Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-12T04:47:29.351Z Has data issue: false hasContentIssue false

15 - Self-similar modes of coherent diffusion with orbital angular momentum

Published online by Cambridge University Press:  05 December 2012

O. Firstenberg
Affiliation:
Technion – Israel Institute of Technology
M. Shuker
Affiliation:
Technion – Israel Institute of Technology
R. Pugatch
Affiliation:
Weizmann Institute of Science
N. Davidson
Affiliation:
Weizmann Institute of Science
David L. Andrews
Affiliation:
University of East Anglia
Mohamed Babiker
Affiliation:
University of York
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] R., Pugatch, M., Shuker, O., Firstenberg, A., Ron, and N., Davidson. Topological stability of stored optical vortices. Phys. Rev. Lett., 98(20):203601, 2007.Google Scholar
[2] O., Firstenberg, P., London, D., Yankelev, R., Pugatch, M., Shuker, and N., Davidson. Self-similar modes of coherent diffusion. Phys. Rev. Lett., 105:183602, 2010.Google Scholar
[3] D. S., Grebenkov. Nmr survey of reflected Brownian motion. Rev. Mod. Phys., 79(3):1077–137, Aug 2007.Google Scholar
[4] H. C., Torrey. Bloch equations with diffusion terms. Phys. Rev., 104(3):563–5, Nov 1956.Google Scholar
[5] J., Skalla, G., Wbkerle, M., Mehring, and A., Pines. Optical magnetic resonance imaging of Rb vapor in low magnetic fields. Phys. Lett.A, 226:69–74, 1997.Google Scholar
[6] Y., Xiao, I., Novikova, D. F., Phillips, and R. L., Walsworth. Diffusion-induced ramsey narrowing. Phys. Rev. Lett., 96(4):043601, 2006.Google Scholar
[7] M., Shuker, O., Firstenberg, R., Pugatch, A., Ron, and N., Davidson. Storing images in warm atomic vapor. Phys. Rev. Lett., 100(22):223601, 2008.Google Scholar
[8] J. I., Kaplan. Application of the diffusion-modified bloch equation to electron spin resonance in ordinary and ferromagnetic metals. Phys. Rev., 115(3):575–7, 1959.Google Scholar
[9] J. M., Kikkawa and D. D., Awschalom. Lateral drag of spin coherence in gallium arsenide. Nature, 397:139–41, 1999.Google Scholar
[10] Igor, Zutic, Jaroslav Fabian, and S. Das Sarma. Spintronics: fundamentals and applications. Rev. Mod. Phys., 76(2):323–410, 2004.Google Scholar
[11] S. P., Dash, S., Sharma, R. S., Patel, M. P., de Jong, and R., Jansen. Electrical creation of spin polarization in silicon at room temperature. Nature, 462:491–4, 2009.Google Scholar
[12] D., Giel, G., Hinz, D., Nettels, and A., Weis. Diffusion of CS atoms in Ne buffer gas measured by optical magnetic resonance tomography. Opt. Express, 6(13):251–6, 2000.Google Scholar
[13] R. C., Kloosterzielt and G. J. F., Van Heijst. An experimental study of unstable barotropic vortices in a rotating fluid. J. Fluid Mech., 223:1–24, 1991.Google Scholar
[14] M., Shuker, O., Firstenberg, Y., Sagi, A., Ben-kish, N., Davidson, and A., Ron. Ramsey-like measurement of the decoherence rate between Zeeman sublevels. Phys. Rev.A, 78(6):063818, 2008.Google Scholar
[15] M. V., Balabas, T., Karaulanov, M. P., Ledbetter, and D., Budker. Polarized alkali-metal vapor with minute-long transverse spin-relaxation time. Phys. Rev. Lett., 105(7):070801, 2010.Google Scholar
[16] O., Firstenberg, M., Shuker, R., Pugatch, D. R., Fredkin, N., Davidson, and A., Ron. Theory of thermal motion in electromagnetically induced transparency: effects of diffusion, Doppler broadening, and Dicke and Ramsey narrowing. Phys. Rev.A, 77(4):043830, 2008.Google Scholar
[17] D. F., Phillips, A., Fleischhauer, A., Mair, R. L., Walsworth, and M. D., Lukin. Storage of light in atomic vapor. Phys. Rev. Lett., 86(5):783, 2001.Google Scholar
[18] A., Kasapi, M., Jain, G. Y., Yin, and S. E., Harris. Electromagnetically induced transparency: propagation dynamics. Phys. Rev. Lett., 74:2447, 1995.Google Scholar
[19] M., Fleischhauer and M. D., Lukin. Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett., 84(22):5094–7, 2000.Google Scholar
[20] D., Akamatsu and M., Kozuma. Coherent transfer of orbital angular momentum from an atomic system to a light field. Phys. Rev.A, 67(2):023803, 2003.Google Scholar
[21] R., Inoue, T., Yonehara, Y., Miyamoto, M., Koashi, and M., Kozuma. Measuring qutrit-qutrit entanglement of orbital angular momentum states of an atomic ensemble and a photon. Phys. Rev. Lett., 103(11):110503, 2009.Google Scholar
[22] O., Firstenberg, P., London, M., Shuker, A., Ron, and N., Davidson. Elimination, reversal and directional bias of optical diffraction. Nature Physics, 5:665–8, 2009.Google Scholar
[23] C., Bolkart, D., Rostohar, and M., Weitz. Dark resonances with variable Doppler sensitivity. Phys. Rev.A, 71:043816, 2005.Google Scholar
[24] M., Shuker, O., Firstenberg, R., Pugatch, A., Ben-Kish, A., Ron, and N., Davidson. Angular dependence of Dicke-narrowed electromagnetically induced transparency resonances. Phys. Rev.A, 76(2):023813, 2007.Google Scholar
[25] O., Firstenberg, M., Shuker, A., Ben-Kish, D. R., Fredkin, N., Davidson, and A., Ron. Theory of Dicke narrowing in coherent population trapping. Phys. Rev.A, 76:013818, 2007.Google Scholar
[26] A. S., Zibrov and A. B., Matsko. Optical Ramsey fringes induced by Zeeman coherence. Phys. Rev.A, 65(1):013814, 2001.Google Scholar
[27] R., Pugatch, O., Firstenberg, M., Shuker, and N., Davidson. Universal spectra of coherent atoms in a recurrent random walk. Phys. Rev. Lett., 102(15):150602, 2009.Google Scholar
[28] L., Zhao, T., Wang, Y., Xiao, and S. F., Yelin. Image storage in hot vapors. Phys. Rev.A, 77(4):041802, 2008.Google Scholar
[29] P. K., Vudyasetu, R. M., Camacho, and J. C., Howell. Storage and retrieval of multimode transverse images in hot atomic rubidium vapor. Phys. Rev. Lett., 100(12):123903, 2008.Google Scholar
[30] L., Allen, S. M., Barnett, and M. J., Padgett. Orbital Angular Momentum. Institute of Optics Publishing, 2003.
[31] A. E., Siegman. Lasers. Sausalito, CA: University Science Books, 1986.
[32] M., Abramowitz and I. A., Stegun, editors. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972.
[33] G. I., Barenblatt. Scaling, Self-Similarity, and Intermediate Asymptotics. New York: Cambridge University Press, 1996.
[34] R. C., Kloosterzielt. On the large-time asymptotics of the diffusion equation on infinite domains. J. Eng. Math., 24:213–36, 1990.Google Scholar
[35] M. P., Satijn, M. G., van Buren, H. J. H., Clercx, and G. J. F., van Heijst. Vortex models based on similarity solutions of the two-dimensional diffusion equation. Phys. of Fluids, 16(11):3997–4011, 2004.Google Scholar
[36] A. E., Siegman and E. A., Sziklas. Mode calculations in unstable resonators with flowing saturable gain. 1: Hermite–Gaussian expansion. Appl. Opt., 13(12):2775–91, 1974.Google Scholar
[37] J., Durnin, J. J., Miceli, and J. H., Eberly. Diffraction-free beams. Phys. Rev. Lett., 58(15):1499–501, 1987.Google Scholar
[38] A. E., Siegman. Hermite–gaussian functions of complex argument as optical-beam eigenfunctions. J. Opt. Soc. Am., 63(9):1093–4, 1973.Google Scholar
[39] A., Wunsche. Generalized Gaussian beam solutions of paraxial optics and their connection to a hidden symmetry. J. Opt. Soc. Am.A, 6:1320–9, 1989.Google Scholar
[40] L., Allen, M. W., Beijersbergen, R. J. C., Spreeuw, and J. P., Woerdman. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev.A, 45(11):8185–9, 1992.Google Scholar
[41] J. C., Gutierrez-Vega. Fractionalization of optical beams: II. elegant Laguerre–Gaussian modes. Optics Express, 15:6300–13, 2007.Google Scholar
[42] T., Wang, L., Zhao, L., Jiang, and S. F., Yelin. Diffusion-induced decoherence of stored optical vortices. Phys. Rev.A, 77(4):043815, 2008.Google Scholar
[43] E., Zauderer. Complex argument Hermite–Gaussian and Laguerre–Gaussian beams. J. Opt. Soc. Am.A, 3:465–9, 1986.Google Scholar
[44] D., Deng and Q., Guo. Elegant Hermite–Laguerre–Gaussian beams. Optics Letters, 33:1225–7, 2008.Google Scholar
[45] A., Kostenbauder, Y., Sun, and A. E., Siegman. Eigenmode expansions using biorthogonal functions: complex-valued Hermite–Gaussians. J. Opt. Soc. Am.A, 14:1780–90, 1997.Google Scholar
[46] I. V., Basistiy, V. Yu., Bazhenov, M. S., Soskin, and M. V., Vasnetsov. Optics of light beams with screw dislocations. Opt. Comm., 103:422–8, 1993.Google Scholar
[47] C., Ryu, M. F., Andersen, P., Cladé, V., Natarajan, K., Helmerson, and W. D., Phillips. Observation of persistent flow of a Bose–Einstein condensate in a toroidal trap. Phys. Rev. Lett., 99(26):260401, 2007.Google Scholar
[48] M. S., Soskin, V. N., Gorshkov, M. V., Vasnetsov, J. T., Malos, and N. R., Heckenberg. Topological charge and angular momentum of light beams carrying optical vortices. Phys. Rev.A, 56(5):4064–75, 1997.Google Scholar
[49] Z., Dutton and J., Ruostekoski. Transfer and storage of vortex states in light and matter waves. Phys. Rev. Lett., 93(19):193602, 2004.Google Scholar
[50] S., Barreiro, J. W. R., Tabosa, J. P., Torres, Y., Deyanova, and L., Torner. Four-wave mixing of light beams with engineered orbital angular momentumin cold cesium atoms. Opt. Lett., 29(13):1515–7, 2004.Google Scholar
[51] M. F., Andersen, C., Ryu, P., Cladé et al. Quantized rotation of atoms from photons with orbital angular momentum. Phys. Rev. Lett., 97(17):170406, 2006.Google Scholar
[52] D., Moretti, D., Felinto, and J. W. R., Tabosa. Collapses and revivals of stored orbital angular momentum of light in a cold-atom ensemble. Phys. Rev.A, 79(2):023825, 2009.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×