Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-19T05:17:27.609Z Has data issue: false hasContentIssue false

8 - Everything is not everywhere: the distribution of cactophilic yeast

from Part III - Unicellular eukaryotes

Published online by Cambridge University Press:  05 August 2012

Philip F. Ganter
Affiliation:
Tennessee State University
Diego Fontaneto
Affiliation:
Imperial College London
Get access

Summary

Introduction

Cactophilic yeast form a community of fungi confined to the necrotic tissues of certain species of cacti. Although there is much we do not know about this community, our current understanding has implications for the generality of the ‘Everything is everywhere, but the environment selects’ (EiE) hypothesis (Finlay and Clarke, 1999; Fenchel and Finlay, 2004a; de Wit and Bouvier, 2006). The hypothesis of ubiquitous distributions for free-living microbial species is attractive because it solves a conceptual problem for biologists studying such small organisms: how do they discover new resource patches when their motion is passive? EiE provides an answer. Microbes reach such large population sizes that passive dispersal is sufficient to discover a new resource as it becomes available. It is a positive feedback loop. The larger its global population, the more likely a microbe is to find new resources and the larger its global population will become, increasing its likelihood of discovering more resources. Microbes that live in a patchy environment can quickly overexploit the patches and must often undergo difficult migrations across inhospitable territory in order to reach the next patch. This is true if distance, time or both separate patches. As passive agents, they must be resistant to the stresses inherent in dispersal. For microbes in a patchy habitat, ubiquity is not only an outcome of large population sizes. It also rests on the assumption of passive dispersal of resistant life forms, often in the form of resistant spores.

Type
Chapter
Information
Biogeography of Microscopic Organisms
Is Everything Small Everywhere?
, pp. 130 - 174
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aa, E., Townsend, J.P., Adams, R.I., Nielsen, K.M., Taylor, J.W. (2006). Population structure and gene evolution in Saccharomyces cerevisiae. FEMS Yeast Research 6, 702–715.CrossRefGoogle ScholarPubMed
Anderson, E.F. (2001). The Cactus Family. Portland, OR:Timber Press.Google Scholar
Ayoub, M.-J., Legras, J.-L., Saliba, R., Gaillardin, C. (2006). Application of multi locus sequence typing to the analysis of the biodiversity of indigenous Saccharomyces cerevisiae wine yeasts from Lebanon. Journal of Applied Microbiology 100, 699–711.CrossRefGoogle ScholarPubMed
Baumberger, J.P. (1917). The food of Drosophila melanogaster Meigen. Proceedings of the National Academy of Science USA 3, 122–126.CrossRefGoogle ScholarPubMed
Baumberger, J.P. (1919). A nutritional study of insects, with special reference to microorganisms and their substrata. Journal of Experimental Zoology 28, 1–81.CrossRefGoogle Scholar
Begon, M. (1981). Yeasts and Drosophila. In Ashburner, M., Carson, H.L., Thompson, J. (eds.), The Genetics and Biology of Drosophila, 345–384. New York, NY: Academic Press.Google Scholar
Belloch, C., Pérez-Torrado, R., González, S.S. et al. (2009). Chimeric genomes of natural hybrids of Saccharomyces cerevisiae and Saccharomyces kudriavzevii. Applied and Environmental Microbiology 75, 2534–2544.CrossRefGoogle ScholarPubMed
Ben-Ari, G., Zenvirth, D., Sherman, A. et al. (2005). Application of SNPs for assessing biodiversity and phylogeny among yeast strains. Heredity 95, 493–501.CrossRefGoogle ScholarPubMed
Bloom, S.A. (1981). Similarity indices in community studies: potential pitfalls. Marine Ecology Progress Series 5, 125–128.CrossRefGoogle Scholar
Brysch-Herzberg, M. (2004). Ecology of yeasts in plant–bumblebee mutualism in Central Europe. FEMS Microbiology Ecology 50, 87–100.CrossRefGoogle ScholarPubMed
Cairney, J. (2005). Basidiomycete mycelia in forest soils: dimensions, dynamics and roles in nutrient distribution. Mycological Research 109, 7–20.CrossRefGoogle ScholarPubMed
Carreto, L., Eiriz, E., Gomes, A. et al. (2008). Comparative genomics of wild type yeast strains unveils important genome diversity. BMC Genomics 9, 524.CrossRefGoogle ScholarPubMed
Coluccio, A.E., Rodriguez, R.K., Kernan, M.J., Neiman, A.M. (2008). The yeast spore wall enables spores to survive passage through the digestive tract of Drosophila. PLoS ONE 3, e2873–e2879.CrossRefGoogle ScholarPubMed
Crampin, H., Finley, K., Gerami-Nejad, M. et al. (2005). Candida albicans hyphae have a Spitzenkörper that is distinct from the polarisome found in yeast and pseudohyphae. Journal of Cell Science 118, 2935–2947.CrossRefGoogle ScholarPubMed
Barros Lopes, M., Bellon, J.R., Shirley, N.J., Ganter, P.F. (2002). Evidence for multiple interspecific hybridization in Saccharomyces sensu stricto species. FEMS Yeast Research 1, 323–331.CrossRefGoogle ScholarPubMed
Hoog, G.S., Smith, M.T., Guého, E. (1986). A revision of the genus Geotrichum and its telomorphs. Studies in Mycology 29, 1–131.Google Scholar
Wit, R., Bouvier, T. (2006). ‘Everything is everywhere, but the environment selects’; what did Baas Becking and Beijerinck really say?Environmental Microbiology 8, 755–758.CrossRefGoogle Scholar
Dodd, A.P., (Australia), Published under the authority of the Commonwealth Prickly Pear Board (1940). The Biological Campaign Against the Prickly Pear. Brisbane: A.H. Tucker, Government Printer.Google Scholar
Fellows, D.P., Heed, W.B. (1972). Factors affecting host plant selection in desert-adapted cactiphilic Drosophila. Ecology 53, 850–858.CrossRefGoogle Scholar
Fenchel, T., Finlay, B.J. (2004a). Response to Lachance. BioScience 54, 884–885.Google Scholar
Fenchel, T., Finlay, B.J. (2004b). The ubiquity of small species: patterns of local and global diversity. BioScience 54, 777–784.CrossRefGoogle Scholar
Ferguson, B.A., Dreisbach, T.A., Parks, C.G., Filip, G.M., Schmitt, C.L. (2003). Coarse-scale population structure of pathogenic Armillaria species in a mixed-conifer forest in the Blue Mountains of northeast Oregon. Canadian Journal of Forest Management 33, 612–623.CrossRefGoogle Scholar
Finlay, B.J. (2002). Global dispersal of free-living microbial eukaryote species. Science 296, 1061–1063.CrossRefGoogle ScholarPubMed
Finlay, B.J., Clarke, K.J. (1999). Ubiquitous dispersal of microbial species. Nature 400, 828.CrossRefGoogle Scholar
Finlay, B.J., Fenchel, T. (2002). Response to A. Coleman. Science 297, 337.Google Scholar
Fogleman, J.C. (1982). The role of volatiles in the ecology of cactophilic Drosophila. In Barker, J.S.F., Starmer, W.T. (eds.), Ecological Genetics and Evolution: the Cactus–Yeast–Drosophila Model System, pp. 191–208. Sydney:Academic Press Inc.Google Scholar
Fogleman, J.C., Abril, R. (1990). Ecological and evolutionary importance of host plant chemistry. In Barker, J.S.F., MacIntyre, R.J., Starmer, W.T. (eds.), Ecological and Evolutionary Genetics of Drosophila, 121–143. New York, NY:Plenum Press.Google Scholar
Fogleman, J.C., Foster, J.L. (1989). Microbial colonization of injured cactus tissue (Stenocereus gummosus) and its relationship to the ecology of cactophilic Drosophila mojavensis. Applied and Environmental Microbiology 55, 100–105.Google ScholarPubMed
Ganter, P.F. (1988). The vectoring of cactophilic yeasts by Drosophila. Oecologia 75, 400–404.CrossRefGoogle ScholarPubMed
Ganter, P.F. (2006). Yeast and invertebrate associations. In Rosa, C.A., Gábor, P. (eds.), Biodiversity and Ecophysiology of Yeasts, pp. 303–370. Berlin: Springer-Verlag.Google Scholar
Ganter, P.F., Barros Lopes, M. (2000). The use of anonymous DNA markers in assessing global relatedness in the yeast species Pichia kluyveri Bedford and Kudrjavzev. Canadian Journal of Microbiology 26, 967–980.CrossRefGoogle Scholar
Ganter, P.F., Quarles, B. (1997). Analysis of population structure of cactophilic yeast from the genus Pichia: Pichia cactophila and P. norvegensis. Canadian Journal of Microbiology 43, 35–44.CrossRefGoogle ScholarPubMed
Ganter, P.F., Starmer, W.T., Lachance, M. -A., Phaff, H.J. (1986). Yeast communities from host plants and associated Drosophila in southern Arizona: new isolations and analysis of the relative importance of hosts and vectors on community composition. Oecologia 70, 386–392.CrossRefGoogle Scholar
Ganter, P.F., Cardinali, G., Giammaria, M., Quarles, B. (2004). Correlations among measures of phenotypic and genetic variation within an oligotrophic asexual yeast, Candida sonorensis, collected from Opuntia. FEMS Yeast Research 4, 527–540.CrossRefGoogle ScholarPubMed
Ganter, P.F., Cardinali, G., Boundy-Mills, K. (2010). Pichia insulana sp. nov., a novel cactophilic yeast from the Caribbean. International Journal of Systematic and Evolutionary Microbiology 60, 1001–1007.CrossRefGoogle ScholarPubMed
Gibson, A.C. (1982). Phylogenetic relationships of Pachycereeae. In Barker, J.S.F., Starmer, W.T. (eds.), Ecological Genetics and Evolution: the Cactus–Yeast–Drosophila Model System, pp. 3–16. Sydney:Academic Press.Google Scholar
Gilbert, D.G. (1980). Dispersal of yeasts and bacteria by Drosophila in a temperate forest. Oecologia 46, 135–137.CrossRefGoogle Scholar
Groenewald, M., Daniel, H.-M., Robert, V., Poot, G.A., Smith, M.T. (2008). Polyphasic re-examination of Debaryomyces hansenii strains and reinstatement of D. hansenii, D. fabryi and D. subglobosus. Persoonia 21, 17–27.CrossRefGoogle ScholarPubMed
Heed, W.B. (1977a). Ecology and genetics of Sonoran Desert Drosophila. In Brussard, P.F. (ed.), Ecological Genetics: the Interface, pp. 109–126. New York, NY: Springer-Verlag.Google Scholar
Heed, W.B. (1977b). A new cactus-feeding but soil-breeding species of Drosophila (Diptera: Drosophilidae). Proceedings of the Entomological Society of Washington 79, 649–654.Google Scholar
Heed, W.B. (1982). The origin of Drosophila in the Sonoran Desert. In Barker, J.S.F., Starmer, W.T. (eds.), Ecological Genetics and Evolution: the Cactus–Yeast–Drosophila Model System, pp. 65–80. Sydney:Academic PressGoogle Scholar
Heed, W.B. (1989). Origin of Drosophila of the Sonoran Desert revisited. In search for a founder event and the description of a new species in the eremophila complex. In Giddings, L.V., Kaneshiro, K.Y., Anderson, W.W. (eds.), Genetics, Speciation and the Founder Principle, pp. 253–278. New York, NY: Oxford University Press.Google Scholar
Heed, W.B., Starmer, W.T., Miranda, M., Miller, M.W., Phaff, H.J. (1976). An analysis of the yeast flora associated with cactiphilic Drosophila and their host plants in the Sonoran Desert and its relation to temperate and tropical associations. Ecology 57, 151–160.CrossRefGoogle Scholar
Hibbett, D.S. (2004). Trends in morphological evolution in homobasidiomycetes inferred using maximum likelihood: a comparison of binary and multistate approaches. Systematic Biology 53, 889–903.CrossRefGoogle ScholarPubMed
Holzschu, D.L., Phaff, H.J. (1982). Taxonomy and evolution of some ascomycetous cactophilic yeasts. In Barker, J.S.F., Starmer, W.T. (eds.), Ecological Genetics and Evolution: the Cactus–Yeast–Drosophila Model System, pp. 127–141. Sydney:Academic PressGoogle Scholar
Holzschu, D.L., Phaff, H.J., Tredick, J., Hedgecock, D. (1983). Pichia pseudocactophila, a new species of yeast occurring in necrotic tissue of columnar cacti in the North American Sonoran desert. Canadian Journal of Microbiology 29, 1314–1322.CrossRefGoogle Scholar
Holzschu, D.L., Phaff, H.J., Tredick, J., Hedgecock, D. (1985). Resolution of the varietal relationship within the species Pichia opuntiae and establishment of a new species, Pichia thermotolerans comb. nov. International Journal of Systematic Bacteriology 35, 457–461.CrossRefGoogle Scholar
Imanishi, I., Jindamorakot, S., Mikata, K. et al. (2008). Two new ascomycetous anamorphic yeast species related to Candida friedrichii – Candida jaroonii sp. nov., and Candida songkhlaensis sp. nov. – isolated in Thailand. Antonie van Leeuwenhoek 94, 267–276.CrossRefGoogle ScholarPubMed
Jacques, N., Mallet, S., Casaregola, S. (2009). Delimitation of the species of the Debaryomyces hansenii complex by intron sequence analysis. International Journal of Systematic and Evolutionary Microbiology 59, 1242–1251.CrossRefGoogle ScholarPubMed
James, T.Y., Kauff, F., Schoch, C.L. et al. (2006). Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443, 818–822.CrossRefGoogle ScholarPubMed
Kircher, H. (1982). Chemical composition of cacti and its relationship to Sonoran desert Drosophila. In Barker, J.S.F., Starmer, W.T. (eds.), Ecological Genetics and Evolution: the Cactus–Yeast–Drosophila Model System, pp. 143–158. Sydney:Academic Press.Google Scholar
Kurtzman, C.P. (1998). Pichia E.C. Hansen emend. Kurtzman. In Kurtzman, C.P., Fell, J.W. (eds.), The Yeasts, A Taxonomic Study, pp. 273–352. Amsterdam:Elsevier.Google Scholar
Kurtzman, C.P. (2003). Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. FEMS Yeast Research 4, 233–245.CrossRefGoogle ScholarPubMed
Kurtzman, C.P. (2005). Description of Komagataella phaffii sp. nov. and the transfer of Pichia pseudopastoris to the methylotrophic yeast genus Komagataella. International Journal of Systematic and Evolutionary Microbiology 55, 973–976.CrossRefGoogle ScholarPubMed
Kurtzman, C.P., Fell, J.W. (1998). The Yeasts, A Taxonomic Study. 4th Edition. Amsterdam:Elsevier.Google Scholar
Kurtzman, C.P., Robnett, C.J. (1995). Molecular relationships among hyphal ascomycetous yeasts and yeastlike taxa. Canadian Journal of Botany 73, S824–S830.CrossRefGoogle Scholar
Kurtzman, C.P., Robnett, C. J. (2010). Systematics of methanol assimilating yeasts and neighboring taxa from multigene sequence analysis and the proposal of Peterozyma gen.nov., a new memberof the Saccharomycetales. FEMS Yeast Research 10, 353–361.CrossRefGoogle ScholarPubMed
Kurtzman, C.P., Robnett, C.J., Basehoar-Powers, E. (2008). Phylogenetic relationships among species of Pichia, Issatchenkia and Williopsis determined from multigene sequence analysis, and the proposal of Barnettozyma gen. nov., Lindnera gen. nov. and Wickerhamomyces gen. nov. FEMS Yeast Research 8, 939–954.CrossRefGoogle ScholarPubMed
Lachance, M.-A. (1990). Ribosomal DNA spacer variation in the cactophilic yeast Clavispora opuntiae. Molecular Biology and Evolution 7, 178–193.Google Scholar
Lachance, M.-A. (2004). Here and there or everywhere?BioScience 54, 884.CrossRefGoogle Scholar
Lachance, M.-A., Bowles, J.M., Kwon, S. et al. (2001a). Metschnikowia lochheadii and Metschnikowia drosophilae, two new yeast species isolated from insects associated with flowers. Canadian Journal of Microbiology 47, 103–109.CrossRefGoogle ScholarPubMed
Lachance, M.-A., Bowles, J.M., Starmer, W.T. (2003). Metschnikowia santaceciliae, Candida hawaiiana, and Candida kipukae, three new yeast species associated with insects of tropical morning glory. FEMS Yeast Research 3, 97–103.Google ScholarPubMed
Lachance, M.-A., Ewing, C.P., Bowles, J.M., Starmer, W.T. (2005). Metschnikowia hamakuensis sp. nov., Metschnikowia kamakouana sp. nov. and Metschnikowia mauinuiana sp. nov., three endemic yeasts from Hawaiian nitidulid beetles. International Journal of Systematic and Evolutionary Microbiology 55, 1369–1377.CrossRefGoogle ScholarPubMed
Lachance, M.-A., Gilbert, D.G., Starmer, W.T. (1995). Yeast communities associated with Drosophila species and related flies in an eastern oak-pine forest: a comparison with western communities. Journal of Industrial Microbiology 14, 484–494.CrossRefGoogle Scholar
Lachance, M.-A., Kaden, J.E., Phaff, H.J., Starmer, W.T. (2001b). Phylogenetic structure of the Sporopachydermia cereana species complex. International Journal of Systematic and Evolutionary Microbiology 51, 237–247.CrossRefGoogle ScholarPubMed
Lachance, M.-A., Starmer, W.T. (1982). Evolutionary significance of physiological relationships among yeast communities associated with trees. Canadian Journal of Botany 60, 285–293.CrossRefGoogle Scholar
Lachance, M.-A., Starmer, W.T. (2008). Kurtzmaniella gen. nov. and description of the heterothallic, haplontic yeast species Kurtzmaniella cleridarum sp. nov., the teleomorph of Candida cleridarum. International Journal of Systematic and Evolutionary Microbiology 58, 520–524.CrossRefGoogle ScholarPubMed
Lachance, M.-A., Nair, P., Lo, P. (1994). Mating in the heterothallic haploid yeast Clavispora opuntiae, with special reference to mating type imbalances in local populations. Yeast 10, 895–906.CrossRefGoogle ScholarPubMed
Lachance, M.-A., Starmer, W.T., Bowles, J.M., Phaff, H.J., Rosa, C.A. (2000). Ribosomal DNA, species structure, and biogeography of the cactophilic yeast Clavispora opuntiae. Canadian Journal of Microbiology 46, 195–210.CrossRefGoogle ScholarPubMed
Leask, B.G.S., Yarrow, D. (1976). Pichia norvegensis sp. nov. Sabouraudia 14, 61–63.CrossRefGoogle ScholarPubMed
Loncaric, I., Oberlerchner, J.T., Heissenberger, B., Moosbeckhofer, R. (2009). Phenotypic and genotypic diversity among strains of Aureobasidium pullulans in comparison with related species. Antonie van Leeuwenhoek 95, 165–178.CrossRefGoogle ScholarPubMed
Lutzoni, F., Kauff, F., Cox, C.J. et al. (2004). Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. American Journal of Botany 91, 1446–1480.CrossRefGoogle ScholarPubMed
Magliani, W., Conti, S., Gerloni, M., Bertolotti, D., Poloneli, L. (1997). Yeast killer systems. Clinical Microbiology Reviews 10, 369–400.Google ScholarPubMed
Marcet-Houben, M., Gabaldón, T. (2009). The tree versus the forest: the fungal tree of life and the topological diversity within the yeast phylome. PLoS ONE 4, e4357–e4364.CrossRefGoogle ScholarPubMed
Masneuf, I., Hansen, J., Groth, C., Piskur, P., Dubourdieu, D. (1998). New hybrids between Saccharomyces sensu stricto yeast species found among wine and cider production strains. Applied and Environmental Microbiology 64, 3887–3892.Google ScholarPubMed
Morais, P.B., Rosa, C.A., Hagler, A.N., Mendonça-Hagler, L.C. (1995). Yeast communities as descriptors of habitat use by the Drosophila fasciola subgroup (repleta group) in Atlantic rain forests. Oecologia 104, 45–51.CrossRefGoogle Scholar
Morais, P.B., Teixeira, L.C.R.S., Bowles, J.M., Lachance, M.-A., Rosa, C.A. (2004). Ogataea falcaomoraisii sp. nov., a sporogenous methylotrophic yeast from tree exudates. FEMS Yeast Research 5, 81–85.CrossRefGoogle ScholarPubMed
Muller, L.A.H., McCusker, J.H. (2009). A multispecies-based taxonomic microarray reveals interspecies hybridization and introgression in Saccharomyces cerevisiae. FEMS Yeast Research 9, 143–152.CrossRefGoogle ScholarPubMed
Murray, N.D. (1982). Ecology and evolution of the Opuntia–Cactoblastis ecosystem in Australia. In Barker, J.S.F., Starmer, W.T. (eds.), Ecological Genetics and Evolution: the Cactus–Yeast–Drosophila Model System, pp. 17–30. Sydney:Academic Press.Google Scholar
Naumov, G.I., Naumova, E.S., Kondrativea, V.I. et al. (1997a). Genetic and molecular delineation of three sibling species in the Hansenula polymorpha complex. Systematic and Applied Microbiology 20, 50–56.CrossRefGoogle Scholar
Naumov, G.I., Naumova, E.S., Sniegowski, P.D. (1997b). Differentiation of European and Far East Asian populations of Saccharomyces paradoxus by allozyme analysis. International Journal of Systematic Bacteriology 47, 341–344.CrossRefGoogle ScholarPubMed
Naumova, E.S., Smith, M.T., Boekhout, T., Hoog, G.S., Naumov, G.I. (2001). Molecular differentiation of sibling species in the Galactomyces geotrichum complex. Antonie van Leeuwenhoek 80, 263–273.CrossRefGoogle ScholarPubMed
Naumova, E.S., Korshunova, I.V., Jespersen, L., Naumov, G.I. (2003). Molecular genetic identification of Saccharomyces sensu stricto strains from African sorghum beer. FEMS Yeast Research 3, 177–184.CrossRefGoogle ScholarPubMed
Nguyen, H.-V., Gaillardin, C., Neuvéglise, C. (2009). Differentiation of Debaryomyces hansenii and Candida famata by rRNA gene intergenic spacer fingerprinting and reassessment of phylogenetic relationships among D. hansenii, C. famata, D. fabryi, C. flareri (=D. subglobosus) and D. prosopidis: description of D. vietnamensis sp. nov. closely related to D. nepalensis. FEMS Yeast Research 9, 641–662.CrossRefGoogle Scholar
Pagnocca, F.C., Rodrigues, A., Nagamoto, N.S., Bacci, M. (2008). Yeasts and filamentous fungi carried by the gynes of leaf-cutting ants. Antonie van Leeuwenhoek 94, 517–526.CrossRefGoogle ScholarPubMed
Pemberton, R.W. (1995). Cactoblastis cactorum (Lepidoptera: Pyralidae) in the United States: An immigrant biological control agent or an introduction of the nursery industry?American Entomologist 41, 230–232.CrossRefGoogle Scholar
Perez-Sandic, M. (2001). Addressing the threat of Cactoblastis cactorum (Lepidoptera: Pyralidae) to Opuntia in Mexico. Florida Entomologist 84, 499–502.Google Scholar
Phaff, H.J., Starmer, W.T. (1987). Yeasts associated with plants, insects and soil. In Rose, A.H., Harrison, S.J. (eds.), The Yeasts, pp. 123–180. Orlando, FL:Academic Press.Google Scholar
Phaff, H.J., Starmer, W.T., Tredick-Kline, J. (1987a). Pichia kluyveri sensu lato. A proposal for two new varieties and a new anamorph. In Hoog, G.S., Smith, M.T., Weijman, A.C.M. (eds.), The Expanding Realm of Yeast-like Fungi: Proceedings of an International Symposium on the Perspectives of Taxonomy, Ecology and Phylogeny of Yeasts and Yeast-like Fungi, pp. 403–414. Amsterdam: Elsevier Science.Google Scholar
Phaff, H.J., Starmer, W.T., Tredick-Kline, J., Miranda, M., Aberdeen, V. (1987b). Pichia barkeri, a new species of yeast occurring in necrotic tissue of Opuntia stricta. International Journal of Systematic Bacteriology 37, 783–796.CrossRefGoogle Scholar
Phaff, H.J., Starmer, W.T., Lachance, M.-A., Aberdeen, V., Tredick-Kline, J. (1992). Pichia caribaea, a new species of yeast occurring in necrotic tissue of cacti in the Caribbean area. International Journal of Systematic Bacteriology 42, 459–462.CrossRefGoogle Scholar
Phaff, H.J., Blue, J., Hagler, A.N., Kurtzman, C.P. (1997). Dipodascus starmeri sp. nov., a new species of yeast occurring in cactus necroses. International Journal of Systematic Bacteriology 47, 307–312.CrossRefGoogle ScholarPubMed
Phaff, H.J., Vaughan-Martini, A., Starmer, W.T. (1998). Debaryomyces prosopidis sp. nov., a yeast from exudates of mesquite trees. International Journal of Systematic Bacteriology 48, 1419–1424.CrossRefGoogle Scholar
Pohl, C.H., Kock, J.L.F., Wyk, P.W.J., Albertyn, A. (2006). Cryptococcus anemochoreius sp. nov., a novel anamorphic basidiomycetous yeast isolated from the atmosphere in central South Africa. International Journal of Systematic and Evolutionary Microbiology 56, 2703–2706.CrossRefGoogle ScholarPubMed
Prosser, J.I., Bohannan, B.J.M., Curtis, T.P. et al. (2007). The role of ecological theory in microbial ecology. Nature Reviews Microbiology 5, 384–392.CrossRefGoogle ScholarPubMed
Reuter, M., Bell, G., Greig, D. (2007). Increased outbreeding in yeast in response to dispersal by an insect vector. Current Biology 17, R81–R83.CrossRefGoogle ScholarPubMed
Rosa, C.A., Hagler, A.N., Mendonça-Hagler, L.C. et al. (1992). Clavispora opuntiae and other yeasts associated with the moth Sigelgaita sp. in the cactus Pilosocereus arrabidae of Rio de Janeiro, Brazil. Antonie van Leeuwenhoek (Historical Archive) 62, 267–272.CrossRefGoogle ScholarPubMed
Rosa, C.A., Morais, P.B., Santos, S.R. et al. (1995). Yeast communities associated with different plant resources in sandy coastal plains of southeastern Brazil. Mycological Research 99, 1047–1054.CrossRefGoogle Scholar
Rosa, C.A., Lachance, M.-A., Teixeira, L.C.R.S., Pimenta, R.S., Morais, P.B. (2007). Metschnikowia cerradonensis sp. nov., a yeast species isolated from ephemeral flowers and their nitidulid beetles in Brazil. International Journal of Systematic and Evolutionary Microbiology 57, 161–165.CrossRefGoogle Scholar
Ruivo, C.C.C., Lachance, M.-A., Bacci, M. et al. (2004). Candida leandrae sp. nov., an asexual ascomycetous yeast species isolated from tropical plants. International Journal of Systematic and Evolutionary Microbiology 54, 2405–2408.CrossRefGoogle ScholarPubMed
Ruiz, A., Heed, W.B. (1988). Host-plant specificity in the cactophilic Drosophila mulleri species complex. Journal of Animal Ecology 57, 237–249.CrossRefGoogle Scholar
Sang, J.H. (1956). The quantitative nutritional requirements of Drosophila melanogaster. Journal of Experimental Biology 33, 45–72.Google Scholar
Sang, J.H. (1978). The nutritional requirements of Drosophila. In Ashburner, M., Wright, T.R.F. (eds.), The Genetics and Biology of Drosophila, pp. 159–192. New York, NY:Academic Press.Google Scholar
Sipiczki, M. (2008). Interspecies hybridization and recombination in Saccharomyces wine yeasts. FEMS Yeast Research 8, 996–1007.CrossRefGoogle ScholarPubMed
Soberón, J. (2002). The routes of invasion of Cactoblastis cactorum. pdf of a powerpoint presentation, Comisión Nacional para el Conocimiento y uso de la Biodiversidad (CONABIO), Puerto Vallarta, Mexico.
Spatafora, J.W., Sung, G.H., Johnson, D. et al. (2006). A five-gene phylogeny of Pezizomycotina. Mycologia 98, 1018–1028.CrossRefGoogle ScholarPubMed
Starmer, W.T. (1982). Associations and interactions among yeasts, Drosophila, and their habitats. In Barker, J.S.F., Starmer, W.T. (eds.), Ecological Genetics and Evolution: The Cactus-Yeast-Drosophila Model System, 159–174. Sydney:Academic Press.Google Scholar
Starmer, W.T., Aberdeen, V. (1990). The nutritional importance of pure and mixed cultures of yeasts in the development of Drosophila mulleri larvae in Opuntia tissues and its relationship to host plant shifts. In Barker, J.S.F., Starmer, W.T., MacIntyre, R.J. (eds.), Ecological and Evolutionary Genetics of Drosophila, 145–160. New York, NY: Plenum Press.Google Scholar
Starmer, W.T., Fogleman, J.C. (1986). Coadaptation of Drosophila and yeasts in their natural habitat. Journal of Chemical Ecology 12, 1035–1053.CrossRefGoogle Scholar
Starmer, W.T., Phaff, H.J., Miranda, M., Miller, M.W. (1978). Pichia amethionina, a new heterothallic yeast associated with the decaying stems of cereoid cacti. International Journal of Systematic Bacteriology 28, 433–441.CrossRefGoogle Scholar
Starmer, W.T., Phaff, H.J., Miranda, M., Miller, M.W., Barker, J.S.F. (1979). Pichia opuntiae, a new heterothallic yeast found in decaying cladodes of Opuntiae inermis and in necrotic tissue of cereoid cacti. International Journal of Systematic Bacteriology 29, 159–167.CrossRefGoogle Scholar
Starmer, W.T., Kircher, H.W., Phaff, H.J. (1980). Evolution and speciation of host plant specific yeasts. Evolution 34, 137–146.CrossRefGoogle ScholarPubMed
Starmer, W.T., Phaff, H.J., Tredick, J., Miranda, M., Aberdeen, V. (1984). Pichia antillensis, a new species of yeast associated with necrotic stems of cactus in the Lesser Antilles. International Journal of Systematic Bacteriology 34, 350–354.CrossRefGoogle Scholar
Starmer, W.T., Ganter, P.F., Phaff, H.J. (1986). Quantum and continuous evolution of the DNA base composition in the yeast genus Pichia. Evolution 40, 1263–1274.CrossRefGoogle ScholarPubMed
Starmer, W.T., Aberdeen, V., Lachance, M.-A. (1988a). The yeast community associated with decaying Opuntia stricta (Haworth) in Florida with regard to the moth Cactoblastis cactorum (Berg). Florida Scientist 51, 7–11.Google Scholar
Starmer, W.T., Phaff, H.J., Bowles, J.M., Lachance, M.-A. (1988b). Yeasts vectored by insects feeding on decaying saguaro cactus. Southwestern Naturalist 33, 362–363.CrossRefGoogle Scholar
Starmer, W.T., Lachance, M.-A., Phaff, H.J., Heed, W.B. (1990). The biogeography of yeasts associated with decaying cactus tissue in North America, the Caribbean, and Northern Venezuela. In Hecht, M.K., Wallace, B., MacIntyre, R.J. (eds.), Evolutionary Biology, pp. 253–296. New York, NY:Plenum Press.Google Scholar
Starmer, W.T., Ganter, P.F., Aberdeen, V. (1992). Geographic distribution and genetics of killer phenotypes for the yeast Pichia kluyveri across the United States. Applied and Environmental Microbiology 58, 990–997.Google ScholarPubMed
Starmer, W.T., Phaff, H.J., Ganter, P.F., Lachance, M.-A. (2001). Candida orba sp. nov., a new cactus-specific yeast species from Queensland, Australia. International Journal of Systematic and Evolutionary Microbiology 51, 699–705.CrossRefGoogle ScholarPubMed
Starmer, W.T., Schmedicke, R.A., Lachance, M.-A. (2003). The origin of the cactus-yeast community. FEMS Yeast Research 3, 441–448.CrossRefGoogle ScholarPubMed
Sudbery, P., Gow, N., Berman, J. (2004). The distinct morphogenic states of Candida albicans. Trends in Microbiology 12, 317–324.CrossRefGoogle ScholarPubMed
Suh, S.O., McHugh, J.V., Pollock, D.D., Blackwell, M. (2005). The beetle gut: a hyperdiverse source of novel yeasts. Mycological Research 109, 261–265.CrossRefGoogle ScholarPubMed
Sweeney, J.Y., Kuehne, H.A., Sniegowski, P.D. (2004). Sympatric natural Saccharomyces cerevisiae and S. paradoxus populations have different thermal growth profiles. FEMS Yeast Research 4, 521–525.CrossRefGoogle ScholarPubMed
Takashima, M., Sugita, T., Shinoda, T., Nakase, T. (2003). Three new combinations from the Cryptococcus laurentii complex: Cryptococcus aureus, Cryptococcus carnescens and Cryptococcus peneaus. International Journal of Systematic and Evolutionary Microbiology 53, 1187–1194.CrossRefGoogle ScholarPubMed
Tsai, I.J., Bensasson, D., Burt, A., Koufopanou, V. (2008). Population genomics of the wild yeast Saccharomyces paradoxus: quantifying the life cycle. Proceedings of the National Academy of Sciences USA 105, 4957–4962.CrossRefGoogle ScholarPubMed
Vacek, D.C., East, P.D., Barker, J.S.F., Soliman, M.H. (1985). Feeding and oviposition preferences of Drosophila buzzatii for microbial species isolated from its natural environment. Biological Journal of the Linnean Society 24, 175–187.CrossRefGoogle Scholar
Vaughan-Martini, A., Martini, A. (1998). Saccharomyces Meyen ex Reess. In Kurtzman, C.P., Fell, J.W. (eds.), The Yeasts, A Taxonomic Study, pp. 358–371. Amsterdam:Elsevier.Google Scholar
Vaughan-Martini, A.E., Kurtzman, C.P., Meyer, S.A., O ‘ Neill, E.B. (2005). Two new species in the Pichia guilliermondii clade: Pichia caribbica sp. nov., the ascosporic state of Candida fermentati, and Candida carpophila comb. nov. FEMS Yeast Research 5, 463–469.CrossRefGoogle ScholarPubMed
Vegelius, J., Janson, S., Johansson, F. (1986). Measures of similarity between distributions. Quality and Quantity 20, 437–441.CrossRefGoogle Scholar
Arx, J.A. (1977). Notes on Dipodascus, Endomyces, and Geotrichum with the description of two new species. Antonie van Leeuwenhoek 43, 333–340.CrossRefGoogle Scholar
Wardlaw, A.M., Berkers, T.E., Man, K.C., Lachance, M.-A. (2009). Population structure of two beetle-associated yeasts: comparison of a New World asexual and an endemic Nearctic sexual species in the Metschnikowia clade. Antonie van Leeuwenhoek 96, 1–15.CrossRefGoogle ScholarPubMed
Westall, S., Filtenborg, O. (1998). Spoilage yeasts of decorated soft cheese packed in modified atmosphere. Food Microbiology 15, 243–249.CrossRefGoogle Scholar
Yamada, Y., Higashi, T., Ando, S., Mikata, K. (1997). The phylogeny of strains of species of the genus Pichia Hansen (Saccharomycetacea) based on the partial sequences of the 18S ribosomal RNA: the proposals of Phaffomyces and Starmera, the new genera. Bulletin of the Faculty of Agriculture, Shizuoka University 47, 23–35.Google Scholar
Yamada, Y., Kawasaki, H., Nagatsuka, Y., Mikata, K., Seki-T, . (1999). The phylogeny of the cactophilic yeasts based on the 18S ribosomal RNA gene sequences: The proposals of Phaffomyces antillensis and Starmera caribaea, new combinations. Bioscience Biotechnology and Biochemistry 63, 827–832.CrossRefGoogle ScholarPubMed
Zacchi, L., Vaughan-Martini, A. (2003). Distribution of three yeast and yeast-like species within a population of soft scale insects (Saissetia oleae) as a function of developmental age. Annals of Microbiology 53, 43–46.Google Scholar
Zalar, P., Gostinčar, C., Hoog, G.S. et al. (2008). Redefinition of Aureobasidium pullulans and its varieties. Studies in Mycology 61, 21–38.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×