Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-02T11:18:16.068Z Has data issue: false hasContentIssue false

Chapter 25 - Hydrocephalus

from Section 2 - Clinical Neurosurgical Diseases

Published online by Cambridge University Press:  04 January 2024

Farhana Akter
Affiliation:
Harvard University, Massachusetts
Nigel Emptage
Affiliation:
University of Oxford
Florian Engert
Affiliation:
Harvard University, Massachusetts
Mitchel S. Berger
Affiliation:
University of California, San Francisco
Get access

Summary

Hydrocephalus affects 1/1000 births and is treated using neurosurgical cerebrospinal fluid(CSF) diversion techniques with high complication and failure rates. Recent data on the pathogenesis of acute post-hemorrhagic hydrocephalus(PHH) have implicated an acute Toll-like receptor(TLR4)-dependent hypersecretory response of the choroid plexus epithelium(CPe), the site of highly regulated CSF production and part of the blood–CSF barrier. Post-infectious hydrocephalus(PIH) is the most common form of hydrocephalus worldwide and shares multiple features with PHH, including TLR4-regulated CSF cytokines and immune cells. We introduce the concept of “inflammatory hydrocephalus”, and argue this may more precisely convey the shared pathogenic mechanisms and potential therapeutic vulnerabilities of PHH/PIH than the current concept of “secondary hydrocephalus.” This change of emphasis could shift our view of PHH/PIH from that of lifelong neurosurgical disorders to one of preventable neuroinflammatory conditions. In addition to attenuating acute CPe hypersecretion, early targeting of TLR4 may prevent inflammation-induced brain damage resulting in scarring, obstruction, and poor long-term neurodevelopmental outcomes.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alessi, DR, Zhang, J, Khanna, A, Hochdorfer, T, Shang, Y, Kahle, KT. The WNK–SPAK/OSR1 pathway: master regulator of cation–chloride cotransporters. Sci Signal 2014;7(334): re3. https://doi.org/10.1126/scisignal.2005365.Google Scholar
Aranha, A, Choudhary, A, Bhaskar, S, Gupta, LN. A randomized study comparing endoscopic third ventriculostomy versus ventriculoperitoneal shunt in the management of hydrocephalus due to tuberculous meningitis. Asian J Neurosurg 2018;13(4):1140–7. https://doi.org/10.4103/ajns.AJNS_107_18.Google Scholar
Aziz, IA. Hydrocephalus in the Sudan. J R Coll Surg Edinb 1976;21(4):222–4.Google Scholar
Baird, LC. First treatment in infants with hydrocephalus: the case for endoscopic third ventriculostomy/choroid plexus cauterization. Neurosurgery 2016;63(Suppl 1):7882. https://doi.org/10.1227/NEU.0000000000001299.CrossRefGoogle ScholarPubMed
Barichello, T, Fagundes, GD, Generoso, JS, Elias, SG, Simoes, LR, Teixeira, AL. Pathophysiology of neonatal acute bacterial meningitis. J Med Microbiol 2013;62(Pt 12):1781–9. https://doi.org/10.1099/jmm.0.059840-0.Google Scholar
Bateman, GA, Brown, KM. The measurement of CSF flow through the aqueduct in normal and hydrocephalic children: from where does it come, to where does it go? Childs Nerv Syst 2012;28(1):5563. http://doi.org/10.1007/s00381-011-1617-4.Google Scholar
Benveniste, H, Lee, H, Volkow, ND. The glymphatic pathway: waste removal from the CNS via cerebrospinal fluid transport. Neuroscientist 2017;23(5):454–65. https://doi.org/10.1177/1073858417691030.CrossRefGoogle ScholarPubMed
Berkes, J, Viswanathan, VK, Savkovic, SD, Hecht, G. Intestinal epithelial responses to enteric pathogens: effects on the tight junction barrier, ion transport, and inflammation. Gut 2003;52(3):439–51. https://doi.org/10.1136/gut.52.3.439.Google Scholar
Bir, SC, Patra, DP, Maiti, TK, et al. Epidemiology of adult-onset hydrocephalus: institutional experience with 2001 patients. Neurosurg Focus 2016;41(3):E5. https://doi.org/10.3171/2016.7.FOCUS16188.CrossRefGoogle ScholarPubMed
Brinker, T, Stopa, E, Morrison, J, Klinge, P. A new look at cerebrospinal fluid circulation. Fluids Barriers CNS 2014;11:10. https://doi.org/10.1186/2045-8118-11-10.Google Scholar
Chahlavi, A, El-Babaa, SK, Luciano, MG. Adult-onset hydrocephalus. Neurosurg Clin N Am 2001;12(4):753–60, ix.CrossRefGoogle ScholarPubMed
Chen, Q, Feng, Z, Tan, Q, et al. Post-hemorrhagic hydrocephalus: recent advances and new therapeutic insights. J Neurol Sci 2017;375:220–30. https://doi.org/10.1016/j.jns.2017.01.072.Google Scholar
Cherian, S, Whitelaw, A, Thoresen, M, Love, S. The pathogenesis of neonatal post-hemorrhagic hydrocephalus. Brain Pathol 2004;14(3):305–11. https://doi.org/10.1111/j.1750-3639.2004.tb00069.x.Google Scholar
Cioca, A, Gheban, D, Perju-Dumbrava, D, Chiroban, O, Mera, M. Sudden death from ruptured choroid plexus arteriovenous malformation. Am J Forens Med Pathol 2014;35(2):100–02. https://doi.org/10.1097/PAF.0000000000000091.Google Scholar
Coorens, M, Schneider, VAF, de Groot, AM, et al. Cathelicidins inhibit Escherichia coli-induced TLR2 and TLR4 activation in a viability-dependent manner. J Immunol 2017;199(4):1418–28. https://doi.org/10.4049/jimmunol.1602164.CrossRefGoogle Scholar
Cox, KH, Cox, ME, Woo-Rasberry, V, Hasty, DL. Pathways involved in the synergistic activation of macrophages by lipoteichoic acid and hemoglobin. PLoS One 2012;7(10):e47333. https://doi.org/10.1371/journal.pone.0047333.Google Scholar
Damkier, HH, Brown, PD, Praetorius, J. Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev 2013;93(4):1847–92. https://doi.org/10.1152/physrev.00004.2013.CrossRefGoogle ScholarPubMed
de Los, HP, Alessi, DR, Gourlay, R, et al. The WNK-regulated SPAK/OSR1 kinases directly phosphorylate and inhibit the K+–Cl co-transporters. Biochem J 2014;458(3):559–73. https://doi.org/10.1042/BJ20131478.Google Scholar
Demeestere, D, Libert, C, Vandenbroucke, RE. Clinical implications of leukocyte infiltration at the choroid plexus in (neuro)inflammatory disorders. Drug Discov Today 2015;20(8):928–41. https://doi.org/10.1016/j.drudis.2015.05.003.Google Scholar
Dessing, MC, Schouten, M, Draing, C, Levi, M, von Aulock, S, van der Poll, T. Role played by Toll-like receptors 2 and 4 in lipoteichoic acid-induced lung inflammation and coagulation. J Infect Dis 2008;197(2):245–52. https://doi.org/10.1086/524873.Google Scholar
Dewan, MC, Rattani, A, Mekary, R, et al. Global hydrocephalus epidemiology and incidence: systematic review and meta-analysis. J Neurosurg 2018: online ahead of publication. https://doi.org/10.3171/2017.10.JNS17439.Google Scholar
Doyle, WJ, Skoner, DP, Hayden, F, Buchman, CA, Seroky, JT, Fireman, P. Nasal and otologic effects of experimental influenza A virus infection. Ann Otol Rhinol Laryngol 1994;103(1):5969. https://doi.org/10.1177/000348949410300111.Google Scholar
Drake, JM, Kulkarni, AV, Kestle, J. Endoscopic third ventriculostomy versus ventriculoperitoneal shunt in pediatric patients: a decision analysis. Childs Nerv Syst 2009;25(4):467–72. https://doi.org/10.1007/s00381-008-0761-y.Google Scholar
Ehrchen, JM, Sunderkotter, C, Foell, D, Vogl, T, Roth, J. The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J Leukocyte Biol 2009;86(3):557–66. https://doi.org/10.1189/jlb.1008647.Google Scholar
Eming, SA, Hammerschmidt, M, Krieg, T, Roers, A. Interrelation of immunity and tissue repair or regeneration. Semin Cell Dev Biol 2009;20(5):517–27. https://doi.org/10.1016/j.semcdb.2009.04.009.CrossRefGoogle ScholarPubMed
Erker, T, Brandt, C, Tollner, K, et al. The bumetanide prodrug BUM5, but not bumetanide, potentiates the antiseizure effect of phenobarbital in adult epileptic mice. Epilepsia 2016;57(5):698705. https://doi.org/10.1111/epi.13346.Google Scholar
Fang, H, Wu, Y, Huang, X, et al. Toll-like receptor 4 (TLR4) is essential for Hsp70-like protein 1 (HSP70L1) to activate dendritic cells and induce Th1 response. J Biol Chem 2011;286(35):30393–400. https://doi.org/10.1074/jbc.M111.266528.Google Scholar
Fassbender, K, Schminke, U, Ries, S, et al. Endothelial-derived adhesion molecules in bacterial meningitis: association to cytokine release and intrathecal leukocyte-recruitment. J Neuroimmunol 1997;74(1–2):130–4. https://doi.org/10.1016/s0165-5728(96)00214-7.Google Scholar
Flo, TH, Halaas, O, Lien, E, et al. Human toll-like receptor 2 mediates monocyte activation by Listeria monocytogenes, but not by group B streptococci or lipopolysaccharide. J Immunol 2000;164(4):2064–9. https://doi.org/10.4049/jimmunol.164.4.2064.Google Scholar
Furey, CG, Choi, J, Jin, SC, et al. De novo mutation in genes regulating neural stem cell fate in human congenital hydrocephalus. Neuron 2018;99(2):302–14. https://doi.org/10.1016/j.neuron.2018.06.019.Google Scholar
Gao, C, Du, H, Hua, Y, Keep, RF, Strahle, J, Xi, G. Role of red blood cell lysis and iron in hydrocephalus after intraventricular hemorrhage. J Cerebr Blood Flow Metab 2014;34(6):1070–5. https://doi.org/10.1038/jcbfm.2014.56.Google Scholar
Gharagozloo, M, Gris, KV, Mahvelati, T, Amrani, A, Lukens, JR, Gris, D. NLR-dependent regulation of inflammation in multiple sclerosis. Front Immunol 2017;8:2012. https://doi.org/10.3389/fimmu.2017.02012.Google Scholar
Gram, M, Sveinsdottir, S, Cinthio, M, et al. Extracellular hemoglobin – mediator of inflammation and cell death in the choroid plexus following preterm intraventricular hemorrhage. J Neuroinflam 2014;11:200. https://doi.org/10.1186/s12974-014-0200-9.Google Scholar
Gram, M, Sveinsdottir, S, Ruscher, K, et al. Hemoglobin induces inflammation after preterm intraventricular hemorrhage by methemoglobin formation. J Neuroinflam 2013;10:100. https://doi.org/10.1186/1742-2094-10-100.Google Scholar
Grandgirard, D, Leib, SL. Meningitis in neonates: bench to bedside. Clin Perinatol 2010;37(3):655–76. https://doi.org/10.1016/j.clp.2010.05.004.Google Scholar
Habiyaremye, G, Morales, DM, Morgan, CD, et al. Chemokine and cytokine levels in the lumbar cerebrospinal fluid of preterm infants with post-hemorrhagic hydrocephalus. Fluids Barriers CNS 2017;14(1):35. https://doi.org/10.1186/s12987-017-0083-0.Google Scholar
Hayashi, F, Smith, KD, Ozinsky, A, et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001;410(6832):1099–103. https://doi.org/10.1038/35074106.CrossRefGoogle ScholarPubMed
Hill, A, Shackelford, GD, Volpe, JJ. A potential mechanism of pathogenesis for early posthemorrhagic hydrocephalus in the premature newborn. Pediatrics 1984;73(1):1921.Google Scholar
Hladky, SB, Barrand, MA. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS 2014;11(1):26. https://doi.org/10.1186/2045-8118-11-26.Google Scholar
Hoffmann, A, Pfeil, J, Mueller, AK, et al. MRI of iron oxide nanoparticles and myeloperoxidase activity links inflammation to brain edema in experimental cerebral malaria. Radiology 2019;290(2):359–67. https://doi.org/10.1148/radiol.2018181051.CrossRefGoogle ScholarPubMed
Hu, Y, Wang, Z, Pan, S, et al. Melatonin protects against blood–brain barrier damage by inhibiting the TLR4/ NF-κB signaling pathway after LPS treatment in neonatal rats. Oncotarget 2017;8(19):31638–54. https://doi.org/10.18632/oncotarget.15780.Google ScholarPubMed
Isaacs, AM, Riva-Cambrin, J, Yavin, D, et al. Age-specific global epidemiology of hydrocephalus: systematic review, metanalysis and global birth surveillance. PLoS One 2018;13(10):e0204926. https://doi.org/10.1371/journal.pone.0204926.Google Scholar
Janot, L, Secher, T, Torres, D, et al. CD14 works with toll-like receptor 2 to contribute to recognition and control of Listeria monocytogenes infection. J Infect Dis 2008;198(1):115–24. https://doi.org/10.1086/588815.Google Scholar
Kahle, KT, Kulkarni, AV, Limbrick, DD, Jr., Warf, BC. Hydrocephalus in children. Lancet 2016;387(10020):788–99. https://doi.org/10.1016/S0140-6736(15)60694-8.CrossRefGoogle ScholarPubMed
Kamat, AS, Gretschel, A, Vlok, AJ, Solomons, R. CSF protein concentration associated with ventriculoperitoneal shunt obstruction in tuberculous meningitis. Int J Tuberc Lung Dis 2018;22(7):788–92. https://doi.org/10.5588/ijtld.17.0008.Google Scholar
Karimy, JK, Duran, D, Hu, JK, et al. Cerebrospinal fluid hypersecretion in pediatric hydrocephalus. Neurosurg Focus 2016;41(5):E10. https://doi.org/10.3171/2016.8.FOCUS16278.Google Scholar
Karimy, JK, Kahle, KT, Kurland, DB, Yu, E, Gerzanich, V, Simard, JM. A novel method to study cerebrospinal fluid dynamics in rats. J Neurosci Methods 2015;241:7884. https://doi.org/10.1016/j.jneumeth.2014.12.015.Google Scholar
Karimy, JK, Zhang, J, Kurland, DB, et al. Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nature Med 2017;23(8):9971003. https://doi.org/10.1038/nm.4361.Google Scholar
Keep, RF, Jones, HC. A morphometric study on the development of the lateral ventricle choroid plexus, choroid plexus capillaries and ventricular ependyma in the rat. Brain Res Dev Brain Res 1990;56(1):4753. https://doi.org/10.1016/0165-3806(90)90163-s.CrossRefGoogle Scholar
Kim, KS. Mechanisms of microbial traversal of the blood–brain barrier. Nature Rev Microbiol 2008;6(8):625–34. https://doi.org/10.1038/nrmicro1952.Google Scholar
Kleine, TO, Benes, L. Immune surveillance of the human central nervous system (CNS): different migration pathways of immune cells through the blood–brain barrier and blood–cerebrospinal fluid barrier in healthy persons. Cytometry Part A 2006;69(3):147–51. https://doi.org/10.1002/cyto.a.20225.Google Scholar
Koedel, U, Klein, M, Pfister, H-W. New understandings on the pathophysiology of bacterial meningitis. Curr Opin Infect Dis 2010;23(3):217–23. https://doi.org/10.1097/QCO.0b013e328337f49e.Google Scholar
Kotas, ME, Medzhitov, R. Homeostasis, inflammation, and disease susceptibility. Cell 2015;160(5):816–27. https://doi.org/10.1016/j.cell.2015.02.010.CrossRefGoogle ScholarPubMed
Krebs, VL, Okay, TS, Okay, Y, Vaz, FA. Tumor necrosis factor-alpha, interleukin-1beta and interleukin-6 in the cerebrospinal fluid of newborn with meningitis. Arq Neuropsiquiatr 2005;63(1):713. https://doi.org/10.1590/s0004-282x2005000100002.Google Scholar
Kulkarni, AV. First treatment in infants with hydrocephalus: the case for shunt. Neurosurgery 2016;63(Suppl 1):73–7. https://doi.org/10.1227/NEU.0000000000001287.Google Scholar
Kulkarni, AV, Drake, JM, Kestle, JR, Mallucci, CL, Sgouros, S, Constantini, S. Endoscopic third ventriculostomy vs cerebrospinal fluid shunt in the treatment of hydrocephalus in children: a propensity score-adjusted analysis. Neurosurgery 2010;67(3):588–93. https://doi.org/10.1227/01.NEU.0000373199.79462.21.Google Scholar
Kulkarni, AV, Drake, JM, Mallucci, CL, Sgouros, S, Roth, J, Constantini, S. Endoscopic third ventriculostomy in the treatment of childhood hydrocephalus. J Pediatrics 2009;155(2):254–9. https://doi.org/10.1016/j.jpeds.2009.02.048.Google Scholar
Kulkarni, AV, Riva-Cambrin, J, Browd, SR, et al. Endoscopic third ventriculostomy and choroid plexus cauterization in infants with hydrocephalus: a retrospective Hydrocephalus Clinical Research Network study. J Neurosurg Pediatr 2014;14(3):224–9. https://doi.org/10.3171/2014.6.PEDS13492.Google Scholar
Kulkarni, AV, Riva-Cambrin, J, Butler, J, et al. Outcomes of CSF shunting in children: comparison of Hydrocephalus Clinical Research Network cohort with historical controls. J Neurosurg Pediatr 2013;12(4):334–8. https://doi.org/10.3171/2013.7.PEDS12637.Google Scholar
Kulkarni, AV, Schiff, SJ, Mbabazi-Kabachelor, E, et al. Endoscopic treatment versus shunting for infant hydrocephalus in Uganda. New Engl J Med 2017;377(25):2456–64. https://doi.org/10.1056/NEJMoa1707568.Google Scholar
Kwon, MS, Woo, SK, Kurland, DB, et al. Methemoglobin is an endogenous toll-like receptor 4 ligand-relevance to subarachnoid hemorrhage. Int J Molec Sci 2015;16(3):5028–46. https://doi.org/10.3390/ijms16035028.CrossRefGoogle ScholarPubMed
Lahrtz, F, Piali, L, Spanaus, KS, Seebach, J, Fontana, A. Chemokines and chemotaxis of leukocytes in infectious meningitis. J Neuroimmunol 1998;85(1):3343. https://doi.org/10.1016/s0165-5728(97)00267-1.CrossRefGoogle ScholarPubMed
Lan, CC, Peng, CK, Tang, SE, et al. Inhibition of Na–K–Cl cotransporter isoform 1 reduces lung injury induced by ischemia–reperfusion. J Thorac Cardiovasc Surg 2017;153(1):206–15. https://doi.org/10.1016/j.jtcvs.2016.09.068.Google Scholar
Larroche, JC. Post-haemorrhagic hydrocephalus in infancy. Anatomical study. Biol Neonate 1972;20(3):287–99. https://doi.org/10.1159/000240472.Google Scholar
Lategan, B, Chodirker, BN, Del Bigio, MR. Fetal hydrocephalus caused by cryptic intraventricular hemorrhage. Brain Pathol 2010;20(2):391–8. https://doi.org/10.1111/j.1750-3639.2009.00293.x.Google Scholar
Lee, LV. Neurotuberculosis among Filipino children: an 11-year experience at the Philippine Children’s Medical Center. Brain Dev 2000;22(8):469–74. https://doi.org/10.1016/s0387-7604(00)00190-x.Google Scholar
Lemonnier, E, Ben-Ari, Y. The diuretic bumetanide decreases autistic behaviour in five infants treated during 3 months with no side effects. Acta Paediatr 2010;99(12):1885–8. https://doi.org/10.1111/j.1651-2227.2010.01933.x.Google Scholar
Lemonnier, E, Degrez, C, Phelep, M, et al. A randomised controlled trial of bumetanide in the treatment of autism in children. Transl Psychiatry 2012;2:e202. https://doi.org/10.1038/tp.2012.124.Google Scholar
Lemonnier, E, Villeneuve, N, Sonie, S, et al. Effects of bumetanide on neurobehavioral function in children and adolescents with autism spectrum disorders. Transl Psychiatry 2017;7(3):e1056. https://doi.org/10.1038/tp.2017.10.CrossRefGoogle ScholarPubMed
Li, K, Tang, H, Yang, Y, et al. Clinical features, long-term clinical outcomes, and prognostic factors of tuberculous meningitis in West China: a multivariate analysis of 154 adults. Expert Rev Anti Infect Ther 2017;15(6):629–35. https://doi.org/10.1080/14787210.2017.1309974.Google Scholar
Li, L, Padhi, A, Ranjeva, SL, et al. Association of bacteria with hydrocephalus in Ugandan infants. J Neurosurg Pediatr 2011;7(1):7387. https://doi.org/10.3171/2010.9.PEDS10162.Google Scholar
Limbrick, DD, Jr., Baird, LC, Klimo, P, Jr., Riva-Cambrin, J, Flannery, AM. Pediatric hydrocephalus: systematic literature review and evidence-based guidelines. Part 4: Cerebrospinal fluid shunt or endoscopic third ventriculostomy for the treatment of hydrocephalus in children. J Neurosurg Pediatr 2014;14(Suppl 1):30–4. https://doi.org/10.3171/2014.7.PEDS14324.Google Scholar
Lin, TJ, Yang, SS, Hua, KF, Tsai, YL, Lin, SH, Ka, SM. SPAK plays a pathogenic role in IgA nephropathy through the activation of NF-kappaB/MAPKs signaling pathway. Free Rad Biol Med 2016;99:214–24. https://doi.org/10.1016/j.freeradbiomed.2016.08.008.Google Scholar
Liu, J, Chen, ZL, Li, M, et al. Ventriculoperitoneal shunts in non-HIV cryptococcal meningitis. BMC Neurol 2018;18(1):58. https://doi.org/10.1186/s12883-018-1053-0.Google Scholar
Liu, SF, Ye, X, Malik, AB. Inhibition of NF-B activation by pyrrolidine dithiocarbamate prevents in vivo expression of proinflammatory genes. Circulation 1999;100(12):1330–7. https://doi.org/10.1161/01.cir.100.12.1330.Google Scholar
Lohrberg, M, Wilting, J. The lymphatic vascular system of the mouse head. Cell Tissue Res 2016;366(3):667–77. https://doi.org/10.1007/s00441-016-2493-8.Google Scholar
Louveau, A, Plog, BA, Antila, S, Alitalo, K, Nedergaard, M, Kipnis, J. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J Clin Invest 2017;127(9):3210–9. https://doi.org/10.1172/JCI90603.Google Scholar
Louveau, A, Smirnov, I, Keyes, TJ, et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015;523(7560):337–41. https://doi.org/10.1038/nature14432.CrossRefGoogle ScholarPubMed
Malley, R, Henneke, P, Morse, SC, et al. Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc Natl Acad Sci U S A 2003;100(4):1966–71. https://doi.org/10.1073/pnas.0435928100.Google Scholar
Marques, F, Sousa, JC, Brito, MA, et al. The choroid plexus in health and in disease: dialogues into and out of the brain. Neurobiol Dis 2017;107:3240. https://doi.org/10.1016/j.nbd.2016.08.011.Google Scholar
McAllister, JP, Guerra, MM, Ruiz, LC, et al. Ventricular zone disruption in human neonates with intraventricular hemorrhage. J Neuropathol Exp Neurol 2017;76(5):358–75. https://doi.org/10.1093/jnen/nlx017.Google Scholar
Medzhitov, R. TLR-mediated innate immune recognition. Semin Immunol 2007;19(1):12. https://doi.org/10.1016/j.smim.2007.02.001.Google Scholar
Millward, JM, Ariza de Schellenberger, A, Berndt, D, et al. Application of europium-doped very small iron oxide nanoparticles to visualize neuroinflammation with MRI and fluorescence microscopy. Neuroscience 2019;403:136144. https://doi.org/10.1016/j.neuroscience.2017.12.014Google Scholar
Miyajima, M, Arai, H. Evaluation of the production and absorption of cerebrospinal fluid. Neurol Med Chir (Tokyo) 2015;55(8):647–56. https://doi.org/10.2176/nmc.ra.2015-0003.Google Scholar
Miyake, K. Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Semin Immunol 2007;19(1):310. https://doi.org/10.1016/j.smim.2006.12.002.Google Scholar
Mook-Kanamori, BB, Geldhoff, M, van der Poll, T, van de Beek, D. Pathogenesis and pathophysiology of pneumococcal meningitis. Clin Microbiol Rev 2011;24(3):557–91. https://doi.org/10.1128/CMR.00008-11.Google Scholar
Muir, RT, Wang, S, Warf, BC. Global surgery for pediatric hydrocephalus in the developing world: a review of the history, challenges, and future directions. Neurosurg Focus 2016;41(5):E11. https://doi.org/10.3171/2016.7.FOCUS16273.Google Scholar
Murphy, BP, Inder, TE, Rooks, V, et al. Posthaemorrhagic ventricular dilatation in the premature infant: natural history and predictors of outcome. Arch Dis Child Fetal Neonatal Ed 2002;87(1):F3741. https://doi.org/10.1136/fn.87.1.f37.Google Scholar
Nowarski, R, Jackson, R, Flavell, RA. The stromal intervention: regulation of immunity and inflammation at the epithelial-mesenchymal barrier. Cell 2017;168(3):362–75. https://doi.org/10.1016/j.cell.2016.11.040.Google Scholar
Oi, S, Di Rocco, C. Proposal of “evolution theory in cerebrospinal fluid dynamics” and minor pathway hydrocephalus in developing immature brain. Childs Nerv Syst 2006;22(7):662–9. https://doi.org/10.1007/s00381-005-0020-4.CrossRefGoogle ScholarPubMed
Olstad, EW, Ringers, C, Hansen, JN, et al. Ciliary beating compartmentalizes cerebrospinal fluid flow in the brain and regulates ventricular development. Curr Biol 2019;29(2):229–41. https://doi.org/10.1016/j.cub.2018.11.059.Google Scholar
Omar, AT, 2nd, Bagnas, MAC, Del Rosario-Blasco, KAR, Diestro, JDB, Khu, KJO. Shunt surgery for neurocutaneous melanosis with hydrocephalus: case report and review of the literature. World Neurosurg 2018;120:583–9. https://doi.org/10.1016/j.wneu.2018.09.002.Google Scholar
Oreskovic, D, Rados, M, Klarica, M. Role of choroid plexus in cerebrospinal fluid hydrodynamics. Neuroscience 2017;354:6987. https://doi.org/10.1016/j.neuroscience.2017.04.025.Google Scholar
Piechotta, K, Garbarini, N, England, R, Delpire, E. Characterization of the interaction of the stress kinase SPAK with the Na+–K+–2Cl cotransporter in the nervous system: evidence for a scaffolding role of the kinase. J Biol Chem 2003;278(52):52848–56. https://doi.org/10.1074/jbc.M309436200.Google Scholar
Piechotta, K, Lu, J, Delpire, E. Cation chloride cotransporters interact with the stress-related kinases Ste20-related proline–alanine-rich kinase (SPAK) and oxidative stress response 1 (OSR1). J Biol Chem 2002;277(52):50812–9. https://doi.org/10.1074/jbc.M208108200.Google Scholar
Pindrik, J, Jallo, GI, Ahn, ES. Complications and subsequent removal of retained shunt hardware after endoscopic third ventriculostomy: case series. J Neurosurg Pediatr 2013;11(6):722–6. https://doi.org/10.3171/2013.3.PEDS12489.Google Scholar
Polek, TC, Talpaz, M, Spivak-Kroizman, T. The TNF receptor, RELT, binds SPAK and uses it to mediate p38 and JNK activation. Biochem Biophys Res Commun 2006;343(1):125–34. https://doi.org/10.1016/j.bbrc.2006.02.125.Google Scholar
Praetorius, J, Damkier, HH. Transport across the choroid plexus epithelium. Am J Physiol Cell Physiol 2017;312(6):C673–86. https://doi.org/10.1152/ajpcell.00041.2017.Google Scholar
Pressler, RM, Boylan, GB, Marlow, N, et al. Bumetanide for the treatment of seizures in newborn babies with hypoxic ischaemic encephalopathy (NEMO): an open-label, dose finding, and feasibility phase 1/2 trial. Lancet Neurol 2015;14(5):469–77. https://doi.org/10.1016/S1474-4422(14)70303-5.Google Scholar
Pyrgos, V, Seitz, AE, Steiner, CA, Prevots, DR, Williamson, PR. Epidemiology of cryptococcal meningitis in the US: 1997–2009. PLoS One 2013;8(2):e56269. https://doi.org/10.1371/journal.pone.0056269.Google Scholar
Rajshekhar, V. Management of hydrocephalus in patients with tuberculous meningitis. Neurol India 2009;57(4):368–74. https://doi.org/10.4103/0028-3886.55572.Google Scholar
Reddy, GK, Bollam, P, Caldito, G. Long-term outcomes of ventriculoperitoneal shunt surgery in patients with hydrocephalus. World Neurosurg 2014;81(2):404–10. https://doi.org/10.1016/j.wneu.2013.01.096.Google Scholar
Rekate, HL. A contemporary definition and classification of hydrocephalus. Semin Pediatr Neurol 2009;16(1):915. https://doi.org/10.1016/j.spen.2009.01.002.Google Scholar
Rice, TW, Wheeler, AP, Bernard, GR, et al. A randomized, double-blind, placebo-controlled trial of TAK-242 for the treatment of severe sepsis. Crit Care Med 2010;38(8):1685–94. https://doi.org/10.1097/CCM.0b013e3181e7c5c9.Google Scholar
Rivest, S. Molecular insights on the cerebral innate immune system. Brain Behav Immun 2003;17(1):13–9. https://doi.org/10.1016/s0889-1591(02)00055-7.Google Scholar
Robinson, S, Conteh, FS, Oppong, AY, et al. Extended combined neonatal treatment with erythropoietin plus melatonin prevents posthemorrhagic hydrocephalus of prematurity in rats. Front Cell Neurosci 2018;12:322. https://doi.org/10.3389/fncel.2018.00322.Google Scholar
Sacks, FM, Svetkey, LP, Vollmer, WM, et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med 2001;344(1):310. https://doi.org/10.1056/NEJM200101043440101.Google Scholar
Schiefenhövel, F, Immig, K, Prodinger, C, Bechmann, I. Indications for cellular migration from the central nervous system to its draining lymph nodes in CD11c-GFP+ bone-marrow chimeras following EAE. Exp Brain Res 2017;235(7):2151–66. https://doi.org/10.1007/s00221-017-4956-x.Google Scholar
Schiff, SJ, Ranjeva, SL, Sauer, TD, Warf, BC. Rainfall drives hydrocephalus in East Africa. J Neurosurg Pediatr 2012;10(3):161–7. https://doi.org/10.3171/2012.5.PEDS11557.Google Scholar
Seki, E, Tsutsui, H, Tsuji, NM, et al. Critical roles of myeloid differentiation factor 88-dependent proinflammatory cytokine release in early phase clearance of Listeria monocytogenes in mice. J Immunol 2002;169(7):3863–8. https://doi.org/10.4049/jimmunol.169.7.3863.Google Scholar
Sellner, J, Tauber, MG, Leib, SL. Pathogenesis and pathophysiology of bacterial CNS infections. Handb Clin Neurol 2010;96:116. https://doi.org/10.1016/S0072-9752(09)96001-8.Google Scholar
Shang, X, Li, Y, Liu, A, et al. Dietary pattern and its association with the prevalence of obesity and related cardiometabolic risk factors among Chinese children. PLoS One 2012;7(8):e43183. https://doi.org/10.1371/journal.pone.0043183.Google Scholar
Shekarabi, M, Zhang, J, Khanna, AR, Ellison, DH, Delpire, E, Kahle, KT. WNK kinase signaling in ion homeostasis and human disease. Cell Metab 2017;25(2):285–99. https://doi.org/10.1016/j.cmet.2017.01.007.CrossRefGoogle ScholarPubMed
Simard, PF, Tosun, C, Melnichenko, L, Ivanova, S, Gerzanich, V, Simard, JM. Inflammation of the choroid plexus and ependymal layer of the ventricle following intraventricular hemorrhage. Transl Stroke Res 2011;2(2):227–31. https://doi.org/10.1007/s12975-011-0070-8.Google Scholar
Skipor, J, Szczepkowska, A, Kowalewska, M, Herman, AP, Lisiewski, P. Profile of toll-like receptor mRNA expression in the choroid plexus in adult ewes. Acta Vet Hung 2015;63(1):6978. https://doi.org/10.1556/AVet.2014.027.Google Scholar
Stagno, V, Navarrete, EA, Mirone, G, Esposito, F. Management of hydrocephalus around the world. World Neurosurg 2013;79(2 Suppl):S23.e1720. https://doi.org/10.1016/j.wneu.2012.02.004.Google Scholar
Steffensen, AB, Oernbo, EK, Stoica, A, et al. Cotransporter-mediated water transport underlying cerebrospinal fluid formation. Nature Commun 2018;9(1):2167. https://doi.org/10.1038/s41467-018-04677-9.Google Scholar
Strahle, J, Garton, HJ, Maher, CO, Muraszko, KM, Keep, RF, Xi, G. Mechanisms of hydrocephalus after neonatal and adult intraventricular hemorrhage. Transl Stroke Res 2012;3(Suppl 1):2538. https://doi.org/10.1007/s12975-012-0182-9.Google Scholar
Sveinsdottir, S, Gram, M, Cinthio, M, Sveinsdottir, K, Morgelin, M, Ley, D. Altered expression of aquaporin 1 and 5 in the choroid plexus following preterm intraventricular hemorrhage. Dev Neurosci 2014;36(6):542–51. https://doi.org/10.1159/000366058.Google Scholar
Thastrup, JO, Rafiqi, FH, Vitari, AC, et al. SPAK/OSR1 regulate NKCC1 and WNK activity: analysis of WNK isoform interactions and activation by T-loop trans-autophosphorylation. Biochem J 2012;441(1):325–37. https://doi.org/10.1042/BJ20111879.Google Scholar
Thiagarajah, JR, Donowitz, M, Verkman, AS. Secretory diarrhoea: mechanisms and emerging therapies. Nat Rev Gastroenterol Hepatol 2015;12(8):446–57. https://doi.org/10.1038/nrgastro.2015.111.Google Scholar
Thigpen, MC, Whitney, CG, Messonnier, NE, et al. Bacterial meningitis in the United States, 1998–2007. New Engl J Med 2011;364(21):2016–25. https://doi.org/10.1056/NEJMoa1005384.Google Scholar
Tsan, MF, Gao, B. Endogenous ligands of Toll-like receptors. J Leukocyte Biol 2004;76(3):514–9. https://doi.org/10.1189/jlb.0304127.Google Scholar
Tsitouras, V, Sgouros, S. Infantile posthemorrhagic hydrocephalus. Child Nervous Syst 2011;27(10):1595–608. https://doi.org/10.1007/s00381-011-1521-y.Google Scholar
van der Linden, V, de Lima Petribu, NC, Pessoa, A, et al. Association of severe hydrocephalus with congenital Zika syndrome. JAMA Neurol 2019;76(2):203–10. http://doi.org/10.1001/jamaneurol.2018.3553.Google Scholar
van Furth, AM, Roord, JJ, van Furth, R. Roles of proinflammatory and anti-inflammatory cytokines in pathophysiology of bacterial meningitis and effect of adjunctive therapy. Infect Immun 1996;64(12):4883–90. https://doi.org/10.1128/iai.64.12.4883-4890.1996.Google Scholar
Wang, YC, Zhou, Y, Fang, H, et al. Toll-like receptor 2/4 heterodimer mediates inflammatory injury in intracerebral hemorrhage. Ann Neurol 2014;75(6):876–89. https://doi.org/10.1002/ana.24159.Google Scholar
Warf, BC. Hydrocephalus in Uganda: the predominance of infectious origin and primary management with endoscopic third ventriculostomy. J Neurosurg 2005a;102(1 Suppl):115. https://doi.org/10.3171/ped.2005.102.1.0001.Google Scholar
Warf, BC. Comparison of endoscopic third ventriculostomy alone and combined with choroid plexus cauterization in infants younger than 1 year of age: a prospective study in 550 African children. J Neurosurg 2005b;103(6 Suppl):475–81. https://doi.org/10.3171/ped.2005.103.6.0475.Google Scholar
Warf, BC, East African Neurosurgical Research Collaboration.Pediatric hydrocephalus in East Africa: prevalence, causes, treatments, and strategies for the future. World Neurosurg 2010;73(4):296300. https://doi.org/10.1016/j.wneu.2010.02.009.Google Scholar
Warf, BC, Campbell, JW, Riddle, E. Initial experience with combined endoscopic third ventriculostomy and choroid plexus cauterization for post-hemorrhagic hydrocephalus of prematurity: the importance of prepontine cistern status and the predictive value of FIESTA MRI imaging. Childs Nerv Syst 2011;27(7):1063–71. https://doi.org/10.1007/s00381-011-1475-0.Google Scholar
White, CS, Lawrence, CB, Brough, D, Rivers-Auty, J. Inflammasomes as therapeutic targets for Alzheimer’s disease. Brain Pathol 2017;27(2):223–34. https://doi.org/10.1111/bpa.12478.Google Scholar
Whitelaw, A. Intraventricular haemorrhage and posthaemorrhagic hydrocephalus: pathogenesis, prevention and future interventions. Semin Neonatol 2001;6(2):135–46. https://doi.org/10.1053/siny.2001.0047.Google Scholar
Wilson, R, Alton, E, Rutman, A, et al. Upper respiratory tract viral infection and mucociliary clearance. Eur J Respir Dis 1987;70(5):272–9.Google Scholar
Yan, Y, Dalmasso, G, Nguyen, HT, et al. Nuclear factor-kappaB is a critical mediator of Ste20-like proline-/alanine-rich kinase regulation in intestinal inflammation. Am J Pathol 2008;173(4):1013–28. https://doi.org/10.2353/ajpath.2008.080339.Google Scholar
Yan, Y, Merlin, D. Ste20-related proline/alanine-rich kinase: a novel regulator of intestinal inflammation. World J Gastroenterol 2008;14(40):6115–21. https://doi.org/10.3748/wjg.14.6115.Google Scholar
Yan, Y, Nguyen, H, Dalmasso, G, Sitaraman, SV, Merlin, D. Cloning and characterization of a new intestinal inflammation-associated colonic epithelial Ste20-related protein kinase isoform. Biochim Biophys Acta 2007;1769(2):106–16. https://doi.org/10.1016/j.bbaexp.2007.01.003.Google Scholar
Yang, B, Zhou, Z, Li, X, Niu, J. The effect of lysophosphatidic acid on Toll-like receptor 4 expression and the nuclear factor-κB signaling pathway in THP-1 cells. Mol Cell Biochem 2016;422(1–2):41–9. https://doi.org/10.1007/s11010-016-2804-0.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×