Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-18T03:41:03.841Z Has data issue: false hasContentIssue false

14 - Molecular approach to micrometazoans. Are they here, there and everywhere?

from Part IV - Pluricellular eukaryotes

Published online by Cambridge University Press:  05 August 2012

Noemi Guil
Affiliation:
National Museum of Natural History
Diego Fontaneto
Affiliation:
Imperial College London
Get access

Summary

Introduction

The ‘Everything is everywhere, but the environment selects’ hypothesis (EiE hereafter) was originally proposed to explain the apparent ubiquity of microorganisms based on evidence from bacteria (Beijerinck, 1913). Recently, this has been proposed also for protists (e.g. Fenchel and Finlay, 2004) and further extended to micrometazoans (animals smaller than 2 mm) (Foissner, 2006). This hypothesis assumes that microorganisms disperse worldwide due to their microscopic sizes and dormancy capabilities, and that their distributions are restricted only by environmental limitations. High local:global diversity ratios for species assemblages and high gene flow between populations are thus expected. Micrometazoans share a common evolutionary history and the multicellular condition with macroscopic animals, while they are similar in terms of resources used, microscopic size and dormancy capability to microscopic unicellular organisms, which are supposed to be without biogeographies. Even though micrometazoans may provide interesting evidence for the EiE hypothesis, their diversity and phylogeography has not received much attention. However, results so far (which we will deal with along the chapter) give us some indications of ecological and historical–geographic influence on micrometazoan distributions.

Little is known about distributional patterns and phylogeography in micrometazoans – as yet they neither support nor reject the EiE hypothesis. However, the few studies using a molecular approach are providing useful results on micrometazoan patterns, cryptic species and phylogeography.

Type
Chapter
Information
Biogeography of Microscopic Organisms
Is Everything Small Everywhere?
, pp. 284 - 306
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avise, J. C. (2000). Phylogeography: The History and Formation of Species. Cambridge, MA: Harvard University Press.Google Scholar
Baker, J.M., Giribet, G. (2007). A molecular phylogenetic approach to the phylum Cycliophora provides further evidence for cryptic speciation in Symbion americanus. Zoologica Scripta 36, 353–359.CrossRefGoogle Scholar
Baker, J.M., Funch, P., Giribet, G. (2007). Cryptic speciation in the recently discovered American cycliophoran Symbion americanus; genetic structure and population expansion. Marine Biology 151, 2183–2193.CrossRefGoogle Scholar
Balsamo, M., D´Hondt, J.L., Kisielewski, J., Pierboni, L. (2008). Global diversity of gastrotrichs (gastrotricha) in fresh waters. Hydrobiologia 595, 85–91.CrossRefGoogle Scholar
Beijerinck, M.W. (1913). De infusies en de ontdekking der backteriën. Jaarboek van de Koninklijke Akademie v. Wetenschappen. Amsterdam: Müller.Google Scholar
Bertolani, R., Rebecchi, L., Beccaccioli, G. (1990). Dispersal of Ramazzottius and other tardigrades in relation to type of reproduction. Invertebrate Reproduction and Development 18, 153–157.CrossRefGoogle Scholar
Bhadury, P., Austen, M.C., Bilton, D.T. et al. (2006). Development and evaluation of a DNA-barcoding approach for the rapid identification of nematodes. Marine Ecology Progress Series 320, 1–9.CrossRefGoogle Scholar
Birky, C.W. (2007). Workshop on barcoded DNA: application to rotifer phylogeny, evolution, and systematics. Hydrobiologia 593, 175–183.CrossRefGoogle Scholar
Bohonak, A.J. (1999). Dispersal, gene flow, and population structure. Quarterly Review of Biology 74, 21–45.CrossRefGoogle ScholarPubMed
Bohonak, A.J., Jenkins, D.G. (2003). Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecology Letters 6, 783–796.CrossRefGoogle Scholar
Buschbom, J. (2007). Migration between continents: geographical structure and long-distance gene flow in Porpidia flavicunda (lichen-forming Ascomycota). Molecular Ecology 16, 1835–1846.CrossRefGoogle Scholar
Butlin, R.K., Galindo, J., Grahame, J.W. (2008). Sympatric, parapatric or allopatric: the most important way to classify speciation?Philosophical Transactions of the Royal Society Series B 363, 2997–3007.CrossRefGoogle ScholarPubMed
Cáceres, C.E., Soluk, D.A. (2002). Blowing in the wind: a field test of overland dispersal and colonization by aquatic invertebrates. Oecologia 131, 402–408.CrossRefGoogle ScholarPubMed
Cavalli-Sforza, L.L., Feldman, M.W. (2003). The application of molecular genetic approaches to the study of human evolution. Nature Genetics 33, 266–275.CrossRefGoogle Scholar
Cesari, M., Bertolani, R., Rebecchi, L, Guidetti, R. (2009). DNA barcoding in Tardigrada: the first case study on Macrobiotus macrocalix Bertolani & Rebecchi 1993 (Eutardigrada, Macrobiotidae). Molecular Ecology Resources 9, 699–706.CrossRefGoogle Scholar
Chang, C.H., Rougerie, R., Chen, J.H. (2009). Identifying earthworms through DNA barcodes: pitfalls and promise. Pedobiologia 52, 171–180.CrossRefGoogle Scholar
Ciros-Pérez, J., Carmona, M.J., Serra, M. (2001). Resource competition between sympatric sibling rotifer species. Limnology and Oceanography 46, 1511–1523.CrossRefGoogle Scholar
Claxton, S.K. (1996). Sexual dimorphisms in Australian Echiniscus (Tardigrada, Echiniscidae) with description of three new species. Zoological Journal of the Linnean Society 116, 13–33.CrossRefGoogle Scholar
Cohen, G.M., Shurin, J.B. (2003). Scale-dependence and mechanisms of dispersal in freshwater zooplankton. Oikos 103, 603–617.CrossRefGoogle Scholar
Crow, J.F. (1994). Advantages of sexual reproduction. Developmental Genetics 15, 205–213.CrossRefGoogle ScholarPubMed
Dastych, H. (1987). Two new species of Tardigrada from the Canadian Subarctic with some notes on sexual dimorphism in the family Echiniscidae. Entomologische Mitteilungen aus dem Zoologischen Museum Hamburg 8, 319–334.Google Scholar
Meester, L., Gómez, A., Okamura, B., Schwenk, K. (2002). The Monopolization Hypothesis and the dispersal–gene flow paradox in aquatic organisms. Acta Oecologica 23, 121–135.CrossRefGoogle Scholar
Derry, A.M., Hebert, P.D., Prepas, E.E. (2003). Evolution of rotifers in saline and subsaline lakes: a molecular phylogenetic approach. Limnology and Oceanography 48, 675–685.CrossRefGoogle Scholar
Derycke, S., Remerie, T., Vierstraete, A. et al. (2005). Mitochondrial DNA variation and cryptic speciation within the free-living marine nematodePellioditis marina. Marine Ecology Progress Series 300, 91–103.Google Scholar
Derycke, S., Backeljau, T., Vlaeminck, C. et al. (2006). Seasonal dynamics of population genetic structure in cryptic taxa of the Pellioditis marina complex (Nematoda: Rhabditida). Genetica 128, 307–321.CrossRefGoogle Scholar
Derycke, S., Backeljau, T., Vlaeminck, C. et al. (2007). Spatiotemporal analysis of population genetic structure in Geomonhystera disjuncta (Nematoda, Monhysteridae) reveals high levels of molecular diversity. Marine Biology 151, 1799–1812.CrossRefGoogle Scholar
Derycke, S., Fonseca, G., Vierstraete, A. et al. (2008a). Disentangling taxonomy within the Rhabditis (Pellioditis) marina (Nematoda, Rhabditidae) species complex using molecular and morphological tools. Zoological Journal of the Linnean Society 152, 1–15.CrossRefGoogle Scholar
Derycke, S., Remerie, T., Backeljau, T. et al. (2008b). Phylogeography of the Rhabditis (Pellioditis) marina species complex: evidence for long-distance dispersal, and for range expansions and restricted gene flow in the northeast Atlantic. Molecular Ecology 17, 3306–3322.CrossRefGoogle ScholarPubMed
Dunn, C.W., Hejnol, A., Matus, D.Q. et al. (2008). Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452, 745–750.CrossRefGoogle ScholarPubMed
Edwards, S.V. (2009). Is a new and general theory of molecular systematics emerging?Evolution 63, 1–19.CrossRefGoogle ScholarPubMed
Emerson, B.C., Hewitt, G.M. (2005). Phylogeography. Current Biology 15, R367–R371.CrossRefGoogle ScholarPubMed
Abebe, Eyualem, Decraemer, W., Ley, P. (2008). Global diversity of nematodes (Nematoda) in freshwater. Hydrobiologia 595, 67–78.CrossRefGoogle Scholar
Faurby, S., Jönsson, K.I., Rebecchi, L., Funch, P. (2008). Variation and anhydrobiotic survival of two eutardigrade morphospecies: a story of cryptic species and their dispersal. Journal of Zoology 275, 139–145.CrossRefGoogle Scholar
Fenchel, T., Finlay, B.J. (2004). The ubiquity of small species: patterns of local and global diversity. BioScience 54, 777–784.CrossRefGoogle Scholar
Fielding, M.J. (1951). Observations on the length of dormancy in certain plant infecting nematodes. Proceedings of the Helminthological Society of Washington DC 18, 110–112.Google Scholar
Figuerola, J., Green, A.J., Michot, T.C. (2005). Invertebrate eggs can fly: evidence of waterflow-mediated gene flow in aquatic invertebrates. American Naturalist 165, 274–280.Google ScholarPubMed
Foissner, W. (2006). Biogeography and dispersal of micro-organisms: a review emphasizing protists. Acta Protozoologica 45, 111–136.Google Scholar
Foissner, W., Agatha, S., Berger, H. (2002). Soil ciliates (Protozoa,Ciliophora) from Namibia (Southwest Africa), with emphasis on two contrasting environments, the Etosha Region and the Namib Desert. Denisia 5, 1–1459.Google Scholar
Fonseca, G., Derycke, S., Moens, T. (2008). Integrative taxonomy in two free-living nematode species complexes. Biological Journal of the Linnean Society 94, 737–753.CrossRefGoogle Scholar
Fontaneto, D., Herniou, E.A., Barraclough, T.G., Ricci, C. (2007). On the global distribution of microscopic animals: new worldwide data on bdelloid rotifers. Zoological Studies 46, 336–346.Google Scholar
Fontaneto, D., Barraclough, T.G., Kimberly, C., Ricci, C., Herniou, E.A. (2008a). Molecular evidence for broad-scale distributions in bdelloid rotifers: everything is not everywhere but most things are very widespread. Molecular Ecology 17, 3136–3146.CrossRefGoogle Scholar
Fontaneto, D., Boschetti, C., Ricci, C. (2008b). Cryptic diversification in ancient asexuals: evidence from the bdelloid rotifer Philodina flaviceps. Journal of Evolutionary Biology 21, 580–587.CrossRefGoogle ScholarPubMed
Fontaneto, D., Kaya, M., Herniou, E.A., Barraclough, T.G. (2009). Extreme levels of hidden diversity in microscopic animals (Rotifera) revealed by DNA taxonomy. Molecular Phylogenetics and Evolution 53, 182–189.CrossRefGoogle ScholarPubMed
Frisch, D., Green, A.J., Figuerola, J. (2007). High dispersal capacity of a broad spectrum of aquatic invertebrates via waterbirds. Aquatic Sciences 69, 568–574.CrossRefGoogle Scholar
Garey, J.R., Krotec, M., Nelson, D.R., Brooks, J. (1996). Molecular analysis supports a tardigrade-arthropod association. Invertebrate Biology 115, 79–88.CrossRefGoogle Scholar
Garey, J.R., Nelson, D.R., Mackey, L.J., Li, J. (1999). Tardigrade phylogeny: congruency of morphological and molecular evidence. Zoological Anzeiger 238, 205–210.Google Scholar
Giribet, G., Carranza, S., Baguna, J., Rintot, M., Ribera, C. (1996). First molecular evidence for the existence of a Tardigrada + Arthropoda clade. Molecular Biology and Evolution 13, 76–84.CrossRefGoogle ScholarPubMed
Gladyshev, E.A., Meselson, M., Arkhipova, I.R. (2008). Massive horizontal gene transfer in bdelloid rotifers. Science 320, 1210–1213.CrossRefGoogle ScholarPubMed
Gómez, A., Carmona, M.J., Serra, M. (1997). Ecological factors affecting gene flow in the Brachionus plicatilis complex (Rotifera). Oecologia 111, 350–356.Google Scholar
Gómez, A., Serra, M., Carvalho, G.R., Lunt, D.H. (2002a). Speciation in ancient cryptic species complexes: evidence from the molecular phylogeny of Brachionus plicatilis (Rotifera). Evolution 56, 1431–1444.CrossRefGoogle Scholar
Gómez, A., Adcock, G.J., Lunt, D.H., Carvalho, G.R. (2002b). The interplay between colonisation history and gene flow in passively dispersing zooplankton: microsatellite analysis of rotifer resting egg banks. Journal of Evolutionary Biology 15, 158–171.CrossRefGoogle Scholar
Gómez, S. (2005). Molecular ecology of rotifers: from population differentiation to speciation. Hydrobiologia 546, 83–99.CrossRefGoogle Scholar
Gómez, S., Fleeger, J.W., Rocha, O.A., Foltz, D. (2004). Four new species of Cletocamptus Schmankewitsch, 1875, closely related to Cletocamptus deitersi (Richard, 1897) (Copepoda: Harpacticoida). Journal of Natural History 38, 2669–2732.CrossRefGoogle Scholar
Gómez, S., Montero-Pau, J., Lunt, D.H., Serra, M., Campillo, S. (2007). Persistent genetic signatures of colonization in Brachionus manjavacas rotifers in the Iberian Peninsula. Molecular Ecology 16, 3228–3240.CrossRefGoogle ScholarPubMed
Guidetti, R., Bertolani, R. (2005). Tardigrade taxonomy: an updated check list of the taxa and a list of characters for their identification. Zootaxa 845, 1–46.CrossRefGoogle Scholar
Guidetti, R., Jönsson, K.I. (2002). Long-term anhydrobiotic survival in semi-terrestrial micrometazoans. Journal of Zoology 257, 181–187.CrossRefGoogle Scholar
Guidetti, R., Gandolfi, A., Rossi, V., Bertolani, R. (2005). Phylogenetic analysis of Macrobiotidae (Eutardigrada, Parachela): a combined morphological and molecular approach. Zoologica Scripta 34, 235–244.CrossRefGoogle Scholar
Guidetti, R., Schill, R.O., Bertolani, R., Dankekar, T., Wolf, M. (2009). New molecular data for tardigrade phylogeny, with the erection of Paramacrobiotus gen. nov. Journal of Zoological Systematics and Evolutionary Research 47, 315–321.CrossRefGoogle Scholar
Guil, N. (2002). Diversity and distribution of tardigrades (Bilateria, Tardigrada) from the Iberian Peninsula, Balearic Islands and Chafarinas Islands. Graellsia 58, 75–94.CrossRefGoogle Scholar
Guil, N. (2008). New records and within-species variability of Iberian tardigrades (Tardigrada), with comments on the species from the Echiniscus blumi-canadensis series. Zootaxa 1757, 1–30.Google Scholar
Guil, N., Cabrero-Sañudo, F. (2007). Analysis of the species description process for a little known invertebrate group: the limnoterrestrial tardigrades (Bilateria, Tardigrada). Biodiversity and Conservation 16, 1063–1086.CrossRefGoogle Scholar
Guil, N., Giribet, G. (2009). Fine scale population structure in the Echiniscus blumi-canadensis series (Heterotardigrada, Tardigrada) in an Iberian mountain range – When morphology fails to explain genetic structure. Molecular Phylogenetics and Evolution 51, 606–613.CrossRefGoogle Scholar
Hebert, P.D.N., Cywinska, A., Ball, S.L., Ward, J.R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B 270, 313–321.CrossRefGoogle ScholarPubMed
Hengherr, S., Brümmer, F., Schill, R.O. (2008). Anhydrobiosis in tardigrades and its effects on longevity traits. Journal of Zoology 275, 216–220.CrossRefGoogle Scholar
Hillis, D.M. (2007). Asexual evolution: can species exist without sex?Current Biology 17, R543–R544.CrossRefGoogle ScholarPubMed
Horikawa, D.D., Higashi, S. (2004). Desiccation tolerance of the tardigrade Milnesium tardigradum collected in Sapporo, Japan, and Bogor, Indonesia. Zoological Sciences 21, 813–816.CrossRefGoogle ScholarPubMed
Horikawa, D.D., Sakashita, T., Katagiri, C. et al. (2006). Radiation tolerance in the tardigrade Milnesium tardigradum. International Journal of Radiation Biology 82, 843–848.CrossRefGoogle ScholarPubMed
Horikawa, D.D., Kunieda, T., Abe, W. et al. (2008). Establishment of a rearing system of the extremotolerant tardigrade Ramazzottius varieornatus: a new model animal for astrobiology. Astrobiology 8, 549–556.CrossRefGoogle ScholarPubMed
Huang, Z., Tunnacliffe, A. (2006). Cryptobiosis, aging, and cancer: Yin-Yang balancing of signaling networks. Rejuvenation Research 9, 292–296.CrossRefGoogle ScholarPubMed
Janiec, K. (1996). Short distance wind transport of microfauna in maritime Antarctic (King George Island, South Shetland Islands). Polish Polar Research 17, 203–211.Google Scholar
Jenkins, D.G., Underwood, M.O. (1998). Zooplankton may not disperse readily in wind, rain, or waterfowl. Hydrobiologia 387/388, 15–21.CrossRefGoogle Scholar
Jönsson, K.I., Schill, R.O. (2007). Induction of Hsp70 by desiccation, ionising radiation and heat-shock in the eutardigrade Richtersius coronifer. Comparative Biochemistry and Physiology Part B 146, 456–460.CrossRefGoogle ScholarPubMed
Jönsson, K.I., Borsari, S., Rebecchi, L. (2001). Anydrobiotic survival in populations of the tardigrades Richtersius coronifer and Ramazzottius oberhaeuseri from Italy and Sweden. Zoologischer Anzeiger 240, 419–423.CrossRefGoogle Scholar
Jönsson, K.I., Harms-Ringdhal, M., Torudd, J. (2005). Radiation tolerance in the eutardigrade Richtersius coronifer. International Journal of Radiation Biology 81, 649–656.CrossRefGoogle ScholarPubMed
Jönsson, K.I., Rabbow, E., Schill, R.O., Brümmer, F. (2008). Tardigrades survive exposure to space in low Earth orbit. Current Biology 18, R729–R731.CrossRefGoogle ScholarPubMed
Jørgensen, A., Kristensen, R.M. (2004). Molecular phylogeny of Tardigrada – investigation of the monophyly of Heterotardigrada. Molecular Phylogenetics and Evolution 32, 666–670.CrossRefGoogle ScholarPubMed
Jørgensen, A., Møbjerg, N., Kristensen, R.M. (2007). A molecular study of the tardigrade Echiniscus testudo (Echiniscidae) reveals low DNA sequence diversity over a large geographical area. Journal of Limnology 66, 77–83.CrossRefGoogle Scholar
Katz, L.A., McManus, G.B., Snoeyenbos-West, O.L.O. et al. (2005). Reframing the ‘Everything is everywhere’ debate: evidence for high gene flow and diversity in ciliate morphospecies. Aquatic Microbial Ecology 41, 55–65.CrossRefGoogle Scholar
Kaya, M., Herniou, E.A., Barraclough, T.G., Fontaneto, D. (2009). Inconsistent estimates of diversity between traditional and DNA taxonomy in bdelloid rotifers. Organisms, Diversity and Evolution 9, 3–12.CrossRefGoogle Scholar
Leasi, F., Todaro, M.A. (2009). Meiofaunal cryptic species revealed by confocal microscopy: the case of Xenotrichula intermedia (Gastrotricha). Marine Biology 156, 1335–1346.CrossRefGoogle Scholar
Li, X., Wang, L. (2005). Effect of thermal acclimation on preferred temperature, avoidance temperature and lethal thermal maximum of Macrobiotus harmsworthi Murray (Tardigrada, Macrobiotidae). Journal of Thermal Biology 30, 443–448.CrossRefGoogle Scholar
Lohse, K. (2009). Can mtDNA barcodes be used to delimit species? A response to Pons et al. (2006). Systematics Biology 58, 439–442.CrossRefGoogle Scholar
McInnes, S.J. (1994). Zoogeographic distribution of terrestrial/freshwater tardigrades from current literature. Journal of Natural History 28, 257–352.CrossRefGoogle Scholar
McSorley, R. (2003). Adaptations of nematodes to environmental extremes. Florida Entomologist 86, 138–142.CrossRefGoogle Scholar
Mills, S., Lunt, D.H., Gómez, A. (2007). Global isolation by distance despite strong regional phylogeography in a small metazoan. BMC Evolutionary Biology 7, 225.CrossRefGoogle Scholar
Mitchell, C.R., Romano, F.A. (2007). Sexual dimorphism, population dynamics and some aspects of life history of Echiniscus mauccii (Tardigrada; Heterotardigrada). Journal of Limnology 66, 126–131.CrossRefGoogle Scholar
Møbjerg, N., Jørgensen, A.,Eibye-Jacobsen, J. et al. (2007). New records on cyclomorphosis in the marine eutardigrade Halobiotus crispae (Eutardigrada: Hypsibiidae). Journal of Limnology 66, 132–140.CrossRefGoogle Scholar
Moritz, C., Cicero, C. (2004). DNA barcoding: promise and pitfalls. PLoS Biology 2, 1529–1531.CrossRefGoogle ScholarPubMed
Muñóz, J., Felicisimo, A.M., Cabezas, F., Burgaz, A.R., Martinez, I. (2004). Wind as a long-distance dispersal vehicle in the southern hemisphere. Science 304, 1144–1147.CrossRefGoogle ScholarPubMed
Naihong, X., Audenaert, E., Vanoverbeke, J. et al. (2000). Low among-population genetic differentiation in Chinese bisexual Artemia populations. Heredity 84, 238–243.CrossRefGoogle ScholarPubMed
Neumann, S., Reuner, A., Brümmer, F., Schill, R.O. (2009). DNA damage in storage cells of anhydrobiotic tardigrades. Comparative Biochemistry and Physiology Part A Molecular and Integrative Physiology 153, 425–429.CrossRefGoogle ScholarPubMed
Nichols, P.B., Nelson, D.R., Garey, J.R. (2006). A family level analysis of tardigrade phylogeny. Hydrobiologia 558, 53–60.CrossRefGoogle Scholar
Nieberding, C., Libois, R., Douady, C.J., Morand, S., Michaux, R. (2005). Phylogeography of a nematode (Heligmosomoides polygyrus) in the western Palearctic region: persistence of northern cryptic populations during ice ages?Molecular Ecology 14, 765–779.CrossRefGoogle ScholarPubMed
Palsson, S. (2000). Microsatellite variation in Daphnia pulex from both sides of the Baltic sea. Molecular Ecology 9, 1075–1088.CrossRefGoogle ScholarPubMed
Papadopoulou, A., Monaghan, M.T., Barraclough, T.G., Vogler, A.P. (2009). Sampling error does not invalidate the Yule-Coalescent Model for species delimitation. A response to Lohse (2009). Systematic Biology 58, 442–444.CrossRefGoogle Scholar
Pons, J., Barraclough, T.G., Gomez-Zurita, J. et al. (2006). Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55, 595–610.CrossRefGoogle ScholarPubMed
Ramazzotti, G., Maucci, W. (1983). Il phylum Tardigrada. III Edizione riveduta e aggiornata. Memorie dell'Istituto Italiano di Idrobiologia Dott. Marco de Marchi 41, 1–1012.Google Scholar
Ramløv, H., Westh, P. (2001). Cryptobiosis in the eutardigrade Adorybiotus (Richtersius) coronifer: tolerance to alcohols, temperature and de novo protein synthesis. Zoologischer Anzeiger 240, 517–523.CrossRefGoogle Scholar
Rebecchi, L., Altiero, T., Guidetti, R. (2007). Anhydrobiosis: the extreme limit of desiccation tolerance. Invertebrate Survival Journal 4, 65–81.Google Scholar
Rebecchi, L., Guidetti, R., Borsari, S., Altiero, T., Bertolani, R. (2006). Dynamics of longterm anhydrobiotic survival of lichen-dwelling tardigrades. Hydrobiologia 558, 23–30.CrossRefGoogle Scholar
Rebecchi, L., Altiero, T., Guidetti, R. et al. (2009). Tardigrade resistance space effect: first results of experiments on the LIFE-TARSE Mission on FOTON-M3 (September 2007). Astrobiology 9, 581–591.CrossRefGoogle Scholar
Regier, J.C., Shultz, J.W., Kambic, R.E., Nelson, D.R. (2003). Robust support for tardigrade clades and their ages from three protein-coding nuclear genes. Invertebrate Biology 123, 93–100.CrossRefGoogle Scholar
Ricci, C., Balsamo, M. (2000). The biology and ecology of lotic rotifers and gastrotrichs. Freshwater Biology 44, 15–28.CrossRefGoogle Scholar
Ricci, C., Caprioli, M. (2005). Anhydrobiosis in bdelloid species, populations and individuals. Integrative and Comparative Biology 45, 759–763.CrossRefGoogle ScholarPubMed
Ricci, C., Fontaneto, D. (2009). The importance of being a bdelloid: ecological and evolutionary consequences of dormancy. Italian Journal of Zoology 76, 240–249.CrossRefGoogle Scholar
Ricci, C., Melone, G., Santo, D., Caprioli, M. (2008). Morphological response of a bdelloid rotifer to desiccation. Journal of Morphology 257, 246–253.CrossRefGoogle Scholar
Sands, C.J., McInnes, S.J., Marley, N.J. et al . (2008a). Phylum Tardigrada: an “individual” approach. Cladistics 24, 861–871.CrossRefGoogle Scholar
Sands, C.J., Convey, P., Linse, K., McInnes, S.J. (2008b). Assessing meiofaunal variation among individuals utilising morphological and molecular approaches: an example using the Tardigrada. BMC Ecology 8, 7.CrossRefGoogle ScholarPubMed
Schill, R.O., Steinbruck, G. (2007). Identification and differentiation of Heterotardigrada and Eutardigrada species by riboprinting. Journal of Zoological Systematics and Evolutionary Research 45, 184–190.CrossRefGoogle Scholar
Schill, R., Neumann, S., Reuner, A., Brümmer, F. (2008). Detection of DNA damage with single-cell gel electrophoresis in anhydrobiotic tardigrades. Comparative Biochemistry and Physiology Part A Molecular and Integrative Physiology 151, 32.CrossRefGoogle Scholar
Schurko, A.M., Neiman, M., Logsdon, J.M. (2008). Signs of sex: what we know and how we know it. Trends in Ecology and Evolution 24, 208–217.CrossRefGoogle Scholar
Schwerdtfeger, F. (1975). Synökologie. Hamburg:P. Parey.Google Scholar
Segers, H., Smet, W.H. (2008). Diversity and endemism in Rotifera: a review, and Kerarella Bory de St Vincent. Biodiversity and Conservation 17, 303–316.CrossRefGoogle Scholar
Serra, M., Gómez, A., Carmona, M.J. (1998). Ecological genetics of Brachionus sympatric sibling species. Hydrobiologia 388, 373–384.CrossRefGoogle Scholar
Suatoni, E., Vicario, S., Rice, S., Snell, T., Caccone, A. (2006). An analysis of species boundaries and biogeographic patterns in a cryptic species complex: the rotifer–Brachionus plicatilis. Molecular Phylogenetics and Evolution 41, 86–98.CrossRefGoogle Scholar
Sudzuki, M. (1972). An analysis of colonization in freshwater micro-organisms. II. Two simple experiments on the dispersal by wind. Japanese Journal of Ecology 22, 222–225.Google Scholar
Todaro, M.A., Fleeger, J.W., Hu, Y.P., Hrincevich, A.W., Foltz, D.W. (1996). Are meiofaunal species cosmopolitan? Morphological and molecular analyses of Xenotrichula intermedia (Gastrotricha: Chaetonotida). Marine Biology 125, 735–742.CrossRefGoogle Scholar
Valentini, A., Pompanon, F., Taberlet, P. (2009). DNA barcoding for ecologists. Trends in Ecology and Evolution 24, 110–117.CrossRefGoogle ScholarPubMed
Watanabe, M., Kikawada, T., Fujita, A. et al. (2004). Physiological traits of invertebrates entering cryptobiosis in a post-embryonic stage. European Journal of Entomology 101, 439–444.CrossRefGoogle Scholar
Westheide, W., Schmidt, H. (2003). Cosmopolitan versus cryptic meiofaunal polychaete species. An approach to a molecular taxonomy. Helgoland Marine Research 57, 1–6.Google Scholar
Wiens, J. (2007). Species delimitation: new approaches for discovering diversity. Systematics Biology 56, 875–879.CrossRefGoogle ScholarPubMed
Wright, J.C. (1991). The significance of four xeric parameters in the ecology of terrestrial Tardigrada. Journal of Zoology 224, 59–77.CrossRefGoogle Scholar
Wright, J.C. (2001). Cryptobiosis 300 years on from van Leuwenhoek: What have we learned about tardigrades?Zoologischer Anzeiger 240, 563–582.CrossRefGoogle Scholar
Wright, J.C., Westh, P., Ramløv, H. (1992). Cryptobiosis in Tardigrada. Biological Reviews 67, 1–29.CrossRefGoogle Scholar
Wright, S. (1921). Systems of mating. Genetics 6, 111–178.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×