Pui, CH, Sandlund, JT, Pei, D, et al. Results of therapy for acute lymphoblastic leukemia in black and white children. JAMA 2003;290:2001–2007.CrossRefGoogle ScholarPubMed
Pui, CH, Raimondi, SC, Dodge, RK, et al. Prognostic importance of structural chromosomal abnormalities in children with hyperdiploid (>50 chromosomes) acute lymphoblastic leukemia. Blood 1989;73:1963–1967.Google ScholarPubMed
Synold, TW, Relling, MV, Boyett, JM, et al. Blast cell methotrexate-polyglutamate accumulation in vivo differs by lineage, ploidy, and methotrexate dose in acute lymphoblastic leukemia. J Clin Invest 1994;94:1996–2001.CrossRefGoogle ScholarPubMed
Kaspers, GJ, Smets, LA, Pieters, R, et al. Favorable prognosis of hyperdiploid common acute lymphoblastic leukemia may be explained by sensitivity to antimetabolites and other drugs: results of an in vitro study. Blood 1995;85:751–756.Google ScholarPubMed
Kumagai, M, Manabe, A, Pui, CH, et al. Stroma-supported culture of childhood B-lineage acute lymphoblastic leukemia cells predicts treatment outcome. J Clin Invest 1996;97:755–760.CrossRefGoogle ScholarPubMed
Trueworthy, R, Shuster, J, Look, T, et al. Ploidy of lymphoblasts is the strongest predictor of treatment outcome in B-progenitor cell acute lymphoblastic leukemia of childhood: a Pediatric Oncology Group study. J Clin Oncol 1992;10:606–613.CrossRefGoogle ScholarPubMed
Belkov, VM, Krynetski, EY, Schuetz, JD, et al. Reduced folate carrier expression in acute lymphoblastic leukemia: a mechanism for ploidy but not lineage differences in methotrexate accumulation. Blood 1999;93:1643–1650.Google Scholar
Gaynon, PS, Trigg, ME, Heerema, NA, et al. Children's Cancer Group trials in childhood acute lymphoblastic leukemia: 1983–1995. Leukemia 2000;14:2223–2233.CrossRefGoogle ScholarPubMed
Salzer, WL, Devidas, M, Carroll, WL, et al. Long-term results of the pediatric oncology group studies for childhood acute lymphoblastic leukemia 1984–2001: a report from the Children's Oncology Group. Leukemia 2010;24:355–370.CrossRefGoogle ScholarPubMed
Moorman, AV, Richards, SM, Martineau, M, et al. Outcome heterogeneity in childhood high-hyperdiploid acute lymphoblastic leukemia. Blood 2003;102:2756–2762.CrossRefGoogle ScholarPubMed
Pui, CH, Carroll, AJ, Raimondi, SC, et al. Clinical presentation, karyotypic characterization, and treatment outcome of childhood acute lymphoblastic leukemia with a near-haploid or hypodiploid <45 line. Blood 1990;75:1170–1177.Google ScholarPubMed
Harrison, CJ, Moorman, AV, Broadfield, ZJ, et al. Three distinct subgroups of hypodiploidy in childhood acute lymphoblastic leukaemia. Br J Haematol 2004;125:552–559.CrossRefGoogle Scholar
Nachman, JB, Heerema, NA, Sather, H, et al. Outcome of treatment in children with hypodiploid acute lymphoblastic leukemia. Blood 2007;110:1112–1115.CrossRefGoogle ScholarPubMed
Moorman, AV, Harrison, CJ, Buck, GA, et al. Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial. Blood 2007;109:3189–3197.CrossRefGoogle ScholarPubMed
Attarbaschi, A, Mann, G, Panzer-Grümayer, R, et al. Minimal residual disease values discriminate between low and high relapse risk in children with B-cell precursor acute lymphoblastic leukemia and an intrachromosomal amplification of chromosome 21: the Austrian and German acute lymphoblastic leukemia Berlin–Frankfurt–Münster (ALL-BFM) trials. J Clin Oncol 2008;26:3046–3050.CrossRefGoogle ScholarPubMed
Moorman, AV, Richards, SM, Robinson, HM, et al. Prognosis of children with acute lymphoblastic leukemia (ALL) and intrachromosomal amplification of chromosome 21 (iAMP21). Blood 2007;109:2327–2330.CrossRefGoogle Scholar
Harrison, CJ, Moorman, AV, Barber, KE, et al. Interphase molecular cytogenetic screening for chromosomal abnormalities of prognostic significance in childhood acute lymphoblastic leukaemia: a UK Cancer Cytogenetics Group Study. Br J Haematol 2005;129:520–530.CrossRefGoogle ScholarPubMed
Schultz, KR, Bowman, WP, Aledo, A, et al. Improved early event free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a Children's Oncology Group Study. J Clin Oncol 2009;27:5175–5181.CrossRefGoogle ScholarPubMed
Graux, C, Stevens-Kroef, M, Lafage, M, et al. Heterogeneous patterns of amplification of the NUP214-ABL1 fusion gene in T-cell acute lymphoblastic leukemia. Leukemia 2009;23:125–133.CrossRefGoogle ScholarPubMed
den Boer, ML, van Slegtenhorst, M, De Menezes, RX, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol 2009;10:125–134.CrossRefGoogle ScholarPubMed
Breit, S, Stanulla, M, Flohr, T, et al. Activating NOTCH1 mutations predict favorable early treatment response and long-term outcome in childhood precursor T-cell lymphoblastic leukemia. Blood 2006;108:1151–1157.CrossRefGoogle ScholarPubMed
Gutierrez, A, Sanda, T, Grebliunaite, R, et al. High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood 2009;114:647–650.CrossRefGoogle ScholarPubMed
Aricò, M, Schrappe, M, Hunger, SP, et al. Clinical outcome of children with newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia treated between 1995 and 2006. J Clin Oncol 2010;28:4755–4761.CrossRefGoogle Scholar
Pui, CH, Gaynon, PS, Boyett, JM, et al. Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet 2002;359:1909–1915.CrossRefGoogle ScholarPubMed
Pieters, R, Schrappe, M, De Lorenzo, P, et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet 2007;370:240–250.CrossRefGoogle Scholar
Loh, ML, Rubnitz, JE. TEL/AML1-positive pediatric leukemia: prognostic significance and therapeutic approaches. Curr Opin Hematol 2002;9:345–352.CrossRefGoogle ScholarPubMed
Ramakers-van Woerden, NL, Pieters, R, Loonen, AH, et al. TEL-AML1 gene fusion is related to in vitro drug sensitivity for l-asparaginase in childhood acute lymphoblastic leukemia. Blood 2000;96:1094–1099.Google ScholarPubMed
Stams, WAG, den Boer, ML, Beverloo, HB, et al. Sensitivity to l-asparaginase is not associated with expression levels of asparagine synthetase in t(12;21)+ pediatric ALL. Blood 2003;101:2743–2747.CrossRefGoogle ScholarPubMed
DiMartino, JF, Cleary, ML. MLL rearrangements in haematologic malignancies: lessons from clinical and biological studies. Br J Haematol 1999;106:614–626.CrossRefGoogle ScholarPubMed
Silvermann, LB, McLean, TW, Gelber, RD, et al. Intensified therapy for infants with acute lymphoblastic leukemia. Results from the Dana-Farber Cancer Institute Consortium. Cancer 1997;80:2285–2295.3.0.CO;2-Q>CrossRefGoogle Scholar
Stam, RW, den Boer, ML, Meijerink, JP, et al. Differential mRNA expression of Ara-C metabolizing enzymes explains Ara-C sensitivity in MLL gene-rearranged infant acute lymphoblastic leukemia. Blood 2003;101:1270–1276.CrossRefGoogle ScholarPubMed
Prima, V, Hunger, SP. Cooperative transformation by MEF2D/DAZAP1 and DAZAP1/MEF2D fusion proteins generated by the variant t(1;19) in acute lymphoblastic leukemia. Leukemia 2007;21:2470–2475.CrossRefGoogle Scholar
Filatov, LV, Behm, FG, Pui, CH, et al. Childhood acute lymphoblastic leukemia with equivocal chromosome markers of the t(1;19) translocation. Genes Chromosomes Cancer 1995;13:99–103.CrossRefGoogle Scholar
Baak, U, Gökbuget, N, Orawa, H, et al. Thymic adult T-cell acute lymphoblastic leukemia stratified in standard- and high-risk group by aberrant HOX11L2 expression: experience of the German Multicenter ALL Study Group. Leukemia 2008;22:1154–1160.CrossRefGoogle ScholarPubMed
Ballerini, P, Landman-Parker, J, Cayuela, JM, et al. Impact of genotype on survival of children with T-cell acute lymphoblastic leukemia treated according to the French protocol FRALLE-93: the effect of TLX3/HOX11L2 gene expression on outcome. Haematologica 2008;93:1658–1665.CrossRefGoogle Scholar
Weng, AP, Ferrando, AA, Lee, W, et al. Activating mutations of NOTCH1 in human T-cell acute lymphoblastic leukemia. Science 2004;306:269–271.CrossRefGoogle ScholarPubMed
Deenik, W, Beverloo, HB, van der Poel-van de Luytgaarde, SC, et al. Rapid complete cytogenetic remission after upfront dasatinib monotherapy in a patient with a NUP214-ABL1-positive T-cell acute lymphoblastic leukemia. Leukemia 2009;23:627–629.CrossRefGoogle Scholar
Van Vlierberghe, P, Palomero, T, Khiabanian, H, et al. PHF6 mutations in T-cell acute lymphoblastic leukemia. Nat Genet 2010;42:338–342.CrossRefGoogle ScholarPubMed
Gutierrez, A, Dahlberg, SE, Neuberg, DS, et al. Absence of biallelic TCR gamma deletion predicts early treatment failure in pediatric T-cell acute lymphoblastic leukemia. J Clin Oncol 2010;28:3816–3823.CrossRefGoogle Scholar
Armstrong, SA, Kung, AL, Mabon, ME, et al. Inhibition of FLT3 in MLL. Validation of a therapeutic target identified by gene expression based classification. Cancer Cell 2003;3:173–183.CrossRefGoogle ScholarPubMed
Levis, M, Small, D. FLT3:ITD does matter in leukemia. Leukemia 2003;17:1738–1752.CrossRefGoogle Scholar
Pui, CH, Pei, D, Campana, D, et al. Improved prognosis for older adolescents with acute lymphoblastic leukemia. J Clin Oncol 2011;29:386–391.CrossRefGoogle ScholarPubMed
Barry, E, DeAngelo, DJ, Neuberg, D, et al. Favorable outcome for adolescents with acute lymphoblastic leukemia treated on Dana-Farber Cancer Institute Acute Lymphoblastic Leukemia Consortium Protocols. J Clin Oncol 2007;25:813–819.CrossRefGoogle ScholarPubMed
Kadan-Lottick, NS, Ness, KK, Bhatia, S, et al. Survival variability by race and ethnicity in childhood acute lymphoblastic leukemia. JAMA 2003;290:2008–2014.CrossRefGoogle ScholarPubMed
Yang, JJ, Cheng, C, Devidas, M, et al. Ancestry and pharmacogenomics of relapse in acute lymphoblastic leukemia. Nat Genet 2011;43:237–241.CrossRefGoogle ScholarPubMed
Smith, M, Arthur, D, Camitta, B, et al. Uniform approach to risk classification and treatment assignment for children with acute lymphoblastic leukemia. J Clin Oncol 1996;14:18–24.CrossRefGoogle ScholarPubMed
Pui, CH, Evans, WE. Acute lymphoblastic leukemia. N Engl J Med 1998;339:605–615.CrossRefGoogle ScholarPubMed
Conter, V, Aricò, M, Basso, G, et al. Long-term results of the Italian Association of Pediatric Hematology and Oncology (AIEOP) Studies 82, 87, 88, 91 and 95 for childhood acute lymphoblastic leukemia. Leukemia 2010;24:255–264.CrossRefGoogle ScholarPubMed
Schrappe, M, Aricò, M, Harbott, J, et al. Philadelphia chromosome-positive (Ph+) childhood acute lymphoblastic leukemia: good initial steroid response allows early prediction of a favorable treatment outcome. Blood 1998;92:2730–2741.Google ScholarPubMed
Yeoh, EJ, Ross, ME, Shurtleff, SA, et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 2002;1:133–143.CrossRefGoogle ScholarPubMed
Lugthart, S, Cheok, MH, den Boer, ML, et al. Identification of genes associated with chemotherapy cross-resistance and treatment response in childhood acute lymphoblastic leukemia. Cancer Cell 2005;7:375–386.CrossRefGoogle Scholar
Kang, H, Chen, IM, Wilson, CS, et al. Gene expression classifiers for relapse-free survival and minimal residual disease improve risk classification and outcome prediction in pediatric B-precursor acute lymphoblastic leukemia. Blood 2010;115:1394–1405.CrossRefGoogle ScholarPubMed
Evans, WE, Relling, MV. Moving towards individualized medicine with pharmacogenomics. Nature 2004;429:464–468.CrossRefGoogle ScholarPubMed
Evans, WE, McLeod, HL. Pharmacogenomics-drug disposition, drug targets, and side effects. N Engl J Med 2003;348:538–549.CrossRefGoogle ScholarPubMed
Pui, CH, Relling, MV, Evans, WE. Role of pharmacogenomics and pharmacodynamics in the treatment of acute lymphoblastic leukaemia. Best Pract Res Clin Haematol 2003;15:741–756.CrossRefGoogle Scholar
Rocha, JC, Cheng, C, Liu, W, et al. Pharmacogenetics of outcome in children with acute lymphoblastic leukemia. Blood 2005;105:4752–4758.CrossRefGoogle ScholarPubMed
Treviño, LR, Shimasaki, N, Yang, W, et al. Germline genetic variation in an organic anion transporter polypeptide associated with methotrexate pharmacokinetics and clinical effects. J Clin Oncol 2009;27:5972–5978.CrossRefGoogle Scholar
Evans, WE, Relling, MV, Rodman, JH, et al. Conventional compared with individualized chemotherapy for childhood acute lymphoblastic leukemia. N Engl J Med 1998;338:499–505.CrossRefGoogle ScholarPubMed
Relling, MV, Hancock, ML, Boyett, JM, et al. Prognostic importance of 6-mercaptopurine dose intensity in acute lymphoblastic leukemia. Blood 1999;93:2817–2823.Google ScholarPubMed
Relling, MV, Pui, CH, Sandlund, JT, et al. Adverse effect of anticonvulsants on efficacy of chemotherapy for acute lymphoblastic leukemia. Lancet 2000;356:285–290.CrossRefGoogle Scholar
Relling, MV, Hancock, ML, Rivera, GK, et al. Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J Natl Cancer Inst 1999;91:2001–2008.CrossRefGoogle ScholarPubMed
Relling, MV, Rubnitz, JE, Rivera, GK, et al. High incidence of secondary brain tumors after radiotherapy and antimetabolites. Lancet 1999;354:34–39.CrossRefGoogle ScholarPubMed
Thomsen, JB, Schrøder, H, Kristinsson, C, et al. Possible carcinogenic effect of 6-mercaptopurine on bone marrow stem cells. Relation to thiopurine metabolism. Cancer 1999;86:1080–1086.3.0.CO;2-5>CrossRefGoogle Scholar
Relling, MV, Yanishevski, Y, Nemec, J, et al. Etoposide and antimetabolite pharmacology in patients who develop secondary acute myeloid leukemia. Leukemia 1998;12:346–352.CrossRefGoogle ScholarPubMed
Schmiegelow, K, Al-Modhwahi, I, Andersen, MK, et al. Methotrexate/6-mercaptopurine maintenance therapy influences the risk of a second malignant neoplasm after childhood acute lymphoblastic leukemia: results from the NOPHO ALL-92 study. Blood 2009;113:6077–6084.CrossRefGoogle ScholarPubMed
Gaynon, PS, Desai, AA, Bostrom, BC, et al. Early response to therapy and outcome in childhood acute lymphoblastic leukemia. A review. Cancer 1997;80:1717–1726.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Riehm, H, Reiter, A, Schrappe, M, et al. The in vivo response on corticosteroid therapy as an additional prognostic factor in childhood acute lymphoblastic leukemia (therapy study ALL-BFM 83). Klin Padiatr 1987;199:151–160.CrossRefGoogle Scholar
Schrappe, M, Reiter, A, Zimmermann, M, et al. Long-term results of four consecutive trials in childhood ALL performed by the ALL-BFM study group from 1981 to 1995. Leukemia 2000;14:2205–2222.CrossRefGoogle Scholar
Panzer-Grümayer, ER, Schneider, M, Panzer, S, et al. Rapid molecular response during early induction chemotherapy predicts a good outcome in childhood acute lymphoblastic leukemia. Blood 2000;95:790–794.Google ScholarPubMed
Coustan-Smith, E, Sancho, J, Behm, FG, et al. Prognostic importance of measuring early clearance of leukemic cells by flow cytometry in childhood acute lymphoblastic leukemia. Blood 2002;100:52–58.CrossRefGoogle ScholarPubMed
Coustan-Smith, E, Sancho, J, Hancock, ML, et al. Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood 2000;96:2691–2696.Google ScholarPubMed
Coustan-Smith, E, Behm, FG, Sanchez, J, et al. Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia. Lancet 1998;351:550–554.CrossRefGoogle ScholarPubMed
van Dongen, JJ, Seriu, T, Panzer-Grümayer, ER, et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet 1998;352:1731–1738.CrossRefGoogle ScholarPubMed
Liem, NL, Papa, RA, Milross, CG, et al. Characterization of childhood acute lymphoblastic leukemia xenograft models for the preclinical evaluation of new therapies. Blood 2004;103:3905–3914.CrossRefGoogle ScholarPubMed
Lock, RB, Liem, N, Farnsworth, ML, et al. The nonobese diabetic/severe combined immunodeficient (NOD/SCID) mouse model of childhood acute lymphoblastic leukemia reveals intrinsic differences in biologic characteristics at diagnosis and relapse. Blood 2002;99:4100–4108.CrossRefGoogle ScholarPubMed
Shuster, JJ, Wacker, P, Pullen, J, et al. Prognostic significance of sex in childhood B-precursor acute lymphoblastic leukemia: a Pediatric Oncology Group Study. J Clin Oncol 1998;16:2854–2863.CrossRefGoogle ScholarPubMed
Pui, CH, Boyett, JM, Relling, MV, et al. Sex difference in prognosis for children with acute lymphoblastic leukemia. J Clin Oncol 1999;17:818–824.CrossRefGoogle ScholarPubMed
Viana, MB, Murao, M, Ramos, G, et al. Malnutrition as a prognostic factor in lymphoblastic leukaemia: a multivariate analysis. Arch Dis Child, 1994;71:304–310.CrossRefGoogle ScholarPubMed
den Boer, ML, Pieters, R, Kazemier, KM, et al. Relationship between the intracellular daunorubicin concentration, expression of major vault protein/lung resistance protein and resistance to anthracyclines in childhood acute lymphoblastic leukemia. Leukemia 1999;13:2023–2030.CrossRefGoogle ScholarPubMed
Marie, JP. Drug resistance in hematologic malignancies. Curr Opin Oncol 2001;13:463–469.CrossRefGoogle ScholarPubMed
Steinbach, D, Wittig, S, Cario, G, et al. The multidrug resistance-associated protein 3 (MRP3) is associated with a poor outcome in childhood ALL and may account for the worse prognosis in male patients and T-cell immunophenotype. Blood 2003;102:4493–4498.CrossRefGoogle ScholarPubMed
Marks, DI, Kurz, BW, Link, MP, et al. Altered expression of p53 and mdm-2 proteins at diagnosis is associated with early treatment failure in childhood acute lymphoblastic leukemia. J Clin Oncol 1997;15:1158–1162.CrossRefGoogle ScholarPubMed
Dalle, JH, Fournier, M, Nelken, B, et al. p16INK4a immunocytochemical analysis is an independent prognostic factor in childhood acute lymphoblastic leukemia. Blood 2002;99:2620–2623.CrossRefGoogle Scholar
Calero Moreno, TM, Gustafsson, G, Garwicz, S, et al. Deletion of the Ink4-locus (the p16ink4a, p14ARF and p15ink4b genes) predicts relapse in children with ALL treated according to the Nordic protocols NOPHO-86 and NOPHO-92. Leukemia 2002;16:2037–2045.CrossRefGoogle ScholarPubMed
Lowe, EJ, Pui, CH, Hancock, ML, et al. Early complications in children with acute lymphoblastic leukemia presenting with hyperleukocytosis. Pediatr Blood Cancer 2005;45:10–15.CrossRefGoogle ScholarPubMed
Howard, SC, Gajjar, A, Ribeiro, RC, et al. Safety of lumbar puncture for children with acute lymphoblastic leukemia and thrombocytopenia. JAMA 2000;284:2222–2224.CrossRefGoogle ScholarPubMed
Pui, CH, Jackson, CW, Chesney, C, et al. Sequential changes in platelet function and coagulation in leukemic children treated with l-asparaginase, prednisone, and vincristine. J Clin Oncol 1983;1:380–385.CrossRefGoogle ScholarPubMed
Pui, CH, Mahmoud, HH, Wiley, JM, et al. Recombinant urate oxidase for the prophylaxis or treatment of hyperuricemia in patients with leukaemia or lymphoma. J Clin Oncol 2001;19:697–704.CrossRefGoogle ScholarPubMed
Goldman, SC, Holcenberg, JS, Finklestein, JZ, et al. A randomised comparison between rasburicase and allopurinol in children with lymphoma or leukaemia at high risk for tumor lysis. Blood 2001;97:2998–3003.CrossRefGoogle ScholarPubMed
Pui, CH. Rasburicase: a potent uricolytic agent. Expert Opin Pharmacother 2002;3:433–452.CrossRefGoogle ScholarPubMed
Howard, SC, Jones, DP, Pui, CH, Management of tumor lysis syndrome. N Engl J Med 2011;364:1844–1854.CrossRefGoogle ScholarPubMed
Bunin, NJ, Pui, CH. Differing complications of hyperleukocytosis in children with acute lymphoblastic or acute nonlymphoblastic leukemia. J Clin Oncol 1985;3:1590–1595.CrossRefGoogle ScholarPubMed
Nelson, SC, Bruggers, CS, Kurtzberg, J, et al. Management of leukemic hyperleukocytosis with hydration, urinary alkalinization, and allopurinol. Are cranial irradiation and invasive cytoreduction necessary?Am J Pediatr Hematol Oncol 1993;15:351–355.Google ScholarPubMed
Pui, CH, Boyett, JM, Hughes, WT, et al. Human granulocyte colony-stimulating factor after induction chemotherapy in children with acute lymphoblastic leukemia. N Engl J Med 1997;336:1781–1787.CrossRefGoogle ScholarPubMed
Heath, JA, Steinherz, PG, Altman, A, et al. Human granulocyte colony-stimulating factor in children with high-risk acute lymphoblastic leukemia: a Children's Cancer Group Study. J Clin Oncol 2003;21:1612–1617.CrossRefGoogle ScholarPubMed
Relling, MV, Boyett, JM, Blanco, JG, et al. Granulocyte-colony stimulating factor and the risk of secondary myeloid malignancy after etoposide treatment. Blood 2003;101:3862–3867.CrossRefGoogle ScholarPubMed
Belfield, PM, Dwyer, AA. Oral complications of childhood cancer and its treatment: current best practice. Eur J Cancer 2004;40:1035–1041.CrossRefGoogle ScholarPubMed
Gaynon, PS, Angiolillo, AL, Carroll, WL, et al. Long-term results of the children's cancer group studies for childhood acute lymphoblastic leukemia 1983–2002: a Children's Oncology Group report. Leukemia 2010;24:285–297.CrossRefGoogle ScholarPubMed
Escherich, G, Horstmann, MA, Zimmermann, M, et al. Cooperative study group for childhood acute lymphoblastic leukaemia (COALL): long-term results of trials 82, 85, 89, 92, and 97. Leukemia 2010;24:298–308.CrossRefGoogle Scholar
Stary, J, Jabali, Y, Trka, J, et al. Long-term results of treatment of childhood acute lymphoblastic leukemia in the Czech Republic. Leukemia 2010;24:425–428.CrossRefGoogle ScholarPubMed
Kamps, WA, , van der Pal-deBruin, KM, Veerman, AJ, et al. Long-term results of Dutch Childhood Oncology Group studies for children with acute lymphoblastic leukemia from 1984 to 2004. Leukemia 2010;24:309–319.CrossRefGoogle ScholarPubMed
Vrooman, L, Neuberg, DS, Stevenson, KE, et al. Dexamethasone and individualized asparaginase dosing are each associated with superior event-free survival in childhood acute lymphoblastic leukemia: results from DFCI-ALL Consortium Protocol 00-01. Blood 2009;114:136.Google Scholar
Schmiegelow, K, Forestier, E, Hellebostad, M, et al. Long-term results of NOPHO ALL-92 and ALL-2000 studies of childhood acute lymphoblastic leukemia. Leukemia 2010;24:345–354.CrossRefGoogle ScholarPubMed
Pui, CH, Pei, D, Sandlund, JT, et al. Long-term results of St. Jude Total Therapy Studies 11, 12, 13A, 13B, and 14 for childhood acute lymphoblastic leukemia. Leukemia 2010;24:371–382.CrossRefGoogle ScholarPubMed
Tsuchida, M, Ohara, A, Manabe, A, et al. Long-term results of Tokyo Children's Cancer Study Group trials for childhood acute lymphoblastic leukemia,1984–1999. Leukemia; 2010;24:383–396.CrossRefGoogle Scholar
Liang, DC, Yang, CP, Lin, DT, et al. Long-term results of Taiwan Pediatric Oncology Group studies 1997 and 2002 for childhood acute lymphoblastic leukemia. Leukemia; 2010;24:397–405.CrossRefGoogle Scholar
Mitchell, C, Payne, J, Wade, R, et al. The impact of risk stratification by early bone-marrow response in childhood lymphoblastic leukaemia: results from the United Kingdom Medical Research Council trial ALL97 and ALL97/99. Br J Haematol 2009;146:424–436.CrossRefGoogle ScholarPubMed
Pui, CH, Sallan, S, Relling, MV, Masera, G, Evans, WE. International childhood acute lymphoblastic leukemia workshop: Sausalito, CA, 30 November–1 December 2000. Leukemia 2001;15:707–715.CrossRefGoogle Scholar
Pieters, R, Hunger, SP, Boos, J, et al. l-Asparaginase treatment in acute lymphoblastic leukemia: a focus on Erwinia asparaginase. Cancer 2011;117:238–249.CrossRefGoogle ScholarPubMed
Pieters, R, Appel, I, Kuehnel, H-J, et al. Pharmacokinetics, pharmacodynamics, efficacy, and safety of a new recombinant asparaginase preparation in children with previously untreated acute lymphoblastic leukemia: a randomized phase 2 clinical trial. Blood 2008;112:4832–4838.CrossRefGoogle ScholarPubMed
Bertrand, Y, Thomas, X, Baruchel, A, et al. GRASPALL 2005.01 clinical study: l-asparaginase loaded into red blood cells is effective at depleting serum asparagine in children and adults with relapsed acute lymphoblastic leukaemia (ALL). Blood 2008;112:119.Google Scholar
Allas, S, Sahakian, P, Fichtner, I, Abribat, T. Pharmacokinetics and pharmacodynamics in mice of a pegylated recombinant Erwinia Chrysanthemi-derived l-asparaginase. Blood 2009;114:803.Google Scholar
Asselin, BL, Whitin, JC, Coppola, DJ, et al. Comparative pharmarcokinetic studies of three asparaginase preparations. J Clin Oncol 1993;11:1780–1786.CrossRefGoogle Scholar
Duval, M, Suciu, S, Ferster, A, et al. Comparison of Escherichia coli -asparaginase with Erwinia-asparaginase in the treatment of childhood lymphoid malignancies: results of a randomized European Organisation for Research and Treatment of Cancer–Children's Leukemia Group phase 3 trial. Blood 2002;99:2734–2739.CrossRefGoogle ScholarPubMed
Silverman, LB, Gelber, RD, Dalton, VK, et al. Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Farber Consortium Protocol 91-01. Blood 2001;97:1211–1218.CrossRefGoogle ScholarPubMed
Abshire, TC, Pollock, BH, Billett, AL, et al. Weekly polyethylene glycol conjugated l-asparaginase compared with biweekly dosing produces superior induction remission rates in childhood relapsed acute lymphoblastic leukemia: a Pediatric Oncology Group Study. Blood 2000;96:1709–1715.Google ScholarPubMed
Avramis, VI, Sencer, S, Periclou, AP, et al. A randomized comparison of native Escherichia coli asparaginase and polyethylene glycol conjugated asparaginase for treatment of children with newly diagnosed standard-risk acute lymphoblastic leukemia: a Children's Cancer Group study. Blood 2002;99:1986–1994.CrossRefGoogle ScholarPubMed
Hak, LJ, Relling, MV, Cheng, C, et al. Asparaginase pharmacodynamics differ by formulation among children with newly diagnosed acute lymphoblastic leukemia. Leukemia 2004;18:1072–1077.CrossRefGoogle ScholarPubMed
Harms, DO, Janka-Schaub, GE. Co-operative study group for childhood acute lymphoblastic leukemia (COALL): long-term follow-up of trials 82, 85, 89 and 92. Leukemia 2000;14:2234–2239.CrossRefGoogle Scholar
Balis, FM, Lester, CM, Chrousos, GP, et al. Differences in cerebrospinal fluid penetration of corticosteroids: possible relationship to the prevention of meningeal leukemia. J Clin Oncol 1987;5:202–207.CrossRefGoogle ScholarPubMed
Inaba, H, Pui, CH. Glucocorticoid use in acute lymphoblastic leukaemia. Lancet Oncol 2010;11:1096–1106.CrossRefGoogle ScholarPubMed
Schwartz, CL, Thompson, EB, Gelber, RD, et al. Improved response with higher corticosteroid dose in children with acute lymphoblastic leukemia. J Clin Oncol 2001;19:1040–1046.CrossRefGoogle ScholarPubMed
Bostrom, BC, Sensel, MR, Sather, HN, et al. Dexamethasone versus prednisone and daily oral versus weekly intravenous mercaptopurine for patients with standard-risk acute lymphoblastic leukemia: a report from the Children's Cancer Group. Blood 2003;101:3809–3817.CrossRefGoogle ScholarPubMed
Mitchell, CD, Richards, SM, Kinsey, SE, et al. Benefit of dexamethasone compared with prednisolone for childhood acute lymphoblastic leukaemia: results of the UK Medical Research Council ALL97 randomized trial. Br J Haematol 2005;129:734–745.CrossRefGoogle ScholarPubMed
Igarashi, S, Manabe, A, Ohara, A, et al. No advantage of dexamethasone over prednisolone for the outcome of standard- and intermediate-risk childhood acute lymphoblastic leukemia in the Tokyo Children's Cancer Study Group L95–14 protocol. J Clin Oncol 2005;23:6489–6498.CrossRefGoogle Scholar
Bertrand, Y, Suciu, S, Benoit, Y, et al. Dexamethasone(DEX)(6mg/sm/d) and prednisolone(PRED)(60 mg/sm/d) in induction therapy of childhood ALL are equally effective: results of the 2nd interim analysis of EORTC Trial 58951. Blood 2008;112:A8.Google Scholar
Hurwitz, CA, Silverman, LB, Schorin, MA, et al. Substituting dexamethasone for prednisone complicates remission induction in children with acute lymphoblastic leukemia. Cancer 2000;88:1964–1969.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Schrappe, M, Zimmermann, M, Moricke, A, et al. Dexamethasone in induction can eliminate one third of all relapses in childhood acute lymphoblastic leukemia (ALL): results of an international randomized trial in 3655 patients (trial AIEOP-BFM ALL 2000). Blood 2008;112:A7.Google Scholar
Lipshultz, SE, Scully, RE, Lipsitz, SR, et al. Assessment of dexrazoxane as a cardioprotectant in doxorubicin-treated children with high-risk acute lymphoblastic leukaemia: long-term follow-up of a prospective, randomized, multicentre trial. Lancet Oncol 2010;11:950–961.CrossRefGoogle Scholar
Barry, EV, Vrooman, LM, Dahlberg, SE, et al. Absence of secondary malignant neoplasms in children with high-risk acute lymphoblastic leukemia treated with dexrazoxane. J Clin Oncol 2008;26:1106–1111.CrossRefGoogle ScholarPubMed
Tubergen, DG, Gilchrist, GS, O'Brien, RT, et al. Improved outcome with delayed intensification for children with acute lymphoblastic leukemia and intermediate presenting features: a Children's Cancer Group phase III trial. J Clin Oncol 1993;11:527–537.CrossRefGoogle ScholarPubMed
Liang, DC, Hung, IJ, Yang, CP, et al. Unexpected mortality from the use of E. coli l-asparaginase during remission induction therapy for childhood acute lymphoblastic leukemia: a report from the Taiwan Pediatric Oncology Group. Leukemia 1999;13:155–160.CrossRefGoogle ScholarPubMed
Pui, CH, Simone, JV, Hancock, ML, et al. Impact of three methods of treatment intensification on acute lymphoblastic leukemia in children: long-term results of St. Jude Total Therapy Study X. Leukemia 1992;6:150–157.Google ScholarPubMed
Silverman, LB, Gelber, RD, Young, ML, et al. Induction failure in acute lymphoblastic leukemia of childhood. Cancer 1999;85:1395–1404.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Oudot, C, Auclerc, MF, Levy, V, et al. Prognostic factors for leukemic induction failure in children with acute lymphoblastic leukemia and outcome after salvage therapy: the FRALLE 93 study. J Clin Oncol 2008;26:1496–1503.CrossRefGoogle ScholarPubMed
Schrappe, M, Hunger, SP, Pui, CH, et al. Outcome after induction failure in childhood acute lymphoblastic leukemia. N Engl J Med 2012, in press.CrossRefGoogle ScholarPubMed
Haidar, C, Jeha, S. Drug interactions in childhood cancer. Lancet Oncol 2011;12:92–99.CrossRefGoogle ScholarPubMed
Chauvenet, AR, Shashi, V, Selsky, C, et al. Vincristine-induced neuropathy as the initial presentation of Charcot–Marie–Tooth disease in acute lymphoblastic leukemia: a Pediatric Oncology Group Study. J Pediatr Hematol Oncol 2003;25:316–320.CrossRefGoogle ScholarPubMed
Moody, K, Charlson, ME, Finlay, J. The neutropenic diet: what's the evidence?J Pediatr Hematol Oncol 2002;24:717–721.CrossRefGoogle ScholarPubMed
Pui, CH, Burghen, GA, Bowman, WP, et al. Risk factors for hyperglycemia in children with leukemia receiving l-asparaginase and prednisone. J Pediatr 1981;99:46–50.CrossRefGoogle ScholarPubMed
Pihko, H, Tyni, T, Virkola, K, et al. Transient ischemic cerebral lesions during induction chemotherapy for acute lymphoblastic leukemia. J Pediatr 1993;123:718–724.CrossRefGoogle ScholarPubMed
Panis, B, Vlaar, AM, van Well, GT, et al. Posterior reversible encephalopathy syndrome in paediatric leukaemia. Eur J Paediatr Neurol 2010;14:539–545.CrossRefGoogle ScholarPubMed
Henze, G, Langermann, HJ, Brämswig, J, et al. Results of study BFM 76/79 for treatment of acute lymphoblastic leukemia in childhood and adolescence. Klin Padiatr 1981;193:145–154.CrossRefGoogle Scholar
Hutchinson, RJ, Gaynon, PS, Sather, H, et al. Intensification of therapy for children with lower-risk acute lymphoblastic leukemia: long-term follow-up of patients treated on Children's Cancer Group trial 1881. J Clin Oncol 2003;9:1790–1797.CrossRefGoogle Scholar
Lange, BJ, Bostrom, BC, Cherlow, JM, et al. Double-delayed intensification improves event-free survival for children with intermediate-risk acute lymphoblastic leukemia: a report from the Children's Cancer Group. Blood 2002;99:825–833.CrossRefGoogle ScholarPubMed
Seibel, NL, Steinherz, PG, Sather, HN, et al. Early postinduction intensification therapy improves survival for children and adolescents with high-risk acute lymphoblastic leukemia: a report from the Children's Oncology Group. Blood 2008;111:2548–2555.CrossRefGoogle ScholarPubMed
Nachman, JB, La, MK, Hunger, SP, et al. Young adults with acute lymphoblastic leukemia have an excellent outcome with chemotherapy alone and benefit from intensive postinduction treatment: a report from the Children's Oncology Group. J Clin Oncol 2009;27:5189–5194.CrossRefGoogle ScholarPubMed
Matloub, Y, Angiolillo, A, Bostrom, B, et al. Double delayed intensification (DDI) is equivalent to single DI (SDI) in children with National Cancer Institute (NCI) standard-risk acute lymphoblastic leukemia (SR-ALL) treated on Children's Cancer Group (CCG) clinical trial 1991 (CCG-1991). Blood 2006;108:47a.Google Scholar
Nachman, JB, Sather, HN, Sensel, MG, et al. Augmented post-induction therapy for children with high-risk acute lymphoblastic leukemia and a slow response to initial therapy. N Engl J Med 1998;338:1663–1671.CrossRefGoogle Scholar
Amylon, MD, Shuster, J, Pullen, J, et al. Intensive high-dose asparaginase consolidation improves survival for pediatric patients with T-cell acute lymphoblastic leukemia and advanced stage lymphoblastic lymphoma: a Pediatric Oncology Group study. Leukemia 1999;13:335–342.CrossRefGoogle ScholarPubMed
Mahoney, DH, Jr., Shuster, JJ, Nitschke, R, et al. Intensification with intermediate-dose intravenous methotrexate is effective therapy for children with lower-risk B-precursor acute lymphoblastic leukemia: a Pediatric Oncology Group Study. J Clin Oncol 2000;18:1285–1294.CrossRefGoogle ScholarPubMed
Kager, L, Cheok, M, Yang, W, et al. Folate pathway gene expression differs in subtypes of acute lymphoblastic leukemia and influences methotrexate pharmacodynamics. J Clin Invest 2005;115:110–117.CrossRefGoogle ScholarPubMed
Mikkelsen, TS, Sparreboom, A, Cheng, C, et al. Shortening infusion time for high-dose methotrexate alters antileukemic effects: a randomized prospective clinical trial. J Clin Oncol 2011;29:1771–1778.CrossRefGoogle ScholarPubMed
Schrappe, M, Reiter, A, Ludwig, W-D, et al. Improved outcome in childhood acute lymphoblastic leukemia despite reduced use of anthracyclines and cranial radiotherapy: results of trial ALL-BFM 90. Blood 2000;95:3310–3322.Google ScholarPubMed
Nishigaki, H, Ito, C, Manabe, A, et al. Prevalence and growth characteristics of malignant stem cells in B-lineage acute lymphoblastic leukemia. Blood 1997;89:3735–3744.Google ScholarPubMed
Aur, RJ, Simone, J, Hustu, HO, et al. Central nervous system therapy and combination chemotherapy of childhood lymphocytic leukemia. Blood 1971;37:272–281.Google ScholarPubMed
Clarke, M, Gaynon, P, Hann, I, et al. CNS-directed therapy for childhood acute lymphoblastic leukaemia: Childhood All Collaborative Group overview of 43 randomised trials. J Clin Oncol 2003;21:1798–1809.CrossRefGoogle Scholar
Sullivan, MP, Chen, T, Dyment, PG, et al. Equivalence of intrathecal chemotherapy and radiotherapy as central nervous system prophylaxis in children with acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood 1982;60:948–958.Google Scholar
Matloub, Y, Lindemulder, S, Gaynon, PS, et al. Intrathecal triple therapy decreases central nervous system relapse but fails to improve event-free survival when compared with intrathecal methotrexate: results of the Children's Cancer Group (CCG) 1952 study for standard-risk acute lymphoblastic leukemia, reported by the Children's Oncology Group. Blood 2006;108:1165–1173.CrossRefGoogle ScholarPubMed
Brennan, R, Helton, K, Pei, D, et al. Spinal epidural lipomatosis in children with hematologic malignancies. Ann Hematol 2011;90:1067–1074.CrossRefGoogle ScholarPubMed
Pui, CH, Cheng, C, Leung, W, et al. Extended follow-up of long-term survivors of childhood acute lymphoblastic leukemia. N Engl J Med 2003;349:640–649.CrossRefGoogle ScholarPubMed
Hijiya, N, Hudson, MM, Lensing, S, et al. Cumulative incidence of secondary neoplasms as a first event after childhood acute lymphoblastic leukemia. JAMA 2007;297:1207–1215.CrossRefGoogle ScholarPubMed
Conter, V, Schrappe, M, Aricò, M, et al. Role of cranial radiotherapy for childhood T-cell acute lymphoblastic leukemia with high WBC count and good response to prednisone. J Clin Oncol 1997;15:2786–2791.CrossRefGoogle ScholarPubMed
Laver, JH, Barredo, JC, Amylon, M, et al. Effects of cranial radiation in children with high risk T cell acute lymphoblastic leukemia: a Pediatric Oncology Group report. Leukemia 2000;14:369–373.CrossRefGoogle Scholar
Manera, R, Ramirez, I, Mullins, J, Pinkel, D. Pilot studies of species-specific chemotherapy of childhood acute lymphoblastic leukemia using genotype and immunophenotype. Leukemia 2000;14:1354–1361.CrossRefGoogle ScholarPubMed
Ritchey, AK, Pollock, B, Lauer, SJ, et al. Improved survival of children with isolated CNS relapse of acute lymphoblastic leukemia; a Pediatric Oncology Group Study. J Clin Oncol 1999;17:3745–3752.CrossRefGoogle ScholarPubMed
Veerman, AJ, Kamps, WA, van den Berg, H, et al. Dexamethasone-based therapy for childhood acute lymphoblastic leukaemia: results of the prospective Dutch Childhood Oncology Group (DCOG) protocol ALL-9 (1997–2004). Lancet Oncol 2009;10:957–966.CrossRefGoogle Scholar
Riehm, H, Gadner, H, Henze, G, et al. Results and significance of six randomized trials in four consecutive ALL-BFM studies. Hematol Blood Transfus 1990;33:439–450.Google ScholarPubMed
Childhood ALL Collaborative Group. Duration and intensity of maintenance chemotherapy in acute lymphoblastic leukaemia: overview of 42 trials involving 12 000 randomized children. Lancet 1996;347:1783–1788.CrossRefGoogle Scholar
Toyoda, Y, Manabe, A, Tsuchida, M, et al. Six months of maintenance chemotherapy after intensified treatment for acute lymphoblastic leukemia of childhood. J Clin Oncol 2000;18:1508–1516.CrossRefGoogle ScholarPubMed
Nesbit, ME, Jr., Sather, HN, Robison, LL, et al. Randomized study of 3 years versus 5 years of chemotherapy in childhood acute lymphoblastic leukemia. J Clin Oncol 1983;1:308–316.CrossRefGoogle ScholarPubMed
Miller, DR, Leikin, SL, Albo, VC, et al. Three versus five years of maintenance therapy are equivalent in childhood acute lymphoblastic leukemia: a report from the Children's Cancer Study Group. J Clin Oncol 1989;7:316–325.CrossRefGoogle Scholar
Dervieux, T, Hancock, M, Evans, W, et al. Effect of methotrexate polyglutamates on thioguanine nucleotide concentrations during continuation therapy of acute lymphoblastic leukemia with mercaptopurine. Leukemia 2002;16:209–212.CrossRefGoogle ScholarPubMed
Lennard, L. The clinical pharmacology of 6-mercaptopurine. Eur J Clin Pharmacol 1992;43:329–339.CrossRefGoogle ScholarPubMed
Balis, FM, Holcenberg, JS, Poplack, DG, et al. Pharmacokinetics and pharmacodynamics of oral methotrexate and mercaptopurine in children with lower risk acute lymphoblastic leukemia: a joint children's cancer group and pediatric oncology branch study. Blood 1998;92:3569–3577.Google ScholarPubMed
Teresi, ME, Crom, WR, Choi, KE, et al. Methotrexate bioavailability after oral and intramuscular administration in children. J Pediatr 1987;110:788–792.CrossRefGoogle ScholarPubMed
Lennard, L, Lilleyman, JS, Van Loon, J, et al. Clinical practice. Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukaemia. Lancet 1990;336:225–229.CrossRefGoogle Scholar
Schmiegelow, K, Schrøder, H, Gustafsson, G, et al. Risk of relapse in childhood acute lymphoblastic leukemia is related to RBC methotrexate and mercaptopurine metabolites during maintenance chemotherapy. J Clin Oncol 1995;13:345–351.CrossRefGoogle ScholarPubMed
Rivard, GE, Hoyoux, C, Infante- Rivard, C, et al. Maintenance chemotherapy for childhood acute lymphoblastic leukaemia: better in the evening. Lancet 1985;326:1264–1266.CrossRefGoogle Scholar
Rivard, GE, Lin, KT, Leclerc, JM, et al. Milk could decrease the bioavailability of 6-mercaptopurine. Am J Pediatr Hematol Oncol 1989;11:402–406.Google ScholarPubMed
Chessells, JM, Harrison, G, Lilleyman, JS, et al. Continuing (maintenance) therapy in lymphoblastic leukaemia: lessons from MRC UKALL X. Br J Haematol 1997;98:945–951.CrossRefGoogle ScholarPubMed
Evans, WE, Horner, M, Chu, YQ, et al. Altered mercaptopurine metabolism, toxic effects and dosage requirement in a thiopurine methyltransferase-deficient child with acute lymphocytic leukemia. J Pediatr 1991;119:985–989.CrossRefGoogle Scholar
Relling, MV, Gardner, EE, Sandborn, WJ, et al. Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin Pharmacol Ther 2011;89:387–391.CrossRefGoogle ScholarPubMed
Stanulla, M, Schaeffeler, E, Flohr, T, et al. Thiopurine methyltransferase (TPMT) genotype and early treatment response to mercaptopurine in childhood acute lymphoblastic leukemia. JAMA 2005;293:1485–1489.CrossRefGoogle ScholarPubMed
Yates, CR, Krynetski, EY, Loennechen, T, et al. Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann Intern Med 1997;126:608–614.CrossRefGoogle ScholarPubMed
Stoneham, S, Lennard, L, Coen, P, et al. Veno-occlusive disease in patients receiving thiopurines during maintenance therapy for childhood acute lymphoblastic leukaemia. Br J Haematol 2003;123:100–102.CrossRefGoogle ScholarPubMed
Harms, DO, Göbel, U, Spaar, HJ, et al. Thioguanine offers no advantage over mercaptopurine in maintenance treatment of childhood ALL: results of the randomized trial COALL-92. Blood 2003;102:2736–2740.CrossRefGoogle ScholarPubMed
Vora, A, Mitchell, CD, Lennard, L, et al. Toxicity and efficacy of 6-thioguanine versus 6-mercaptopurine in childhood lymphoblastic leukaemia: a randomised trial. Lancet 2006;368:1339–1348.CrossRefGoogle ScholarPubMed
Stork, LC, Matloub, Y, Broxson, E, et al. Oral 6-mercaptopurine versus oral 6-thioguanine and veno-occlusive disease in children with standard-risk acute lymphoblastic leukemia: report of the Children's Oncology Group CCG-1952 clinical trial. Blood 2010;115:2740–2748.CrossRefGoogle ScholarPubMed
Winick, N, Bowman, WP, Kamen, BA. Unexpected acute neurologic toxicity in the treatment of children with acute lymphoblastic leukemia. J Natl Cancer Inst 1992;84:252–256.CrossRefGoogle ScholarPubMed
Mahoney, DH, Shuster, JJ, Nitschke, R, et al. Acute neurotoxicity in children with B-precursor acute lymphoid leukemia: an association with intermediate-dose intravenous methotrexate and intrathecal triple therapy-a Pediatric Oncology Group study. J Clin Oncol 1998;16:1712–1722.CrossRefGoogle ScholarPubMed
Kalwinsky, DK, Raimondi, SC, Bunin, NJ, et al. Clinical and biological characteristics of acute lymphocytic leukemia in children with Down syndrome. Am J Med Genet Suppl, 1990;7:267–271.Google ScholarPubMed
Dördelmann, M, Schrappe, M, Reiter, A, et al. Down's syndrome in childhood acute lymphoblastic leukemia: clinical characteristics and treatment outcome in four consecutive BFM trials. Leukemia 1998;12:645–651.CrossRefGoogle ScholarPubMed
Kishi, S, Griener, J, Cheng, C, et al. Homocysteine, pharmacogenetics, and neurotoxicity in children with leukemia. J Clinic Oncol 2003;21:3084–3091.CrossRefGoogle ScholarPubMed
Jackson, RC. Biological effects of folic acid antagonists with antineoplastic activity. Pharmacol Ther 1984;25:61–82.CrossRefGoogle ScholarPubMed
Baram, J, Allegra, CJ, Fine, RL, et al. Effect of methotrexate on intracellular folate pools in purified myeloid precursor cells from normal human bone marrow. J Clin Invest 1987;79:692–697.CrossRefGoogle ScholarPubMed
Bernini, JC, Fort, DW, Griener, JC, et al. Aminophylline for methotrexate-induced neurotoxicity. Lancet 1995;345:544–547.CrossRefGoogle ScholarPubMed
Farrow, AC, Buchanan, GR, Zwiener, RJ, et al. Serum aminotransferase elevation during and following treatment of childhood acute lymphoblastic leukemia. J Clin Oncol 1997;15:1560–1566.CrossRefGoogle ScholarPubMed
Nygaard, U, Toft, N, Schmiegelow, KMethylated metabolites of 6-mercaptopurine are associated with hepatotoxicity. Clin Pharmacol Ther 2004;75:274–281.CrossRefGoogle ScholarPubMed
Mahoney, DH, Jr., Camitta, BM, Leventhal, BG, et al. Repetitive low dose oral methotrexate and intravenous mercaptopurine treatment for patients with lower risk B-lineage acute lymphoblastic leukemia. A Pediatric Oncology Group Pilot study. Cancer 1995;75:2623–2631.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Mahoney, DH, Jr., Shuster, J, Nitschke, R, et al. Intermediate-dose intravenous methotrexate with intravenous mercaptopurine is superior to repetitive low-dose oral methotrexate with intravenous mercaptopurine for children with lower-risk B-lineage acute lymphoblastic leukemia: a Pediatric Oncology Group phase III trial. J Clin Oncol 1998;16:246–254.CrossRefGoogle ScholarPubMed
Kamps, WA, Bökkerink, JP, Hakvoort-Cammel, FG, et al. BFM-oriented treatment for children with acute lymphoblastic leukemia without cranial irradiation and treatment reduction for standard risk patients: results of DCLSG protocol ALL-8 (1991–1996). Leukemia 2002;16:1099–1111.CrossRefGoogle Scholar
van der Werff, TenBosch, J, Suciu, S, Thyss, A, et al. Value of intravenous 6-mercaptopurine during continuation treatment in childhood acute lymphoblastic leukemia and non-Hodgkin's lymphoma: final results of a randomized phase III trial (58881) of the EORTC CLG. Leukemia 2005;19:721–726.CrossRefGoogle Scholar
Bleyer, WA, Sather, HN, Nickerson, HJ, et al. Monthly pulses of vincristine and prednisone prevent bone marrow and testicular relapse in low-risk childhood acute lymphoblastic leukemia: a report of the CCG-161 study by the Children's Cancer Study Group. J Clin Oncol 1991;9:1012–1021.CrossRefGoogle Scholar
Conter, V, Valsecchi, MG, Silvestri, D, et al. Pulses of vincristine and dexamethasone in addition to intensive chemotherapy for children with intermediate-risk acute lymphoblastic leukaemia: a multicentre randomised trial. Lancet 2007;369:123–131.CrossRefGoogle ScholarPubMed
De Moerloose, B, Suciu, S, Bertrand, Y, et al. Improved outcome with pulses of vincristine and corticosteroids in continuation therapy of children with average risk acute lymphoblastic leukemia (ALL) and lymphoblastic non-Hodgkin lymphoma (NHL): report of the EORTC randomized phase 3 trial 58951. Blood 2010;116:36–44.CrossRefGoogle ScholarPubMed
Kaste, SC, Jones-Wallace, D, Rose, SR, et al. Bone mineral decrements in survivors of childhood acute lymphoblastic leukemia: frequency of occurrence and risk factors for their development. Leukemia 2001;15:728–734.CrossRefGoogle ScholarPubMed
Strauss, AJ, Su, JT, Kimball Dalton, VM, et al. Bony morbidity in children treated for acute lymphoblastic leukemia. J Clin Oncol 2001;19:3066–3072.CrossRefGoogle ScholarPubMed
Sala, A, Mattano, LA, Jr., Barr, RD. Osteonecrosis in children and adolescents with cancer – an adverse effect of systemic therapy. Eur J Cancer 2007;43:683–689.CrossRefGoogle ScholarPubMed
Wasilewski-Masker, K, Kaste, SC, Hudson, MM, et al. Bone mineral density deficits in survivors of childhood cancer: long-term follow-up guidelines and review of the literature. Pediatrics 2008;121:e705–713.CrossRefGoogle ScholarPubMed
Mattano, LA, Sather, HN, La, MK, et al. Modified dexamethasone (DXM) reduces the incidence of treatment-related osteonecrosis (ON) in children and adolescents with higher risk acute lymphoblastic leukemia (HR ALL): a report of CCG-1961. Blood 2003;102:221a.Google Scholar
Kawedia, JD, Kaste, SC, Pei, D, et al. Pharmacokinetic, pharmacodynamic and pharmacogenetic determinants of osteonecrosis in children with acute lymphoblastic leukemia. Blood 2011;117:2340–2347.CrossRefGoogle ScholarPubMed
French, D, Hamilton, LH, Mattano, LA, et al. A PAI-1 (SERPINE1) polymorphism predicts osteonecrosis in children with acute lymphoblastic leukemia: a report from the Children's Oncology Group. Blood 2008;111:4496–4499.CrossRefGoogle ScholarPubMed
Shaw, NJ, Eden, OB. Skin rash after completion of therapy for leukemia in childhood. Pediatr Hematol Oncol 1989;6:31–35.CrossRefGoogle ScholarPubMed
Lindblom, A, Heyman, M, Gustafsson, I, et al. Parvovirus B19 infection in children with acute lymphoblastic leukemia is associated with cytopenia resulting in prolonged interruptions of chemotherapy. Clin Infect Dis 2008;46:528–536.CrossRefGoogle ScholarPubMed
McNall, RY, Head, DR, Pui, CH, et al. Parvovirus B19 infection in a child with acute lymphoblastic leukemia during induction therapy. J Pediatr Hematol Oncol 2001;23:309–311.CrossRefGoogle Scholar
Leung, W, Yang, J, Campana, D, et al. High success of hematopoietic cell transplantation regardless of donor source in children with very-high-risk leukemia. Blood 2011;118:223–230.CrossRefGoogle ScholarPubMed
Satwani, P, Sather, H, Ozkaynak, F, et al. Allogeneic bone marrow transplantation in first remission for children with ultra-high-risk features of acute lymphoblastic leukemia: a Children's Oncology Group study report. Biol Blood Marrow Transplant 2007;13:218–227.CrossRefGoogle ScholarPubMed
Tallen, G, Ratei, R, Mann, G, et al. Long-term outcome in children with relapsed acute lymphoblastic leukemia after time-point and site-of-relapse stratification and intensified short-course multidrug chemotherapy: results of trial ALL-REZ BFM 90. J Clin Oncol 2010;28:2339–2347.CrossRefGoogle ScholarPubMed
Pui, CH, Kane, JR, Crist, WM. Biology and treatment of infant leukemias. Leukemia 1995;9:762–769.Google ScholarPubMed
Pui, CH, Ribeiro, RC, Campana, DC, et al. Prognostic factors in the acute lymphoid and myeloid leukemias of infants. Leukemia 1996;10:952–956.Google ScholarPubMed
Dördelmann, M, Reiter, A, Borkhardt, A, et al. Prednisone response is the strongest predictor of treatment outcome in infant acute lymphoblastic leukemia. Blood 1999;94:1209–1217.Google ScholarPubMed
Chessells, JM, Harrison, CJ, Kempski, H, et al. Clinical features, cytogenetics and outcome in acute lymphoblastic and myeloid leukaemia of infancy: report from the MRC childhood leukaemia working party. Leukemia 2002;16:776–784.CrossRefGoogle ScholarPubMed
Isaacs, HFetal and neonatal leukemia. J Pediatr Hematol Oncol 2003;25:348–361.CrossRefGoogle ScholarPubMed
Pieters, R, den Boer, ML, Durian, M, et al. Relation between age, immunophenotype and in vitro drug resistance in 395 children with acute lymphoblastic leukemia: implications for treatment of infants. Leukemia 1998;12:1344–1348.CrossRefGoogle ScholarPubMed
Dreyer, ZE, Dinndorf, PA, Camitta, B, et al. Analysis of the role of hematopoietic stem-cell transplantation in infants with acute lymphoblastic leukemia in first remission and MLL gene rearrangements: a report from the Children's Oncology Group. J Clin Oncol 2011;29:214–222.CrossRefGoogle ScholarPubMed
Mann, G, Attarbaschi, A, Schrappe, M, et al. Improved outcome with hematopoietic stem cell transplantation in a poor prognostic subgroup of infants with mixed-lineage-leukemia (MLL)-rearranged acute lymphoblastic leukaemia: results from the Interfant-99 Study. Blood 2010;116:2644–2650.CrossRefGoogle Scholar
Brown, P, Levis, M, McIntyre, E, et al. Combinations of the FLT3 inhibitor CEP-701 and chemotherapy synergistically kill infant and childhood MLL-rearranged ALL cells in a sequence-dependent manner. Leukemia 2006;20:1368–1376.CrossRefGoogle Scholar
Stumpel, DJ, Schneider, P, van Roon, EH, et al. Specific promoter methylation identifies different subgroups of MLL-rearranged infant acute lymphoblastic leukemia, influences clinical outcome, and provides therapeutic options. Blood 2009;114:5490–5498.CrossRefGoogle ScholarPubMed
Schafer, E, Irizarry R, Negi S, et al. Promoter hypermethylation in MLL-r infant acute lymphoblastic leukemia: biology and therapeutic targeting. Blood 2010;115:4798–4809.CrossRefGoogle ScholarPubMed
Pui, CH, Jeha, S. New therapeutic strategies for the treatment of acute lymphoblastic leukemia. Nat Rev Drug Discov 2007;6:149–165.CrossRefGoogle Scholar
Berg, SL, Blaney, SM, Devidas, M, et al. Phase II study of nelarabine (compound 506U78) in children and young adults with refractory T-cell malignancies: a report from the Children's Oncology Group. J Clin Oncol 2005;23:3376–3382.CrossRefGoogle Scholar
Zhang, J, Ding, L, Holmfeldt, L, et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 2012;481:157–163.CrossRef
Jaffe, ES, Harris, NL, Stein, H, Vardiman, J. (eds.) World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissue.Lyon: IARC Press, 2001.Google Scholar
Ribeiro, RC, Pui, CH. Saving the children: improving childhood cancer treatment in developing countries. N Engl J Med 2005;352:2158–2160.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×