Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T22:15:08.514Z Has data issue: false hasContentIssue false

5 - Dispersal of protists: the role of cysts and human introductions

from Part III - Unicellular eukaryotes

Published online by Cambridge University Press:  05 August 2012

Wilhelm Foissner
Affiliation:
Universität Salzburg
Diego Fontaneto
Affiliation:
Imperial College London
Get access

Summary

Introduction

While the distribution of flowering plants and larger animals is easy to determine, this is almost impossible in microorganisms, which are smaller than human beings by a factor of 1.8 × 106, assuming an average size of 100 µm and 180 cm, respectively. Thus, the subject has been searched with varied success and in heated debates (Foissner, 2004; Fenchel and Finlay, 2005), resulting in two hypotheses: the ‘cosmopolitan model’ (Finlay, 2002; Finlay et al., 2004) and the ‘moderate endemicity model’, which suggests that one-third of protists has restricted distribution (Foissner, 1999, 2006, 2008). The cosmopolitan model is based on ecological theory, while the moderate endemicity model emphasises flagship species which are so showy, or so novel, that it is unlikely that they would be overlooked if indeed they were widely distributed (Tyler, 1996). The debate has stimulated many investigations whose conclusions frequently read as follows (Bass et al., 2007): ‘Our results strongly suggest that geographic dispersal in macroorganisms and microbes is not fundamentally different: some taxa show restricted and/or patchy distributions while others are clearly cosmopolitan. These results are concordant with the ‘moderate endemicity model’ of microbial biogeography. Rare or continentally endemic microbes may be ecologically significant and potentially of conservational concern.

Type
Chapter
Information
Biogeography of Microscopic Organisms
Is Everything Small Everywhere?
, pp. 61 - 87
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bass, D., Richards, T.A., Matthai, L., Marsh, V., Cavalier-Smith, T. (2007). DNA evidence for global dispersal and probable endemicity of protozoa. BMC Evolutionary Biology 7, 162.CrossRefGoogle ScholarPubMed
Bardele, C.F., Foissner, W., Blanton, R.L. (1991). Morphology, morphogenesis and systematic position of the sorocarp forming ciliate Sorogena stoianovitchae Bradbury and Olive, 1980. Journal of Protozoology 38, 7–17.CrossRefGoogle Scholar
Blanton, R.L., Olive, L.S. (1983). Ultrastructure of aerial stalk formation by the ciliated protozoan Sorogena stoianovitchae. Protoplasma 116, 125–135.CrossRefGoogle Scholar
Blanton, R.L., Warner, S.A., Olive, L.S. (1983). The structure and composition of the stalk of the ciliated protozoan Sorogena stoianovitchae. Journal of Protozoology 30, 617–624.CrossRefGoogle Scholar
Blatterer, H., Foissner, W. (1992). Morphology and infraciliature of some cyrtophorid ciliates (Protozoa, Ciliophora) from freshwater and soil. Archiv für Protistenkunde 142, 101–118.CrossRefGoogle Scholar
Bradbury, P.C., Olive, L.S. (1980). Fine structure of the feeding stage of a sorogenic ciliate, Sorogena stoianovitchae gen. n., sp. n. Journal of Protozoology 27, 267–277.CrossRefGoogle Scholar
Caron, D.A. (2009). Past president's address: protistan biogeography: why all the fuss?Journal of Eukaryotic Microbiology 56, 105–112.CrossRefGoogle ScholarPubMed
Chao, A., Li, P.C., Agatha, S., Foissner, W. (2006). A statistical approach to estimate soil ciliate diversity and distribution based on data from five continents. Oikos 114, 479–493.CrossRefGoogle Scholar
Clamp, J.C. (2003). Ecology and geographic variation in Lagenophrys cochinensis (Ciliophora, Peritricha, Lagenophryidae), a widely distributed ectosymbiont of wood-boring, marine isopods. Journal of Eukaryotic Microbiology 50, Abstract 82.Google Scholar
Corliss, J.O., Esser, S.C. (1974). Comments on the role of the cyst in the life cycle and survival of free-living protozoa. Transactions of the American Microscopical Society 93, 578–593.CrossRefGoogle ScholarPubMed
Coste, M., Ector, L. (2000). Diatomées invasives exotiques ou rares en France: principales observations effectuées au cours des dernières décennies. Systematics and Geography of Plants 70, 373–400.CrossRefGoogle Scholar
Cowling, A.J. (1994). Protozoan distribution and adaptation. In Darbyshire, J.F. (ed.), Soil Protozoa, pp. 5–42. Wallingford: CAB International.Google Scholar
Darling, K.F., Wade, C.M. (2008). The genetic diversity of planktic foraminifera and the global distribution of ribosomal RNA genotypes. Marine Micropaleontology 67, 216–238.CrossRefGoogle Scholar
Dolan, J.R. (2005). An introduction to the biogeography of aquatic microbes. Aquatic Microbial Ecology 41, 39–48.CrossRefGoogle Scholar
Edlund, M.B., Taylor, C.M., Schelske, C.L. et al. (2000). Thalassiosira baltica (Grunow) Ostenfeld (Bacillariophyta), a new exotic species in the Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences 57, 610–615.CrossRefGoogle Scholar
Elliott, A.M. (1973). Life cycle and distribution of Tetrahymena. In Elliott, A.M. (ed.), Biology of Tetrahymena, pp. 259–268. Stroudsburg, PA: Hutchinson & Ross.Google Scholar
Epstein, S.S. (2009). Microbial awakenings. Nature 457, 1083.CrossRefGoogle ScholarPubMed
Fahnenstiel, G., Hong, Y., Millie, D., Doblin, M., Johengen, T., Reid, D. (2009). Marine dinoflagellate cysts in the ballast tank sediments of ships entering the Laurentian Great Lakes. Verhandlungen der Internationalen Vereinigung für Limnologie 30, 1035–1038.Google Scholar
Fauré-Fremiet, E. (1948). Le rythme de marée du Strombidium oculatum Gruber. Bulletin Biologique de la France et de la Belgique 82, 3–23.Google Scholar
Fenchel, T., Finlay, B.J. (2005). Cosmopolitanism and microbes. SILnews 44, 5.Google Scholar
Finlay, B.J. (2002). Global dispersal of free-living microbial eukaryote species. Science 296, 1061–1063.CrossRefGoogle ScholarPubMed
Finlay, B.J., Esteban, G.F., Fenchel, T. (2004). Protist diversity is different?Protist 155, 15–22.CrossRefGoogle ScholarPubMed
Foissner, W. (1987). Soil protozoa: fundamental problems, ecological significance, adaptations in ciliates and testaceans, bioindicators, and guide to the literature. Progress in Protistology 2, 69–212.Google Scholar
Foissner, W. (1993). Colpodea (Ciliophora). Fischer, Stuttgart, Protozoenfauna 4, I–X + 798 pp.Google Scholar
Foissner, W. (1998). An updated compilation of world soil ciliates (Protozoa, Ciliophora), with ecological notes, new records, and descriptions of new species. European Journal of Protistology 34, 195–235.CrossRefGoogle Scholar
Foissner, W. (1999). Protist diversity: estimates of the near-imponderable. Protist 150, 363–368.CrossRefGoogle ScholarPubMed
Foissner, W. (2003). Pseudomaryna australiensis nov. gen., nov. spec. and Colpoda brasiliensis nov. spec., two new colpodids (Ciliophora, Colpodea) with a mineral envelope. European Journal of Protistology 39, 199–212.CrossRefGoogle Scholar
Foissner, W. (2004). Ubiquity and cosmopolitanism of protists questioned. SILnews 43, 6–7.Google Scholar
Foissner, W. (2005). The unusual, lepidosome-coated resting cyst of Meseres corlissi (Ciliophora: Oligotrichea): transmission electron microscopy and phylogeny. Acta Protozoologica 44, 217–230.Google Scholar
Foissner, W. (2006). Biogeography and dispersal of micro-organisms: a review emphasizing protists. Acta Protozoologica 45, 111–136.Google Scholar
Foissner, W. (2008). Protist diversity and distribution: some basic considerations. Biodiversity and Conservation 17, 235–242.CrossRefGoogle Scholar
Foissner, W. (2009). The stunning, glass-covered resting cyst of Maryna umbrellata (Ciliophora, Colpodea). Acta Protozoologica 48, 223–243.Google Scholar
Foissner, W., Pichler, M. (2006). The unusual, lepidosome-coated resting cyst of Meseres corlissi (Ciliophora: Oligotrichea): genesis of four complex types of wall precursors and assemblage of the cyst wall. Acta Protozoologica 45, 339–366.Google Scholar
Foissner, W., Stoeck, T. (2009). Morphological and molecular characterization of a new protist family, Sandmanniellidae n. fam. (Ciliophora, Colpodea), with description of Sandmanniella terricola n. g., n. sp. from the Chobe floodplain in Botswana. Journal of Eukaryotic Microbiology 56, 472–483.CrossRefGoogle Scholar
Foissner, W., Blatterer, H., Berger, H., Kohmann, F. (1991). Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems – Band I: Cyrtophorida, Oligotrichida, Hypotrichia, Colpodea. Informationsberichte des Bayerischen Landesamtes für Wasserwirtschaft, München 1/91, 478 pp.Google Scholar
Foissner, W., Agatha, S., Berger, H. (2002). Soil ciliates (Protozoa, Ciliophora) from Namibia (Southwest Africa), with emphasis on two contrasting environments, the Etosha region and the Namib Desert. Denisia 5, 1–1459.Google Scholar
Foissner, W., Müller, H., Weisse, T. (2005). The unusual, lepidosome-coated resting cyst of Meseres corlissi (Ciliophora, Oligotrichea): light and scanning electron microscopy, cytochemistry. Acta Protozoologica 44, 201–215.Google Scholar
Foissner, W., Müller, H., Agatha, S. (2007). A comparative fine structural and phylogenetic analysis of resting cysts in oligotrich and hypotrich Spirotrichea (Ciliophora). European Journal of Protistology 43, 295–314.CrossRefGoogle Scholar
Foissner, W., Weissenbacher, B., Krautgartner, W.-D., Lütz-Meindl, U. (2009). A cover of glass: first report of biomineralized silicon in a ciliate, Maryna umbrellata (Ciliophora: Colpodea). Journal of Eukaryotic Microbiology 56, 519–530.CrossRefGoogle Scholar
Green, J., Bohannan, B.J.M. (2006). Spatial scaling of microbial biodiversity. Trends in Ecology and Evolution 21, 501–507.CrossRefGoogle ScholarPubMed
Gutiérrez, J.C., Walker, G.K. (1983). Cystology: a new area in protozoology. Proceedings of the 5th European Conference on Ciliate Biology, Geneva (unpaged abstract).Google Scholar
Gutiérrez, J.C., Martin-González, A. (2002). Ciliate encystment-excystment cycle: A response to environmental stress. In Gutiérrez, J.C. (ed.), Microbial Development Under Environmental Stress, pp. 29–49. Research Signpost 37/611 (2), Fort P.O., Trivandrum-695 023, Kerala, India.Google Scholar
Gutiérrez, J.C., Díaz, S., Ortega, R., Martín-González, A. (2003). Ciliate resting cyst walls: a comparative review. Recent Research Developments in Microbiology 7, 361–379.Google Scholar
Hallegraeff, G., Bolch, C.J. (1992). Transport of diatom and dinoflagellate resting spores in ships' ballast water: implications for plankton biogeography and aquaculture. Journal of Plankton Research 14, 1067–1084.CrossRefGoogle Scholar
Hamilton, W.D., Lenton, T.M. (1998). Spora and gaia: how microbes fly with their clouds. Ethology Ecology and Evolution 10, 1–16.CrossRefGoogle Scholar
Harper, M.A. (1994). Did Europeans introduce Asterionella formosa Hassall to New Zealand? In Kociolek, J.P. (ed.), Proceedings of the 11th International Diatom Symposium 1990, pp. 479–484. San Francisco, CA: California Academy of Sciences.Google Scholar
Hülsmann, N., Galil, B.S. (2002). Protists – a dominant component of the ballast-transported biota. In Leppäkoski, E. et al. (eds.), Invasive Aquatic Species of Europe, pp. 20–26. Dordrecht: Kluwer Academic.Google Scholar
Jonsson, P.R. (1994). Tidal rhythm of cyst formation in the rock pool ciliate Strombidium oculatum Gruber (Ciliophora, Oligotrichida): a description of the functional biology and an analysis of the tidal synchronization of encystment. Journal of Experimental Marine Biology and Ecology 175, 77–103.CrossRefGoogle Scholar
Katz, L.A., McManus, G.B., Snoeyenbos-West, L.O.et al. (2005). Reframing the “everything is everywhere“ debate: evidence for high gene flow and diversity in ciliate morphospecies. Aquatic Microbial Ecology 41, 55–65.CrossRefGoogle Scholar
Kilroy, C., Biggs, B.J., Vieglais, C.C. (2007). Didymosphenia geminata in New Zealand: a science response to help manage an unwanted, invasive freshwater diatom. Abstract book, ASLO Aquatic Sciences meeting. Santa Fe (New Mexico), 4–9/02/2007.Google Scholar
Kristiansen, J. (1996). Dispersal of freshwater algae – a review. Hydrobiologia 336, 151–157.CrossRefGoogle Scholar
Kühn, S.F. (1997). Victoriniella multiformis, gen. et spec. nov. (incerta sedis), a polymorphic parasitoid protist infecting the marine diatom Coscinodiscus wailesii Gran and Angst (North Sea, German Bight). Archiv für Protistenkunde 148, 115–123.CrossRefGoogle Scholar
Maguire, B., Jr. (1963). The passive dispersal of small aquatic organisms and their colonization of isolated bodies of water. Ecological Monographs 33, 161–185.CrossRefGoogle Scholar
Maguire, B., Jr. (1971). Community structure of protozoans and algae with particular emphasis on recently colonized bodies of water. In Cairns, J., Jr. (ed.), The Structure and Function of Fresh-water Microbial Communities, pp. 121–149. Research Division Monograph 3, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061.Google Scholar
Martiny, J.B.H., Bohannan, B.J.M., Brown, J.H. et al. (2006). Microbial biogeography: putting microorganisms on the map. Nature 4, 102–112.Google Scholar
Meier-Tackmann, D. (1982). Untersuchungen über die physiologische Funktion der Cystenhülle und die Resistenz der dünnwandigen Dauercysten von Colpoda cucullus O.F. Müller (Holotricha, Ciliata). Zoologischer Anzeiger 208, 1–29.Google Scholar
Meier-Tackmann, D., Wenzel, F. (1988). Daten über Wettergeschehen und Reaktivierbarkeit der Dauercysten von Colpoda cucullus O.F. Müller (Holotricha, Ciliata). Zoologischer Anzeiger 220, 277–290.Google Scholar
Meisterfeld, R. (1997). Thekamöben – ihr Potential für Ökosystemforschung und Bioindikation. Abhandlungen und Berichte der Gesellschaft für Naturkunde, Görlitz 69, 87–95.Google Scholar
Meyer, E., Foissner, W., Aescht, E. (1989). Vielfalt und Leistung der Tiere im Waldboden. Österreichische Forstzeitung 3, 15–18.Google Scholar
Montagnes, D.J.S., Wilson, D., Brooks, S.J., Lowe, C., Campey, M. (2002). Cyclical behaviour of the tide-pool ciliate Stombidium oculatum. Aquatic Microbial Ecology 28, 55–68.CrossRefGoogle Scholar
Müller, H., Foissner, W., Weisse, T. (2006). Role of soil in the life cycle of Meseres corlissi (Ciliophora: Oligotrichea): experiments with two clonal strains from the type locality, an astatic meadow pond. Aquatic Microbial Ecology 42, 199–208.CrossRefGoogle Scholar
Nicholls, K.H., MacIsaac, H.J. (2004). Euryhaline, sand-dwelling testate rhizopods in the Great Lakes. Journal of Great Lakes Research 30, 123–132.CrossRefGoogle Scholar
Nilsson, J.R. (2005). Ethanol affects endocytosis and proliferation of Tetrahymena pyriformis GL and promotes encystment. Acta Protozoologica 44, 293–299.Google Scholar
Olive, L.S., Blanton, R.L. (1980). Aerial sorocarp development by the aggregative ciliate, Sorogena stoianovitchae. Journal of Protozoology 27, 293–299.CrossRefGoogle Scholar
Pawlowski, J., Holzman, M. (2008). Diversity and geographic distribution of benthic foraminifera: a molecular perspective. Biodiversity and Conservation 17, 317–328.CrossRefGoogle Scholar
Petz, W., Foissner, W. (1992). Morphology and morphogenesis of Strobilidium caudatum (Fromentel) Meseres corlissi n. sp., Halteria grandinella (Müller), and Strombidium rehwaldi n. sp., and a proposed phylogenetic system for oligotrich ciliates (Protozoa, Ciliophora). Journal of Protozoology 39, 159–176.CrossRefGoogle Scholar
Przybós, E., Hori, M., Fokin, S.I. (2003). Strains of Paramecium quadecaurelia from Namibia, Africa; genetic and molecular studies. Acta Protozoologica 42, 357–360.Google Scholar
Segers, H. (2001). Zoogeography of the Southeast Asian Rotifera. Hydrobiologia 446/447, 233–246.CrossRefGoogle Scholar
Smith, H.G., Bobrov, A., Lara, E. (2008). Diversity and biogeography of testate amoebae. Biodiversity and Conservation 17, 329–343.CrossRefGoogle Scholar
Sugimoto, H., Endoh, H. (2008). Differentially expressed genes during fruiting body development in the aggregative ciliate Sorogena stoianovitchae (Ciliophora: Colpodea). Journal of Eukaryotic Microbiology 55, 110–116.CrossRefGoogle Scholar
Taylor, J.W., Turner, E., Townsend, J.P., Dettman, J.R., Jacobson, D. (2006). Eukaryotic microbes, species recognition and the geographic limits of species: examples from the kingdom Fungi. Philosophical Transactions of the Royal Society B 361, 1947–1963.CrossRefGoogle ScholarPubMed
Tyler, P.A. (1996). Endemism in freshwater algae with special reference to the Australian region. Hydrobiologia 336, 1–9.CrossRefGoogle Scholar
Dam, H., Mertens, A., Sinkeldam, J. (1994). A coded checklist and ecological indicator values of freshwater diatoms from The Netherlands. Netherlands Journal of Aquatic Ecology 28, 117–133.CrossRefGoogle Scholar
Vanormelingen, P., Verleyen, E., Vyverman, W. (2008). The diversity and distribution of diatoms: from cosmopolitanism to narrow endemism. Biodiversity and Conservation 17, 393–405.CrossRefGoogle Scholar
Wanner, M., Dunger, W. (2001). Biological activity of soils from reclaimed open-cast coal mining areas in Upper Lusatia using testate amoebae (protists) as indicators. Ecological Engineering 17, 323–330.CrossRefGoogle Scholar
Weisse, T., Strüder-Kypke, C., Berger, H., Foissner, W. (2008). Genetic, morphological, and ecological diversity of spatially separated clones of Meseres corlissi Petz & Foissner, 1992 (Ciliophora, Spirotrichea). Journal of Eukaryotic Microbiology 55, 257–270.CrossRefGoogle Scholar
Webster, J. (1983). Pilze. Eine Einführung. Berlin: Springer.Google Scholar
Wichterman, R. (1986). The Biology of Paramecium, 2nd Edition. New York: Plenum Press.CrossRefGoogle Scholar
Wilkinson, D.M. (2001). What is the upper size limit for cosmopolitan distribution in free-living microorganisms?Journal of Biogeography 28, 285–291.CrossRefGoogle Scholar
Wilkinson, D.M. (2010). Have we underestimated the importance of humans in the biogeography of free-living terrestrial microorganisms?Journal of Biogeography 37, 393–397.CrossRefGoogle Scholar
Winder, M., Monaghan, M.T., Spaak, P. (2001). Have human impacts changed alpine zooplankton diversity over the past 100 years?Arctic, Antarctic, and Alpine Research 33, 467–475.CrossRefGoogle Scholar
Winter, A., Jordan, R.W., Roth, P.H. (1994). Biogeography of living coccolithophores in ocean waters. In Winter, A., Siesser, W.G. (eds.), Coccolithophores, pp. 161–177. Cambridge: Cambridge University Press.Google Scholar
Yang, S.H., Lee, K.-B., Kong, B., Kim, J.-H., Kim, H.-S., Choi, I.S. (2009). Biomimetic encapsulation of individual cells with silica. Angewandte Chemie 121, 9324–9327.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×