Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-04T14:42:33.347Z Has data issue: false hasContentIssue false

16 - Quantum entanglement of orbital angular momentum

Published online by Cambridge University Press:  05 December 2012

M. P. Van Exter
Affiliation:
Universiteit Leiden
E. R. Eliel
Affiliation:
Universiteit Leiden
J. P. Woerdman
Affiliation:
Universiteit Leiden
David L. Andrews
Affiliation:
University of East Anglia
Mohamed Babiker
Affiliation:
University of York
Get access

Summary

Introduction

In this chapter, we will be concerned with entangled states of light. Historically, quantum states of light, i.e., photons, have played a dominant role in the experimental study of quantum entanglement. For instance, the first Bell tests and the first realizations of quantum teleportation were performed using two-dimensional polarization-entangled twophoton states [3]. From an experimental point of view these states are readily prepared and manipulated using conventional polarization optics.

Recently, however, both theoretical and experimental efforts have shifted towards entanglement in more than two modes, which is often referred to as high-dimensional entanglement. This is much richer than two-dimensional entanglement, as is, for instance, reflected in stronger violations of various measures of nonlocality which reveal the complexity of high-dimensional Hilbert spaces [4–7]. Also, from an applications perspective, it promises a larger channel capacity [8, 9] and improved security for quantum communication [10, 11].

There are several ways to implement high-dimensional two-photon entanglement. One can exploit the temporal [12], frequency [13], or spatial [14–18] degrees of freedom of the optical field. A promising way to implement high-dimensional two-photon entanglement is to use the orbital-angular-momentum (OAM) degree of freedom of light. Light beams that carry OAM have a helical wavefront that spirals around the optical axis during propagation [19]. The winding number m, which characterizes the OAM eigenmodes, can adopt any integer value between −∞ and ∞; since all coaxial OAM modes are orthogonal they can thus span a very high-dimensional Hilbert space.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] P. G., Kwiat, K., Mattle, H., Weinfurter, A., Zeilinger, A. M., Sergienko, and Y. H., Shih. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett., 75(24):4337–41, 1995.Google Scholar
[2] S. P., Walborn, S., Pádua, and C. H., Monken. Hyperentanglement-assisted Bell-state analysis. Phys. Rev.A, 68(4):042313, 2003.Google Scholar
[3] D., Bouwmeester, A. K., Ekert, and A., Zeilinger. The Physics of Quantum Information. New York: Springer, 2000.
[4] D., Kaszlikowski, P., Gnaciński, M., Żukowski, W., Miklaszewski, and A., Zeilinger. Violations of local realism by two entangled n-dimensional systems are stronger than for two qubits. Phys. Rev. Lett., 85(21):4418–21, 2000.Google Scholar
[5] D., Collins, N., Gisin, N., Linden, S., Massar, and S., Popescu. Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett., 88(4):040404, 2002.Google Scholar
[6] M., Barbieri, F., De Martini, P., Mataloni, G., Vallone, and A., Cabello. Enhancing the violation of the Einstein-Podolsky-Rosen local realism by quantum hyperentanglement. Phys. Rev. Lett., 97(14):140407, 2006.Google Scholar
[7] C.-M., Li, K., Chen, A., Reingruber, Y.-N., Chen, and J.-W., Pan. Verifying genuine high-order entanglement. Phys. Rev. Lett., 105(21):210504, 2010.Google Scholar
[8] J. T., Barreiro, T.-C., Wei, and P. G., Kwiat. Beating the channel capacity limit for linear photonic superdense coding. Nature Phys., 4(4):282–6, 2008.Google Scholar
[9] C., Brukner, T., Paterek, and M., Zukowski. Quantum communication complexity protocols based on higher-dimensional entangled systems. Int. J. Quantum Inf., 1(4):519, 2003.Google Scholar
[10] N. J., Cerf, M., Bourennane, A., Karlsson, and N., Gisin. Security of quantum key distribution using d-level systems. Phys. Rev. Lett., 88(12):127902, 2002.Google Scholar
[11] T., Durt, D., Kaszlikowski, J. L., Chen, and L. C., Kwek. Security of quantum key distributions with entangled qudits. Phys. Rev.A, 69(3):032313, 2004.Google Scholar
[12] R. T., Thew, A., Acín, H., Zbinden, and N., Gisin. Bell-type test of energy-time entangled qutrits. Phys. Rev. Lett., 93(1):010503, 2004.Google Scholar
[13] L., Olislager, J., Cussey, A.T., Nguyen, P., Emplit, S., Massar, J.-M., Merolla, and K. Phan, Huy. Frequency-bin entangled photons. Phys. Rev.A, 82(1):013804, 2010.Google Scholar
[14] L., Neves, G., Lima, J. G. Aguirre, Gómez, C. H., Monken, C., Saavedra, and S., Pádua. Generation of entangled states of qudits using twin photons. Phys. Rev. Lett., 94(10):100501, 2005.Google Scholar
[15] M. N., O'Sullivan-Hale, I. Ali, Khan, R. W., Boyd, and J. C., Howell. Pixel entanglement: experimental realization of optically entangled d =3 and d =6 qudits. Phys. Rev. Lett., 94(22):220501, 2005.Google Scholar
[16] T., Yarnall, A. F., Abouraddy, B. E. A., Saleh, and M. C., Teich. Experimental violation of Bell's inequality in spatial-parity space. Phys. Rev. Lett., 99(17):170408, 2007.Google Scholar
[17] G., Molina-Terriza, J. P., Torres, and L., Torner. Twisted photons. Nature Phys., 3(5):305–10, 2007.Google Scholar
[18] S. P., Walborn, C. H., Monken, S., Padua, and P. H. Souto, Ribeiro. Spatial correlations in parametric down-conversion. Phys. Rep., 495(4–5):87–139, 2010.Google Scholar
[19] L., Allen, M. W., Beijersbergen, R. J. C., Spreeuw, and J. P., Woerdman. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev.A, 45(11):8185–9, 1992.Google Scholar
[20] J. P., Torres, A., Alexandrescu, and L., Torner. Quantum spiral bandwidth of entangled two-photon states. Phys. Rev.A, 68(5):050301, 2003.Google Scholar
[21] M. P., van Exter, P. S. K., Lee, S., Doesburg, and J. P., Woerdman. Mode counting in high-dimensional orbital angular momentum entanglement. Opt. Exp., 15(10):6431–8, 2007.Google Scholar
[22] H. Di Lorenzo, Pires, H. C. B., Florijn, and M. P., van Exter. Measurement of the spiral spectrum of entangled two-photon states. Phys. Rev. Lett., 104:020505, 2010.Google Scholar
[23] S. N., Khonina, V. V., Kotlyar, R. V., Skidanov, V. A., Soifer, P., Laakkonen, and J., Turunen. Gauss–Laguerre modes with different indices in prescribed diffraction orders of a diffractive phase element. Opt. Comm., 175(4–6):301–8, 2000.Google Scholar
[24] J., Leach, M. J., Padgett, S. M., Barnett, S., Franke-Arnold, and J., Courtial. Measuring the orbital angular momentum of a single photon. Phys. Rev. Lett., 88(25):257901, 2002.Google Scholar
[25] G. C. G., Berkhout, M. P. J., Lavery, J., Courtial, M. W., Beijersbergen, and M. J., Padgett. Efficient sorting of orbital angular momentum states of light. Phys. Rev. Lett., 105(15):153601, 2010.Google Scholar
[26] A., Mair, A., Vaziri, G., Weihs, and A., Zeilinger. Entanglement of the orbital angular momentum states of photons. Nature, 412(6844):313–6, 2001.Google Scholar
[27] N. K., Langford, R. B., Dalton, M. D., Harvey et al. Measuring entangled qutrits and their use for quantum bit commitment. Phys. Rev. Lett., 93(5):053601, 2004.Google Scholar
[28] R. T., Thew, K., Nemoto, A. G., White, and W. J., Munro. Qudit quantum-state tomography. Phys. Rev.A, 66(1):012303, 2002.Google Scholar
[29] J., Leach, B., Jack, J., Romero et al. Quantum correlations in optical angle-orbital angular momentum variables. Science, 329(5992):662–5, 2010.Google Scholar
[30] A. M., Marino, V., Boyer, R. C., Pooser, P. D., Lett, K., Lemons, and K. M., Jones. Delocalized correlations in twin light beams with orbital angular momentum. Phys. Rev. Lett., 101(9):093602, 2008.Google Scholar
[31] M., Lassen, G., Leuchs, and U. L., Andersen. Continuous variable entanglement and squeezing of orbital angular momentum states. Phys. Rev. Lett., 102(16):163602, 2009.Google Scholar
[32] L., Mandel and E., Wolf. Optical Coherence and Quantum Optics. Cambridge: Cambridge University Press, 1995.
[33] C. K., Law and J. H., Eberly. Analysis and interpretation of high transverse entanglement in optical parametric down conversion. Phys. Rev. Lett., 92(12):127903, 2004.Google Scholar
[34] C. H., Monken, P. H. S., Ribeiro, and S., Padua. Transfer of angular spectrum and image formation in spontaneous parametric down-conversion. Phys. Rev.A, 57(4):3123–36, 1998.Google Scholar
[35] H. Di Lorenzo, Pires, C. H., Monken, and M. P., van Exter. Direct measurement of transverse-mode entanglement in two-photon states. Phys. Rev.A, 80(2) 2009.Google Scholar
[36] H. H., Arnaut and G. A., Barbosa. Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion. Phys. Rev. Lett., 85(2):286–9, 2000.Google Scholar
[37] H. H., Arnaut and G. A., Barbosa. Comment on “Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion”–Arnaut and Barbosa reply. Phys. Rev. Lett., 86(22):5209, 2001.Google Scholar
[38] M. P., van Exter, A., Aiello, S. S. R., Oemrawsingh, G., Nienhuis, and J. P., Woerdman. Effect of spatial filtering on the Schmidt decomposition of entangled photons. Phys. Rev.A, 74:012309, 2006.Google Scholar
[39] J. B., Pors, S. S. R., Oemrawsingh, A., Aiello et al. Shannon dimensionality of quantum channels and its application to photon entanglement. Phys. Rev. Lett., 101(12):120502, 2008.Google Scholar
[40] J. B., Pors, A., Aiello, S. S. R., Oemrawsingh, M. P., van Exter, E. R., Eliel, and J. P., Woerdman. Angular phase-plate analyzers for measuring the dimensionality of multimode fields. Phys. Rev.A, 77:033845, 2008.Google Scholar
[41] E., Yao, S., Franke-Arnold, J., Courtial, M. J., Padgett, and S. M., Barnett. Observation of quantum entanglement using spatial light modulators. Opt. Expr., 14(26):13089–94, 2006.Google Scholar
[42] M. P. J., Lavery, G. C. G., Berkhout, J., Courtial, and M. J., Padgett. Measurement of the light orbital angular momentum spectrum using an optical geometric transformation. J. Opt., 13:064006, 2011.Google Scholar
[43] S. S. R., Oemrawsingh, J. A. W., van Houwelingen, E. R., Eliel et al. Production and characterization of spiral phase plates for optical wavelengths. Appl. Opt., 43(3):688–94, 2004.Google Scholar
[44] S. S. R, Oemrawsingh, J. A., de Jong, X., Ma et al. High-dimensional mode analyzers for spatial quantum entanglement. Phys. Rev.A, 73(3), 2006.Google Scholar
[45] J. B., Pors, F., Miatto, G. W. 't, Hooft, E. R., Eliel, and J. P., Woerdman. High-dimensional entanglement with orbital-angular-momentum states of light. J. Opt., 13:064008, 2011.Google Scholar
[46] W. H., Peeters and M. P., van Exter. Optical characterization of periodically-poled KTiOPO4. Opt. Expr., 16(10):7344–60, 2008.Google Scholar
[47] S. S. R., Oemrawsingh, X., Ma, D., Voigt et al. Experimental demonstration of fractional orbital angular momentum entanglement of two photons. Phys. Rev. Lett., 95(24), 2005.Google Scholar
[48] C. K., Hong, Z. Y., Ou, and L., Mandel. Measurement of subpicosecond time intervals between two phtons by interference. Phys. Rev. Lett., 59:2044, 1987.Google Scholar
[49] C. H., Bennett, H. J., Bernstein, S., Popescu, and B., Schumacher. Concentrating partial entanglement by local operations. Phys. Rev.A, 53, 2046, 1996.Google Scholar
[50] W. H., Peeters, E. J. K., Verstegen, and M. P., van Exter. Orbital angular momentum anaylsis of high-dimensional entanglement. Phys. Rev.A, 76:042302, 2007.Google Scholar
[51] H. Di Lorenzo, Pires, J., Woudenberg, and M. P., van Exter. Measurement of the orbital angular momentum spectrum of partially coherent beams. Opt. Lett., 35(6): 889–91, 2010.Google Scholar
[52] B. J., Smith and M. G., Raymer. Two-photon wave mechanics. Phys. Rev.A, 74(6):062104, 2006.Google Scholar
[53] J. B., Pors, C. H., Monken, E. R., Eliel, and J. P., Woerdman. Transport of orbital-angular-momentum entanglement through a turbulent atmosphere. Opt. Expr., 19(7):6671–83, 2011.Google Scholar
[54] W., Löffler, T. G., Euser, E. R., Eliel, M., Scharrer, P. St. J., Russell, and J. P., Woerdman. Fiber transport of spatially entangled photons. Phys. Rev. Lett., 106:240505, 2011.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×