Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-03T23:08:44.827Z Has data issue: false hasContentIssue false

10 - Biogeography and phylogeography of lichen fungi and their photobionts

from Part IV - Pluricellular eukaryotes

Published online by Cambridge University Press:  05 August 2012

Silke Werth
Affiliation:
WSL Swiss Federal Research Institute
Diego Fontaneto
Affiliation:
Imperial College London
Get access

Summary

Introduction

Lichens are the classical example of mutualistic symbiosis (de Bary, 1879). The first researcher to recognise the dual nature of lichens was the Swiss botanist and lichenologist Simon Schwendener (1868), whose theory on the algal–fungal association of lichens was rejected by the leading lichenologists at the time, to become widely accepted only in the twentieth century when lichens had been resynthesised from aposymbiotic cultures for the first time (for review, see Honegger, 2000). The lichen symbiosis is shaped by a fungus (‘mycobiont’) which forms an intimate association with a photosynthetic partner (‘photobiont’). In the lichen symbiosis, a single fungal species associates either with one or several species of green algae or cyanobacteria, or sometimes with both taxa (‘tripartite’ lichen).

More than 15 000 species of lichen fungi are known to date, belonging to about 1000 genera (Kirk et al., 2008); 98% of these species are ascomycetes (Honegger, 2008), the remaining are basidiomycetes or fungi of unclear systematic position (Tehler and Wedin, 2008; Printzen, 2010). In contrast, only about 100 photobiont species (Lücking et al., 2009) belonging to about 40 genera have been reported (Ahmadjian, 1967; Tschermak-Woess, 1988; Büdel, 1992; Nyati et al., 2007). This vast discrepancy in numbers implies that a large number of lichen fungi share a common pool of photobionts. The photobionts of lichens include eukaryotic green algae (phylum Chlorophyta), other eukaryotic algae (phylum Heterokontophyta), as well as cyanobacteria.

Type
Chapter
Information
Biogeography of Microscopic Organisms
Is Everything Small Everywhere?
, pp. 191 - 208
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlner, S. (1948). Utbredningstyper bland nordiska barrträdslavar. Acta Phytogeographica Suecica 22, 1–257.Google Scholar
Ahmadjian, V. (1967). A guide to the algae occurring as lichen symbionts: isolation, culture, cultural physiology, and identification. Phycologia 6, 127–160.CrossRefGoogle Scholar
Altermann, S. (2009). Geographic Structure in a Symbiotic Mutualism. PhD thesis, University of California at Santa Cruz.
Aptroot, A., Bungartz, F. (2007). The lichen genus Ramalina on the Galapagos. Lichenologist 36, 519–542.CrossRefGoogle Scholar
Bannister, J.M., Blanchon, D.J. (2003). The lichen genus Ramalina Ach. (Ramalinaceae) on the outlying islands of the New Zealand geographic area. Lichenologist 35, 137–146.CrossRefGoogle Scholar
Beckett, R.P., Kranner, I., Minibayeva, F.V. (2008). Stress physiology and the symbiosis. In Nash, T.H. (ed.), Lichen Biology, pp. 134–151. Cambridge: Cambridge University Press.Google Scholar
Bjerke, J.W. (2003). The northern distribution range of Lobaria hallii in Europe and Greenland. Graphis Scripta 14, 27–31.Google Scholar
Blaha, J., Baloch, E., Grube, M. (2006). High photobiont diversity associated with the euryoecious lichen-forming ascomycete Lecanora rupicola (Lecanoraceae, Ascomycota). Biological Journal of the Linnean Society 88, 283–293.CrossRefGoogle Scholar
Bowler, P.A., Rundel, P.W. (1975). Reproductive strategies in lichens. Botanical Journal of the Linnean Society 70, 325–340.CrossRefGoogle Scholar
Bubrick, P., Galun, M., Frensdorff, A. (1984). Observations on free-living Trebouxia Depuymaly and Pseudotrebouxia Archibald, and evidence that both symbionts from Xanthoria parientina (L.) Th. Fr. can be found free-living in nature. New Phytologist 97, 455–462.CrossRefGoogle Scholar
Büdel, B. (1992). Taxonomy of lichenized procaryotic blue-green algae. In Reisser, W. (ed.), Algae and symbioses, pp. 301–324. Bristol: Biopress.Google Scholar
Buschbom, J. (2007). Migration between continents: geographical structure and long-distance gene flow in Porpidia flavicunda (lichen-forming Ascomycota). Molecular Ecology 16, 1835–1846.CrossRefGoogle Scholar
Caceres, M.E.S., Lücking, R., Rambold, G. (2007). Phorophyte specificity and environmental parameters versus stochasticity as determinants for species composition of corticolous crustose lichen communities in the Atlantic rain forest of northeastern Brazil. Mycological Progress 6, 117–136.CrossRefGoogle Scholar
Cassie, D.M., Piercey-Normore, M.D. (2008). Dispersal in a sterile lichen-forming fungus, Thamnolia subuliformis (Ascomycotina: Icmadophilaceae). Botany-Botanique 86, 751–762.CrossRefGoogle Scholar
Codogno, M., Sancho, L.G. (1991). Distribution patterns of the lichen family Umbilicariaceae in the W Mediterranean Basin (Iberian Peninsula, S France and Italy). Botanika Chronika 10, 901–910.Google Scholar
Coppins, B.J. (1983). A taxonomic study of the lichen genus Micarea in Europe. Bulletin of the British Museum (Natural History), Botany Series 11, 17–214.Google Scholar
Cordeiro, L.M.C., Reis, R.A., Cruz, L.M. et al. (2005). Molecular studies of photobionts of selected lichens from the coastal vegetation of Brazil. FEMS Microbiology Ecology 54, 381–390.CrossRefGoogle ScholarPubMed
Crespo, A., Molina, M.C., Blanco, O. et al. (2002). rDNA ITS and beta-tubulin gene sequence analyses reveal two monophyletic groups within the cosmopolitan lichen Parmelia saxatilis. Mycological Research 106, 788–795.CrossRefGoogle Scholar
Dahlkild, A., Kallersjo, M., Lohtander, K., Tehler, A. (2001). Photobiont diversity in the Physciaceae (Lecanorales). The Bryologist 104, 527–536.CrossRefGoogle Scholar
Bary, H.A. (1879). The Phenomenon of Symbiosis. Privately printed in Strasburg.Google Scholar
Vera, J.P., Rettberg, P., Ott, S. (2008). Life at the limits: Capacities of isolated and cultured lichen symbionts to resist extreme environmental stresses. Origins of Life and Evolution of Biospheres 38, 457–468.CrossRefGoogle ScholarPubMed
Excoffier, L., Foll, M., Petit, R.J. (2009). Genetic consequences of range expansions. Annual Review of Ecology Evolution and Systematics 40, 481–501.CrossRefGoogle Scholar
Feuerer, T., Hawksworth, D.L. (2007). Biodiversity of lichens, including a world-wide analysis of checklist data based on Takhtajan's floristic regions. Biodiversity and Conservation 16, 85–98.CrossRefGoogle Scholar
Friedl, T., Büdel, B. (2008). Photobionts. In Nash, T.H. (ed.), Lichen Biology, pp. 9–26. Cambridge: Cambridge University Press.Google Scholar
Friedl, T., Rokitta, C. (1997). Species relationships in the lichen alga Trebouxia (Chlorophyta, Trebouxiophyceae): Molecular phylogenetic analyses of nuclear-encoded large subunit rRNA gene sequences. Symbiosis 23, 125–148.Google Scholar
Galloway, D.J., Aptroot, A. (1995). Bipolar lichens: A review. Cryptogamic Botany 5, 184–191.Google Scholar
Geitler, L. (1934). Beiträge zur Kenntnis der Flechtensymbiose. Journal für Protistenkunde 82, 51–85.Google Scholar
Goward, T., Spribille, T. (2005). Lichenological evidence for the recognition of inland rain forests in western North America. Journal of Biogeography 32, 1209–1219.CrossRefGoogle Scholar
Guzow-Krzeminska, B. (2006). Photobiont flexibility in the lichen Protoparmeliopsis muralis as revealed by ITS rDNA analyses. Lichenologist 38, 469–476.CrossRefGoogle Scholar
Handa, S., Ohmura, Y., Nakano, T., Nakahara-Tsubota, M. (2007). Airborne green microalgae (Chlorophyta) in snowfall. Hikobia 15, 109–120.Google Scholar
Hedenås, H., Blomberg, P., Ericson, L. (2007). Significance of old aspen (Populus tremula) trees for the occurrence of lichen photobionts. Biological Conservation 135, 380–387.CrossRefGoogle Scholar
Helms, G., Friedl, T., Rambold, G., Mayrhofer, H. (2001). Identification of photobionts from the lichen family Physciaceae using algal-specific ITS rDNA sequencing. Lichenologist 33, 73–86.CrossRefGoogle Scholar
Hewitt, G.M. (1999). Post-glacial re-colonization of European biota. Biological Journal of the Linnean Society 68, 87–112.CrossRefGoogle Scholar
Honegger, R. (2000). Simon Schwendener (1829–1919) and the dual hypothesis of lichens. Bryologist 103, 307–313.CrossRefGoogle Scholar
Honegger, R. (2008). Mycobionts. In Nash, T.H. (ed.), Lichen Biology, pp. 27–39. Cambridge: Cambridge University Press.Google Scholar
Honegger, R., Zippler, U., Gansner, H., Scherrer, S. (2004). Mating systems in the genus Xanthoria (lichen-forming ascomycetes). Mycological Research 108, 480–488.CrossRefGoogle Scholar
Kantvilas, G., James, P.W., Jarman, S.J. (1985). Macrolichens in Tasmanian rainforests. Lichenologist 17, 67–84.CrossRefGoogle Scholar
Kappen, L. (1973). Response to extreme environments. In Ahmadjian, V., Hale, M.E. (eds.), The Lichens, pp. 311–380. New York, NY: Academic Press.Google Scholar
Kärnefelt, I. (1986). The genera Bryocaulon, Coelocaulon and Cornicularia and formerly associated taxa. Opera Botanica 86, 1–90.Google Scholar
Kirk, P.M., Cannon, P.F., Minter, D.W., Stalpers, J.A. (2008). Dictionary of the Fungi. Wallingford: CAB International.Google Scholar
Knudsen, K., Werth, S. (2008). Lichens of the Granite Mountains, Sweeney Granite Mountain desert research center, southwestern Mojave Desert, San Bernardino county, California. Evansia 25, 15–20.CrossRefGoogle Scholar
Kristinsson, H. (1972). Studies on lichen colonization in Surtsey 1970. Surtsey Research Programme Report 5, 77.Google Scholar
Kristinsson, H., Heiðmarsson, S. (2009). Colonization of lichens on Surtsey 1970–2006. Surtsey Research Programme Report 12, 81–104.Google Scholar
Krog, H., Østhagen, H. (1978). Three new Ramalina species from Macaronesia. Norwegian Journal of Botany 25, 55–59.Google Scholar
Krog, H., Østhagen, H. (1980). The genus Ramalina in the Canary Islands. Norwegian Journal of Botany 27, 255–296.Google Scholar
Kroken, S., Taylor, J.W. (2000). Phylogenetic species, reproductive mode, and specificity of the green alga Trebouxia forming lichens with the fungal genus Letharia. The Bryologist 103, 645–660.CrossRefGoogle Scholar
Kroken, S., Taylor, J.W. (2001). A gene genealogical approach to recognize phylogenetic species boundaries in the lichenized fungus Letharia. Mycologia 93, 38–53.CrossRefGoogle Scholar
Litterski, B. (1999). Arealkundliche Studien – ein Beitrag zur Bewertung der Flechtenvielfalt. Courier Forschungsinstitut Senckenberg 215, 137–142.Google Scholar
Lücking, R. (2003). Takhtajan's floristic regions and foliicolous lichen biogeography: a compatibility analysis. Lichenologist 35, 33–54.CrossRefGoogle Scholar
Lücking, R. (2008). Foliicolous Lichenized Fungi. Organization for Flora Neotropica and The New York Botanical Garden Press, Bronx, New York.Google Scholar
Lücking, R., Papong, K., Thammathaworn, A., Boonpragob, K. (2008). Historical biogeography and phenotype-phylogeny of Chroodiscus (lichenized Ascomycota: Ostropales: Graphidaceae). Journal of Biogeography 35, 2311–2327.CrossRefGoogle Scholar
Lücking, R., Lawrey, J.D., Sikaroodi, M. et al. (2009). Do lichens domesticate photobionts like farmers domesticate crops? Evidence from a previously unrecognized lineage of filamentous cyanobacteria. American Journal of Botany 96, 1409–1418.CrossRefGoogle ScholarPubMed
Martinez, I., Burgaz, A.R., Vitikainen, O., Escudero, A. (2003). Distribution patterns in the genus Peltigera Willd. Lichenologist 35, 301–323.CrossRefGoogle Scholar
Meier, F.A., Scherrer, S., Honegger, R. (2002). Faecal pellets of lichenivorous mites contain viable cells of the lichen-forming ascomycete Xanthoria parietina and its green algal photobiont, Trebouxia arboricola. Biological Journal of the Linnean Society 76, 259–268.CrossRefGoogle Scholar
Moberg, R., Nash, T.H. (1999). The genus Heterodermia in the Sonoran desert area. Bryologist 102, 1–14.CrossRefGoogle Scholar
Mukhtar, A., Garty, J., Galun, M. (1994). Does the lichen alga Trebouxia occur free-living in nature – further immunological evidence. Symbiosis 17, 247–253.Google Scholar
Muñoz, J., Felicisimo, A.M., Cabezas, F., Burgaz, A.R., Martinez, I. (2004). Wind as a long-distance dispersal vehicle in the southern hemisphere. Science 304, 1144–1147.CrossRefGoogle ScholarPubMed
Myllys, L., Stenroos, S., Thell, A., Ahti, T. (2003). Phylogeny of bipolar Cladonia arbuscula and Cladonia mitis (Lecanorales, Euascomycetes). Molecular Phylogenetics and Evolution 27, 58–69.CrossRefGoogle Scholar
Nash, T.H. (1996). Lichen Biology. Cambridge: Cambridge University Press.Google Scholar
Nash, T.H., Kappen, L., Lösch, R., Larson, D.W., Matthes-Sears, U. (1987). Cold resistance of lichens with Trentepohlia or Trebouxia photobionts from the North American West coast. FLORA 179, 241–251.CrossRefGoogle Scholar
Nash, T.H., Ryan, B.D., Gries, C., Bungartz, F. (2002). Lichen Flora of the Greater Sonoran Desert region. Tempe, AZ: Arizona State University.Google Scholar
Nelsen, M.P., Gargas, A. (2009). Symbiont flexibility in Thamnolia vermicularis (Pertusariales: Icmadophilaceae). Bryologist 112, 404–417.CrossRefGoogle Scholar
Nyati, S., Beck, A., Honegger, R. (2007). Fine structure and phylogeny of green algal photobionts in the microfilamentous genus Psoroglaena (Verrucariaceae, lichen-forming ascomycetes). Plant Biology 9, 390–399.CrossRefGoogle Scholar
Ohmura, Y., Kawachi, M., Kasai, F., Watanabe, M.M., Takeshita, S. (2006). Genetic combinations of symbionts in a vegetatively reproducing lichen, Parmotrema tinctorum, based on ITS rDNA sequences. Bryologist 109, 43–59.CrossRefGoogle Scholar
Otálora, M.A.G., Martínez, I., Aragón, G., Molina, M.C. (2010). Phylogeography and divergence date estimates of a lichen species complex with a disjunct distribution pattern. American Journal of Botany 97, 216–223.CrossRefGoogle ScholarPubMed
Otte, V., Esslinger, T.L., Litterski, B. (2002). Biogeographical research on European species of the lichen genus Physconia. Journal of Biogeography 29, 1125–1141.CrossRefGoogle Scholar
Otte, V., Esslinger, T.L., Litterski, B. (2005). Global distribution of the European species of the lichen genus Melanelia Essl. Journal of Biogeography 32, 1221–1241.CrossRefGoogle Scholar
Øvstedal, D.O., Lewis Smith, R.I. (2001). Lichens of Antarctica and South Georgia. A Guide to their Identification and Ecology. Cambridge: Cambridge University Press.Google Scholar
Palice, Z., Printzen, C. (2004). Genetic variability in tropical and temperate populations of Trapeliopsis glaucolepidea: Evidence against long-range dispersal in a lichen with disjunct distribution. Mycotaxon 90, 43–54.Google Scholar
Poelt, J. (1969). Bestimmungsschlüssel europäischer Flechten. Cramer, Germany.Google Scholar
Poelt, J. (1970). Das Konzept der Artenpaare bei den Flechten. Cladistics 125, 77–81.Google Scholar
Printzen, C. (2010). Lichen systematics: the role of morphological and molecular data to reconstruct phylogenetic relationships. Progress in Botany 71, 233–275.Google Scholar
Printzen, C., Ekman, S., Tønsberg, T. (2003). Phylogeography of Cavernularia hultenii: evidence of slow genetic drift in a widely disjunct lichen. Molecular Ecology 12, 1473–1486.CrossRefGoogle Scholar
Rindi, F., Guiry, M.D. (2003). Composition and distribution of subaerial algal assemblages in Galway City, western Ireland. Cryptogamie Algologie 24, 245–267.Google Scholar
Rindi, F., Lopez-Bautista, J.M. (2008). Diversity and ecology of Trentepohliales (Ulvophyceae, Chlorophyta) in French Guiana. Cryptogamie Algologie 29, 13–43.Google Scholar
Romeike, J., Friedl, T., Helms, G., Ott, S. (2002). Genetic diversity of algal and fungal partners in four species of Umbilicaria (lichenized ascomycetes) along a transect of the Antarctic peninsula. Molecular Biology and Evolution 19, 1209–1217.CrossRefGoogle ScholarPubMed
Rundel, P.W. (1978). Ecological relationships of desert fog zone lichens. The Bryologist 81, 277–293.CrossRefGoogle Scholar
Sancho, L.G., Torre, R., Horneck, G. et al. (2007). Lichens survive in space: results from the 2005 LICHENS experiment. Astrobiology 7, 443–454.CrossRefGoogle ScholarPubMed
Sanders, W.B. (2005). Observing microscopic phases of lichen life cycles on transparent substrata placed in situ. Lichenologist 37, 373–382.CrossRefGoogle Scholar
Scheidegger, C. (1985). Systematische Studien zur Krustenflechte Anzina carneonivea (Trapeliaceae, Lecanorales). Nova Hedwigia 41, 191–218.Google Scholar
Scheidegger, C. (1995). Reproductive strategies in Vezdaea (Lecanorales, lichenized Ascomycetes): a low-temperature scanning electron microscopy study of a ruderal species. Cryptogamic Botany 5, 163–171.Google Scholar
Schroeter, B., Sancho, L.G. (1996). Lichens growing on glass in Antarctica. Lichenologist 28, 385–390.CrossRefGoogle Scholar
Schwendener, S. (1868). Ueber die Beziehungen zwischen Algen und Flechtengonidien. Botanische Zeitung 26, 289–292.Google Scholar
Seymour, F.A., Crittenden, P.D., Dyer, P.S. (2005). Sex in the extremes: lichen-forming fungi. Mycologist 19, 51–58.CrossRefGoogle Scholar
Skaloud, P., Peksa, O. (2010). Evolutionary inferences based on ITS rDNA and actin sequences reveal extensive diversity of the common lichen alga Asterochloris (Trebouxiophyceae, Chlorophyta). Molecular Phylogenetics and Evolution 54, 36–46.CrossRefGoogle Scholar
Smith, C.W., Aptroot, A., Coppins, B. et al. (2009). The Lichens of Great Britain and Ireland. London: British Lichen Society.Google Scholar
Tehler, A., Wedin, M. (2008). Systematics of lichenized fungi. In Nash, T.H. (ed.), Lichen Biology, pp. 336–352. Cambridge: Cambridge University Press.Google Scholar
Tschermak-Woess, E. (1978). Myrmecia reticulata as a phycobiont and free-living – free-living Treouxia – problem of Stenocybe septata. Lichenologist 10, 69–79.CrossRefGoogle Scholar
Tschermak-Woess, E. (1988). The algal partner. In Galun, M. (ed.), CRC Handbook of Lichenology, pp. 39–92. Boca Raton, FL: CRC Press.Google Scholar
Walser, J.C., Holderegger, R., Gugerli, F., Hoebee, S.E., Scheidegger, C. (2005). Microsatellites reveal regional population differentiation and isolation in Lobaria pulmonaria, an epiphytic lichen. Molecular Ecology 14, 457–467.CrossRefGoogle ScholarPubMed
Werth, S., Sork, V.L. (2010). Identity and genetic structure of the photobiont of the epiphytic lichen Ramalina menziesii on three oak species in southern California. American Journal of Botany 97, 821–830.CrossRefGoogle ScholarPubMed
Werth, S., Tømmervik, H., Elvebakk, A. (2005). Epiphytic macrolichen communities along regional gradients in northern Norway. Journal of Vegetation Science 16, 199–208.CrossRefGoogle Scholar
Werth, S., Wagner, H.H., Gugerli, F. et al. (2006a). Quantifying dispersal and establishment limitation in a population of an epiphytic lichen. Ecology 87, 2037–2046.CrossRefGoogle Scholar
Werth, S., Wagner, H.H., Holderegger, R., Kalwij, J.M., Scheidegger, C. (2006b). Effect of disturbances on the genetic diversity of an old-forest associated lichen. Molecular Ecology 15, 911–921.CrossRefGoogle ScholarPubMed
Werth, S., Gugerli, F., Holderegger, R. et al. (2007). Landscape-level gene flow in Lobaria pulmonaria, an epiphytic lichen. Molecular Ecology 16, 2807–2815.CrossRefGoogle ScholarPubMed
Westberg, M. (2007). Candelariella (Candelariaceae) in western United States and northern Mexico: the species with biatorine apothecia. Bryologist 110, 365–374.CrossRefGoogle Scholar
Widmer, I. (2009). Evolutionary History and Phylogeography of a Lichen Symbiosis. Ph.D. thesis, University of Berne, Berne.Google Scholar
Widmer, I., Dal Grande, F., Cornejo, C., Scheidegger, C. (2010). Highly variable microsatellite markers for the fungal and algal symbionts of the lichen Lobaria pulmonaria and challenges in developing biont-specific molecular markers for fungal associations. Fungal Biology114, 538–544.CrossRef
Winchester, V., Harrison, S. (2000). Dendrochronology and lichenometry: colonization, growth rates and dating of geomorphological events on the east side of the North Patagonian Icefield, Chile. Geomorphology 34, 181–194.CrossRefGoogle Scholar
Wornik, S., Grube, M. (2010). Joint dispersal does not imply maintenance of partnerships in lichen symbioses. Microbial Ecology 59, 150–157.CrossRefGoogle Scholar
Yahr, R., Vilgalys, R., DePriest, P.T. (2006). Geographic variation in algal partners of Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of a lichen symbiosis. New Phytologist 171, 847–860.CrossRefGoogle ScholarPubMed
Yoshimura, I. (1971). The genus Lobaria of Eastern Asia. Journal of the Hattori Botanical Laboratory 34, 231–364.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×