Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-05T00:11:53.710Z Has data issue: false hasContentIssue false

29 - Brain Changes Associated with Acquisition of Musical Expertise

from Part V.II - Domains of Expertise: Arts, Sports, Games, and Other Skills

Published online by Cambridge University Press:  10 May 2018

K. Anders Ericsson
Affiliation:
Florida State University
Robert R. Hoffman
Affiliation:
Florida Institute for Human and Machine Cognition
Aaron Kozbelt
Affiliation:
Brooklyn College, City University of New York
A. Mark Williams
Affiliation:
University of Utah
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altenmüller, E. (2003). Focal dystonia: Advances in brain imaging and understanding of fine motor control in musicians. Hand Clinics, 19, 523538.Google Scholar
Altenmüller, E., Baur, V., Hofmann, A., Lim, V. K., & Jabusch, H. C. (2012). Musician’s cramp as manifestation of maladaptive brain plasticity: Arguments from instrumental differences. Annals of the New York Academy of Sciences, 1252, 259265.CrossRefGoogle ScholarPubMed
Altenmüller, E., & Furuya, S. (2016a). Brain plasticity and the concept of metaplasticity in skilled musicians. In Laczko, J. & Latash, M. L. (eds.), Progress in motor control: Theories and translations (pp. 197208). Berlin: Springer.CrossRefGoogle Scholar
Altenmüller, E., & Furuya, S. (2016b). Planning and performance. In Hallam, S., Cross, I., & Thaut, M. (eds.), The Oxford handbook of music psychology (pp. 529546). Oxford University Press.Google Scholar
Altenmüller, E., Ioannou, C. I., & Lee, A. (2015). Apollo’s curse: Neurological causes of motor impairments in musicians. Progress in Brain Research, 217, 89106.CrossRefGoogle Scholar
Altenmüller, E., Münte, T. H., & Gerloff, C. (2004). Neurocognitive functions and the EEG. In Niedermeyer, E. & da Silva, F. Lopes (eds.), Electroencephalography (pp. 661682). Baltimore: Lippincott Williams.Google Scholar
Amunts, K., Schlaug, G., Jäncke, L., Steinmetz, H., Schleicher, A., Dabringhaus, A., & Zilles, K. (1997). Motor cortex and hand motor skills: Structural compliance in the human brain. Human Brain Mapping, 5, 206215.Google Scholar
Amunts, K., & Zilles, K. (2015). Architectonic mapping of the human brain beyond Brodmann. Neuron, 88, 10861107.Google Scholar
Auerbach, S. (1906). Zur Lokalisation des musicalischen Talentes im Gehirn und am Schädel. Archives of Anatomy and Physiology, 197230 (also 1908, 31–8; 1911, 110; 1913 (Suppl.), 8996).Google Scholar
Baharloo, S., Johnston, P. A., Service, S. K., Gitschier, J., & Freimer, N. B. (1998). Absolute pitch: An approach for identification of genetic and nongenetic components. American Journal of Human Genetics, 62, 224231.Google Scholar
Baharloo, S., Service, S. K., Risch, N., Gitschier, J., & Freimer, N. B. (2000). Familial aggregation of absolute pitch. American Journal of Human Genetics, 67, 755758.Google Scholar
Bandettini, P. A. (2009). What is new in neuroimaging methods? Annals of the New York Academy of Sciences, 1156, 260293.CrossRefGoogle ScholarPubMed
Bangert, M. & Altenmüller, E. (2003). Mapping perception to action in piano practice: A longitudinal DC-EEG study. BMC Neuroscience, 4, 2636.Google Scholar
Bangert, M., Peschel, T., Rotte, M., Drescher, D., Hinrichs, H., Schlaug, G., … & Altenmüller, E. (2006). Shared networks for auditory and motor processing in professional pianists: Evidence from fMRI conjunction. NeuroImage, 30, 917926.CrossRefGoogle ScholarPubMed
Bangert, M., & Schlaug, G. (2006). Specialization of the specialized in features of external brain morphology. European Journal of Neuroscience, 24, 18321834.CrossRefGoogle ScholarPubMed
Battistella, G., Termsarasab, P., Ramdhani, R. A., Fuertinger, S., & Simonyan, K. (2015). Isolated focal dystonia as a disorder of large-scale functional networks. Cerebral Cortex, 26, 113.Google Scholar
Baur, V., Jabusch, H. C., & Altenmüller, E. (2011). Behavioral factors influence the phenotype of musician’s dystonia. Movement Disorders, 26, 17801781.CrossRefGoogle ScholarPubMed
Bengtsson, S. L., Nagy, Z., Skare, S., Forsman, L., Forssberg, H., & Ullén, F. (2005). Extensive piano practicing has regionally specific effects on white matter development. Nature Neuroscience, 8, 11481150.CrossRefGoogle ScholarPubMed
Bermudez, P., Lerch, J. P., Evans, A. C., & Zatorre, R. J. (2008). Neuroanatomical correlates of musicianship as revealed by cortical thickness and voxel-based morphometry. Cerebral Cortex, 19, 15831596.CrossRefGoogle ScholarPubMed
Brown, R. M., Chen, J. L., Hollinger, A., Palmer, C., Penhune, V., & Zatorre, R. J. (2013). Repetition suppression in auditory-motor regions to pitch and temporal structure in music. Journal of Cognitive Neuroscience, 25, 313328.Google Scholar
Brown, R. M., Penhune, V. B., & Zatorre, R. (2015). Expert music performance: Cognitive, neural, and developmental bases. Progress in Brain Research, 217, 5786.Google Scholar
Byl, N. N., Merzenich, M. M., & Jenkins, W. M. (1996). A primate genesis model of focal dystonia and repetitive strain injury: I. Learning-induced dedifferentiation of the representation of the hand in the primary somatosensory cortex in adult monkeys. Neurology, 47, 508520.Google Scholar
Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008a). Moving on time: Brain network for auditory-motor synchronization is modulated by rhythm complexity and musical training. Journal of Cognitive Neuroscience, 20, 226239.CrossRefGoogle Scholar
Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008b). Listening to musical rhythms recruits motor regions of the brain. Cerebral Cortex, 18, 28442854.Google Scholar
Corrigall, K. A., Schellenberg, E. G., & Misura, N. M. (2013). Music training, cognition, and personality. Frontiers in Psychology, 4, 222.Google Scholar
De Manzano, Ö., & Ullén, F. (2012). Activation and connectivity patterns of the presupplementary and dorsal premotor areas during free improvisation of melodies and rhythms. NeuroImage, 63, 272280.CrossRefGoogle ScholarPubMed
Elbert, T., Candia, V., Altenmüller, E., Rau, H., Rockstroh, B., Pantev, C., & Taub, E. (1998). Alteration of digital representations in somatosensory cortex in focal hand dystonia. NeuroReport, 16, 35713575.Google Scholar
Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., & Taub, E. (1995). Increased cortical representation of the fingers of the left hand in string players. Science, 270, 305307.Google Scholar
Ellis, R. J., Norton, A., Overy, K., Winner, E., Alsop, D., & Schlaug, G. (2013). Differentiating maturational and training influences on fMRI activation during music processing. NeuroImage, 75, 97107.CrossRefGoogle Scholar
Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100, 363406.Google Scholar
Ericsson, K. A., & Lehmann, A. C. (1996). Expert and exceptional performance: Evidence of maximal adaptation to task constraints. Annual Review of Psychology, 47, 273305.Google Scholar
Foster, N. E., & Zatorre, R. J. (2010). A role for the intraparietal sulcus in transforming musical pitch information. Cerebral Cortex, 20, 13501359.Google Scholar
Furuya, S., & Altenmüller, E. (2013a). Flexibility of movement organization in piano performance. Frontiers in Human Neuroscience, 7, 173.Google Scholar
Furuya, S., & Altenmüller, E. (2013b). Finger-specific loss of independent control of movements in musicians with focal dystonia. Neuroscience, 247, 152163.CrossRefGoogle ScholarPubMed
Furuya, S., Klaus, M., Nitsche, M. A., Paulus, W., & Altenmüller, E. (2014a). Ceiling effects prevent further improvement of transcranial stimulation in skilled musicians. Journal of Neuroscience, 34, 1383413839.CrossRefGoogle ScholarPubMed
Furuya, S., Nitsche, M. A., Paulus, W., & Altenmüller, E. (2014b). Surmounting retraining limits in musicians’ dystonia by transcranial stimulation. Annals of Neurology, 75, 700707.Google Scholar
Furuya, S., Oku, T., Miyazaki, F., & Kinoshita, H. (2015). Secrets of virtuoso: neuromuscular attributes of motor virtuosity in expert musicians. Scientific Reports, 5, 15750. DOI: 10.1038/srep15750.CrossRefGoogle ScholarPubMed
Gaab, N., Gaser, C., & Schlaug, G. (2006). Improvement-related functional plasticity following pitch memory training. NeuroImage, 31, 255263.CrossRefGoogle ScholarPubMed
Gärtner, H., Minnerop, M., Pieperhoff, P., Schleicher, A., Zilles, K., Altenmüller, E., & Amunts, K. (2013). Brain morphometry shows effects of long-term musical practice in middle-aged keyboard players. Frontiers in Psychology, 4. DOI: 10.3389/fpsyg.2013.00636.Google Scholar
Gaser, C., & Schlaug, G. (2003). Brain structures differ between musicians and non-musicians. Journal of Neuroscience, 23, 92409245.Google Scholar
Gentner, R., & Classen, J. (2006). Modular organization of finger movements by the human central nervous system. Neuron, 52, 731742.Google Scholar
Gingras, B., Honing, H., Peretz, I., Trainor, L. J., & Fisher, S. E. (2015). Defining the biological bases of individual differences in musicality. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 370, 20140092. DOI: 10.1098/rstb.2014.0092.Google Scholar
Granert, O., Peller, M., Jabusch, H. C., Altenmüller, E., & Siebner, H. R. (2011). Sensorimotor skills and focal dystonia are linked to putaminal grey-matter volume in pianists. Journal of Neurology, Neurosurgery and Psychiatry, 82, 12251231.Google Scholar
Gregersen, P. K., Kowalsky, E., Kohn, N., & Marvin, E. W. (2001). Early childhood music education and predisposition to absolute pitch: Teasing apart genes and environment. American Journal of Medical Genetics, 98, 280282.Google Scholar
Haber, J. (2003). The primate basal ganglia: Parallel and integrative networks. Journal of Chemical Neuroanatomy, 26, 317330.Google Scholar
Halwani, G. F., Loui, P., Rüber, T., & Schlaug, G. (2011). Effects of practice and experience on the arcuate fasciculus: Comparing singers, instrumentalists, and non-musicians. Frontiers in Psychology, 2, 156.Google Scholar
Haslinger, B., Altenmüller, E., Castrop, F., Zimmer, C., & Dresel, C. (2010). Sensorimotor overactivity as a pathophysiologic trait of embouchure dystonia. Neurology, 74, 17901797.Google Scholar
Haslinger, B., Erhard, P., Altenmüller, E., Schroeder, U., Boecker, H., & Ceballos-Baumann, A. O. (2005). Transmodal sensorimotor networks during action observation in professional pianists. Journal of Cognitive Neuroscience, 17, 282293.Google Scholar
Henry, D. E., Chiodo, A. E., & Yang, W. (2011). Central nervous system reorganization in a variety of chronic pain states: A review. PM&R, 3, 11161125.Google Scholar
Herholz, S. C., Coffey, E. B., Pantev, C., & Zatorre, R. J. (2016). Dissociation of neural networks for predisposition and for training-related plasticity in auditory-motor learning. Cerebral Cortex, 26, 31253134.CrossRefGoogle ScholarPubMed
Herholz, S. C., & Zatorre, R. J., (2012). Musical training as a framework for brain plasticity: Behavior, function, and structure. Neuron, 76, 486502.Google Scholar
Herrojo-Ruiz, M., Jabusch, H. C., & Altenmüller, E. (2009a). Detecting wrong notes in advance: Neuronal correlates of error monitoring in pianists. Cerebral Cortex, 19, 26252639.CrossRefGoogle Scholar
Herrojo-Ruiz, M., Senghaas, P., Grossbach, M., Jabusch, H. C., Bangert, M., Hummel, F., … & Altenmüller, E. (2009b). Defective inhibition and inter-regional phase synchronization in pianists with musician’s dystonia (MD): An EEG study. Human Brain Mapping, 30, 26892700.Google Scholar
Hikosaka, O., & Nakamura, K. (2002). Central mechanisms of motor skill learning. Current Opinion in Neurobiology, 12, 217222.Google Scholar
Hirata, Y., Kuriki, S., & Pantev, C. (1999). Musicians with absolute pitch show distinct neural activities in the auditory cortex. NeuroReport, 10, 9991002.Google Scholar
Hyde, K. L., Lerch, J., Norton, A., Forgeard, M., Winner, E., Evans, A. C., & Schlaug, G. (2009). Musical training shapes structural brain development. Journal of Neuroscience, 29, 30193025.Google Scholar
Imfeld, A., Oechslin, M. S., Meyer, M., Loenneker, T., & Jäncke, L. (2009). White matter plasticity in the corticospinal tract of musicians: A diffusion tensor imaging study. NeuroImage, 46, 600607.Google Scholar
Ioannou, C. I., & Altenmüller, E. (2014). Psychological characteristics in musician’s dystonia: A new diagnostic classification. Neuropsychologia, 61, 8088.CrossRefGoogle ScholarPubMed
Ioannou, C. I., Furuya, S., & Altenmüller, E. (2016). The impact of stress on motor performance in skilled musicians suffering from focal dystonia: Physiological and psychological characteristics. Neuropsychologia, 85, 226236.Google Scholar
Jabusch, H. C., & Altenmüller, E. (2004). Anxiety as an aggravating factor during onset of focal dystonia in musicians. Medical Problems of Performing Artists, 19, 7581.Google Scholar
Jabusch, H. C., Müller, S. V., & Altenmüller, E. (2004). High levels of perfectionism and anxiety in musicians with focal dystonia. Movement Disorders, 19, 990991.CrossRefGoogle Scholar
James, C. E., Oechslin, M. S., Van De Ville, D., Hauert, C.-A., Descloux, C., & Lazeyras, F. (2013). Musical training intensity yields opposite effects on grey matter density in cognitive versus sensorimotor networks. Brain Structure & Function, 219, 5366.Google Scholar
Kleber, B., Veit, R., Birbaumer, N., Gruzelier, J., & Lotze, M. (2010). The brain of opera singers: Experience-dependent changes in functional activation. Cerebral Cortex, 20, 11441152.Google Scholar
Koelsch, S. (2011). Toward a neural basis of music perception: A review and updated model. Frontiers in Psychology, 2, 110. DOI: 10.3389/fpsyg.2011.00110.Google Scholar
Krampe, R., & Ericsson, K. (1996). Maintaining excellence: Deliberate practice and elite performance in young and older pianists. Journal of Experimental Psychology: General, 125, 331359.Google Scholar
Kraus, N., McGee, T. J., & Koch, D. B. (1998). Speech sound representation, perception and plasticity: A neurophysiologic perspective. Audiology & Neuro-otology, 3, 168182.Google Scholar
Kuhtz-Buschbeck, J. P., Mahnkopf, C., Holzknecht, C., Siebner, H., Ulmer, S., & Jansen, O. (2003). Effector-independent representations of simple and complex imagined finger movements: A combined fMRI and TMS study. European Journal of Neuroscience, 18, 33753387.CrossRefGoogle ScholarPubMed
Lahav, A., Saltzman, E., & Schlaug, G. (2007). Action representation of sound: Audiomotor recognition network while listening to newly acquired actions. Journal of Neuroscience, 27, 308314.Google Scholar
Lee, A., Heiß, P., Eich, C., Ioannou, I. C., & Altenmüller, E. (Forthcoming). Phenomenology, risk-factors and treatment outcome in 369 musicians with focal dystonia. Submitted to Journal of Clinical Movement Disorders.Google Scholar
Lehmann, A. C. & Ericsson, K. A. (1998). The historical development of expert performance: Public performance of music. In Steptoe, A. (ed.), Genius and the mind (pp. 6797). Oxford University Press.Google Scholar
Lim, V., & Altenmüller, E. (2003). Musician’s cramp: Instrumental and gender differences. Medical Problems of Performing Artists, 18, 2127.Google Scholar
Lin, P. T., & Hallett, M. (2009). The pathophysiology of focal hand dystonia. Journal of Hand Therapy, 22, 109113.Google Scholar
Loui, P., Li, H. C., Hohmann, A., & Schlaug, G. (2010). Enhanced cortical connectivity in absolute pitch musicians: A model for local hyperconnectivity. Journal of Cognitive Neuroscience, 54, 521528.Google Scholar
Meinz, E. J. (2000). Experience-based attenuation of age-related differences in music cognition tasks. Psychology and Aging, 15, 297312.Google Scholar
Miyazaki, K. (1988). Musical pitch identification by absolute pitch possessors. Perception & Psychophysics, 44, 501512.Google Scholar
Mosing, M. A., Madison, G., Pedersen, N. L., Kuja-Halkola, R., & Ullén, F. (2014). Practice does not make perfect: No causal effect of music practice on music ability. Psychological Science, 43, 19.Google Scholar
Münte, T. F., Kohlmetz, C., Nager, W., & Altenmüller, E. (2001). Neuroperception: Superior auditory spatial tuning in professional conductors. Nature, 409, 580.CrossRefGoogle Scholar
Münte, T. F., Nager, W., Beiss, T., Schroeder, C., & Altenmüller, E. (2003). Specialization of the specialized: Electrophysiological investigations in professional musicians. Annals of the New York Academy of Sciences, 999, 131139.Google Scholar
Oechslin, M. S., Imfeld, A., Loenneker, T., Meyer, M., & Jäncke, L. (2010). The plasticity of the superior longitudinal fasciculus as a function of musical expertise: A diffusion tensor imaging study. Frontiers in Human Neuroscience, 3, 112.Google Scholar
Öztürk, A. H., Tascioglu, B., Aktekin, M., Kurtoglu, Z., & Erden, I. (2002). Morphometric comparison of the human corpus callosum in professional musicians and non-musicians by using in vivo magnetic resonance imaging. Journal of Neuroradiology, 29, 2934.Google ScholarPubMed
Pantev, C., Oostenveld, R., Engelien, A., Ross, B., Roberts, L. E., & Hoke, M. (1998). Increased auditory cortical representation in musicians. Nature, 392, 811814.Google Scholar
Pascual-Leone, A. (2001). The brain that plays music and is changed by it. Annals of the New York Academy of Sciences, 930, 315329.Google Scholar
Pascual-Leone, A., Grafman, J., & Hallett, M. (1994). Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science, 263, 12871289.Google Scholar
Paulig, J., Jabusch, H. C., Großbach, M., Boullet, L., & Altenmüller, E. (2014). Sensory trick phenomenon improves motor control in pianists with dystonia: Prognostic value of glove-effect. Frontiers in Psychology, 5, 1012. DOI: 10.3389/fpsyg.2014.01012.Google Scholar
Ragert, P., Schmidt, A., Altenmüller, E., & Dinse, H. R. (2003). Superior tactile performance and learning in professional pianists: Evidence for meta-plasticity in musicians. European Journal of Neuroscience, 19, 473478.Google Scholar
Ramnani, N. (2014). Automatic and controlled processing in the corticocerebellar system. Progress in Brain Research, 210, 255285.Google Scholar
Ridding, M. C., Brouwer, B., & Nordstrom, M. A. (2000). Reduced interhemispheric inhibition in musicians. Experimental Brain Research, 133, 249253.Google Scholar
Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3, 131141.CrossRefGoogle ScholarPubMed
Roland, P. E., & Zilles, J. (1996). Functions and structures of the motor cortices in humans. Current Opinion in Neurobiology, 6, 773781.Google Scholar
Rosenkranz, K., Altenmüller, E., Siggelkow, S., & Dengler, R. (2000). Alteration of sensorimotor integration in musician’s cramp: Impaired focussing of proprioception. Clinical Neurophysiology, 111, 20362041.Google Scholar
Rosenkranz, K., Williamon, A., Butler, K., Cordivari, C., Lees, A. J., & Rothwell, J. C. (2005). Pathophysiological differences between musician’s dystonia and writer’s cramp. Brain, 128, 918931.CrossRefGoogle ScholarPubMed
Salimpoor, V. N., van den Bosch, I., Kovacevic, N., McIntosh, A. R., Dagher, A., & Zatorre, R. J. (2013). Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science, 340, 216219.Google Scholar
Schlaug, G. (2001). The brain of musicians: A model for functional and structural plasticity. Annals of the New York Academy of Sciences, 930, 281299.Google Scholar
Schlaug, G. (2015). Musicians and music making as a model for the study of brain plasticity. Progress in Brain Research, 217, 3755.Google Scholar
Schlaug, G., Jäncke, L., Huang, Y., Staiger, J. F., & Steinmetz, H. (1995a). Increased corpus callosum size in musicians. Neuropsychologia, 33, 10471055.CrossRefGoogle ScholarPubMed
Schlaug, G., Jäncke, L., Huang, Y., & Steinmetz, H. (1995b). In vivo evidence of structural brain asymmetry in musicians. Science, 267, 699701.Google Scholar
Schmidt, A., Jabusch, H. C., Altenmüller, E., Hagenah, J., Brüggemann, N., Lohmann, K., … & Klein, C. (2009). Etiology of musician’s dystonia: Familial or environmental? Neurology, 72, 12481254.Google Scholar
Schmidt, A., Jabusch, H. C., Altenmüller, E., Kasten, M., & Klein, C. (2013). Challenges of making music: What causes musician’s dystonia? JAMA Neurology, 70, 14561459.CrossRefGoogle ScholarPubMed
Schneider, P., Scherg, M., Dosch, H. G., Specht, H. J., Gutschalk, A., & Rupp, A. (2002). Morphology of Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians. Nature Neuroscience, 5, 688694.Google Scholar
Schneider, P., Sluming, V., Roberts, N., Scherg, M., Goebel, R., Specht, H. J., … & Rupp, A. (2005). Structural and functional asymmetry of lateral Heschl’s gyrus reflects pitch perception preference. Nature Neuroscience, 8, 12411247.CrossRefGoogle ScholarPubMed
Seger, C. A. (2006). The basal ganglia in human learning. Neuroscientist, 12, 285290.Google Scholar
Sergeant, D. (1968). Experimental investigation of absolute pitch. Journal of Research in Music Education, 17, 135143.Google Scholar
Skoe, E., & Kraus, N. (2013). Musical training heightens auditory brainstem function during sensitive periods in development. Frontiers in Psychology, 4, 622.Google Scholar
Sommer, M., Ruge, D., Tergau, F., Beuche, W., Altenmüller, E., & Paulus, W. (2002). Spatial distribution of intracortical inhibition and facilitation in focal dystonia. Movement Disorders, 17, 10171025.Google Scholar
Steele, C. J., Bailey, J. A., Zatorre, R. J., & Penhune, V. B. (2013). Early musical training and white-matter plasticity in the corpus callosum: Evidence for a sensitive period. Journal of Neuroscience, 33, 12821290.Google Scholar
Stetson, C., & Anderson, C. A. (2015). Early planning in frontal and parietal cortex in a simplified task. Journal of Neurophysiology, 113, 39153922.Google Scholar
Stewart, L., Henson, R., Kampe, K., Walsch, V., Turner, R., & Frith, U. (2003). Brain changes after learning to read and play music. NeuroImage, 20, 7183.Google Scholar
Strübing, F., Ruiz, M. H., Jabusch, H. C., & Altenmüller, E. (2012). Error monitoring is altered in musician’s dystonia: Evidence from ERP-based studies. Annals of the New York Academy of Sciences, 1252, 192199CrossRefGoogle ScholarPubMed
Taubert, M., Villringer, A., & Ragert, P. (2012). Learning-related gray and white matter changes in humans: An update. Neuroscientist, 18, 320325.Google Scholar
Termsarasab, P., Ramdhani, R. A., Battistella, G., Rubien-Thomas, E., Choy, M., Farwell, I. M., & Simonyan, K. (2015). Neural correlates of abnormal sensory discrimination in laryngeal dystonia. NeuroImage, 10, 1826.Google Scholar
van Vugt, F. T., Boullet, L., Jabusch, H. C., & Altenmüller, E. (2014). Musician’s dystonia in pianists: Long-term evaluation of retraining and other therapies. Parkinsonism & Related Disorders, 20, 812.Google Scholar
Vaquero, L., Hartmann, K., Ripolles, P., Rojo, N., Sierpowska, J., François, C., … & Altenmüller, E. (2016). Structural neuroplasticity in expert pianists depends on the age of musical training onset. NeuroImage, 126, 106119.Google Scholar
Vollmann, H., Ragert, P., Conde, V., Villringer, A., Classen, J., Witte, O. W., & Steel, J. (2014). Instrument specific use-dependent plasticity shapes the anatomical properties of the corpus callosum: A comparison between musicians and non-musicians. Frontiers in Behavioral Neuroscience, 8, 245. DOI: 10.3389/fnbeh.2014.00245.Google Scholar
Warren, J. E., Wise, R. J., & Warren, J. D. (2005). Sounds do-able: Auditory–motor transformations and the posterior temporal plane. Trends in Neurosciences, 28, 636643.Google Scholar
Wong, P. C. M., Skoe, E., Russo, N. M., Dees, T., & Kraus, N. (2007). Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nature Neuroscience, 10, 420422.Google Scholar
Zatorre, R. J. (2001). Neural specializations for tonal processing. Annals of the New York Academy of Sciences, 930, 193210.Google Scholar
Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music: Auditory–motor interactions in music perception and production. Nature Reviews Neuroscience, 8, 547558.CrossRefGoogle ScholarPubMed
Zatorre, R. J., & Salimpoor, V. N. (2013). From perception to pleasure: Music and its neural substrates. Proceedings of the National Academy of Sciences of the USA, 110, 1043010437.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×