Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-18T18:23:36.131Z Has data issue: false hasContentIssue false

10 - RNA structure analysis

Published online by Cambridge University Press:  05 September 2012

Richard Durbin
Affiliation:
Sanger Centre, Cambridge
Sean R. Eddy
Affiliation:
Washington University, Missouri
Anders Krogh
Affiliation:
Technical University of Denmark, Lyngby
Get access

Summary

Many interesting RNAs conserve a secondary structure of base-pairing interactions more than they conserve their sequence. This makes RNA sequence analysis more complicated and difficult than protein or DNA sequence analysis. RNA secondary structure problems are a natural application for probabilistic models based on the stochastic context-free grammars introduced in Chapter 9. In this chapter, we will examine two RNA analysis problems of biological interest.

The first problem is RNA secondary structure prediction for a single sequence. We will outline two well-known dynamic programming algorithms for RNA secondary structure prediction, the Nussinov and the Zuker algorithms. Then we will use RNA secondary structure prediction as an introductory example for the use of SCFGs for RNA analysis, by developing a small SCFG that implements a probabilistic version of the Nussinov algorithm.

The second is a related set of problems, having to do with the analysis of multiple alignments of families of related RNAs. Like Chapter 5, where profile HMMs were used for both multiple alignment and for database searching, we develop RNA structure profiles called ‘covariance models’ (CMs) for dealing with RNA multiple alignments with secondary structure constraints included. Covariance models are used for both RNA multiple alignment and database searches. Consensus structure prediction from RNA multiple alignments, a process called comparative RNA sequence analysis, is also somewhat automated by RNA covariance model training algorithms.

As you read this chapter, bear in mind that SCFG-based RNA analysis methods are not widely known or used.

Type
Chapter
Information
Biological Sequence Analysis
Probabilistic Models of Proteins and Nucleic Acids
, pp. 261 - 299
Publisher: Cambridge University Press
Print publication year: 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×