Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-25T00:49:11.263Z Has data issue: false hasContentIssue false

Part 6 - Clinical Findings That Are Subtle

Published online by Cambridge University Press:  03 November 2020

Keith Josephs
Affiliation:
Mayo Clinic Alzheimer’s Disease Research Center
Federico Rodriguez-Porcel
Affiliation:
Medical University of South Carolina
Rhonna Shatz
Affiliation:
University of Cincinnati
Daniel Weintraub
Affiliation:
University of Pennsylvania
Alberto Espay
Affiliation:
University of Cincinnati
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Barnes, J. and David, A. S. 2001. Visual hallucinations in Parkinson’s disease: a review and phenomenological survey. J Neurol Neurosurg Psychiatry 70(6) 727733.CrossRefGoogle ScholarPubMed
Beagle, A. J. et al. 2017. Relative incidence of seizures and myoclonus in Alzheimer’s disease, dementia with Lewy bodies, and frontotemporal dementia. J Alzheimers Dis 60(1) 211223.Google Scholar
Bertram, K. and Williams, D. R. 2012. Visual hallucinations in the differential diagnosis of parkinsonism. J Neurol Neurosurg Psychiatry 83(4) 448452.CrossRefGoogle ScholarPubMed
Boeve, B. F. et al. 2012. Characterization of frontotemporal dementia and/or amyotrophic lateral sclerosis associated with the GGGGCC repeat expansion in C9ORF72. Brain 135(Pt 3) 765783.CrossRefGoogle ScholarPubMed
Burghaus, L. et al. 2012. Hallucinations in neurodegenerative diseases. CNS Neurosci Ther 18(2) 149159.CrossRefGoogle ScholarPubMed
Cianchetti, C., Pruna, D. and Ledda, M. 2013. Epileptic seizures and headache/migraine: a review of types of association and terminology. Seizure Eur J Epilepsy 22(9) 679685.CrossRefGoogle ScholarPubMed
Diederich, N. J., Fenelon, G., Stebbins, G. and Goetz, C. G. 2009. Hallucinations in Parkinson disease. Nat Rev Neurol 5(6) 331342.CrossRefGoogle ScholarPubMed
Elliott, B., Joyce, E. and Shorvon, S. 2009a. Delusions, illusions and hallucinations in epilepsy: 1. Elementary phenomena. Epilepsy Res 85(2–3) 162171.CrossRefGoogle ScholarPubMed
Elliott, B., Joyce, E. and Shorvon, S. 2009b. Delusions, illusions and hallucinations in epilepsy: 2. Complex phenomena and psychosis. Epilepsy Res 85(2–3) 172186.CrossRefGoogle ScholarPubMed
Fenelon, G., Mahieux, F., Huon, R. and Ziegler, M. 2000. Hallucinations in Parkinson’s disease: prevalence, phenomenology and risk factors. Brain 123 (Pt 4) 733745.CrossRefGoogle ScholarPubMed
Ffytche, D. H., Blom, J. D. and Catani, M. 2010. Disorders of visual perception. J Neurol Neurosurg Psychiatry 81(11) 12801287.Google Scholar
Gooriah, R. et al. 2014. Visual hallucinations: an unusual manifestation of sporadic Creutzfeldt–Jakob disease termed the “Heidenhain variant.J Neurol 261(11) 22282229.CrossRefGoogle ScholarPubMed
Holroyd, S., Currie, L. and Wooten, G. F. 2001. Prospective study of hallucinations and delusions in Parkinson’s disease. J Neurol Neurosurg Psychiatry 70(6) 734738.CrossRefGoogle ScholarPubMed
Kasper, B. S., Kasper, E. M., Pauli, E. and Stefan, H. 2010. Phenomenology of hallucinations, illusions, and delusions as part of seizure semiology. Epilepsy Behav 18(1–2) 1323.Google Scholar
Linszen, M. M. J. et al. 2018. Understanding hallucinations in probable Alzheimer’s disease: very low prevalence rates in a tertiary memory clinic. Alzheimers Dement 10 358362.Google Scholar
Manford, M. and Andermann, F. 1998. Complex visual hallucinations: clinical and neurobiological insights. Brain 121 (Pt 10) 18191840.CrossRefGoogle ScholarPubMed
Mula, M. 2012. Topiramate and cognitive impairment: evidence and clinical implications. Ther Adv Drug Saf 3(6) 279289.Google Scholar
Teeple, R. C., Caplan, J. P. and Stern, T. A. 2009. Visual hallucinations: differential diagnosis and treatment. Prim Care Companion J Clin Psychiatry 11(1) 2632.Google Scholar

References

Bocchetta, M. et al. 2016. Patterns of regional cerebellar atrophy in genetic frontotemporal dementia. NeuroImage Clin 11 287290.Google Scholar
Eddy, C. M., Parkinson, E. G. and Rickards, H. E. 2016. Changes in mental state and behaviour in Huntington’s disease. Lancet Psychiatry 3(11) 10791086.Google Scholar
Hensman Moss, D. J. et al. 2014. C9orf72 expansions are the most common genetic cause of Huntington disease phenocopies. Neurology 82(4) 292299.CrossRefGoogle ScholarPubMed
Hsiung, G. Y. et al. 2012. Clinical and pathological features of familial frontotemporal dementia caused by C9ORF72 mutation on chromosome 9p. Brain 135(Pt 3) 709722.CrossRefGoogle ScholarPubMed
Papoutsi, M., Labuschagne, I., Tabrizi, S. J. and Stout, J. C. 2014. The cognitive burden in Huntington’s disease: pathology, phenotype, and mechanisms of compensation. Mov Disord 29(5) 673683.Google Scholar
Sha, S. J. et al. 2012. Frontotemporal dementia due to C9ORF72 mutations: clinical and imaging features. Neurology 79(10) 10021011.Google Scholar
Van Mossevelde, S., Engelborghs, S., van der Zee, J. and Van Broeckhoven, C. 2018. Genotype-phenotype links in frontotemporal lobar degeneration. Nat Rev Neurol 14(6) 363378.Google Scholar
Whitwell, J. L. et al. 2012. Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, tau, progranulin and sporadics. Brain 135(Pt 3) 794806.Google Scholar

References

Baddeley, A. D. and Hitch, G. J. 2019. The phonological loop as a buffer store: an update. Cortex 112 91106.CrossRefGoogle ScholarPubMed
Gorno-Tempini, M. L. et al. 2008. The logopenic/phonological variant of primary progressive aphasia. Neurology 71(16) 12271234.CrossRefGoogle ScholarPubMed
Gorno-Tempini, M. L. et al. 2011. Classification of primary progressive aphasia and its variants. Neurology 76(11) 10061014.CrossRefGoogle ScholarPubMed
Graff-Radford, J., Duffy, J. R., Strand, E. A. and Josephs, K. A. 2012. Parkinsonian motor features distinguish the agrammatic from logopenic variant of primary progressive aphasia. Parkinsonism Relat Disord 18(7) 890892.CrossRefGoogle ScholarPubMed
Marshall, C. R. et al. 2018. Primary progressive aphasia: a clinical approach. J Neurol 265(6) 14741490.Google Scholar
Owens, T. E. et al. 2018. Patterns of neuropsychological dysfunction and cortical volume changes in logopenic aphasia. J Alzheimers Dis 66(3) 10151025.Google Scholar
Rohrer, J. D. et al. 2008. Word-finding difficulty: a clinical analysis of the progressive aphasias. Brain 131(Pt 1) 838.Google Scholar
Snowden, J. S. et al. 2007. Cognitive phenotypes in Alzheimer’s disease and genetic risk. Cortex 43(7) 835845.CrossRefGoogle ScholarPubMed
Wilson, S. M. et al. 2010. Connected speech production in three variants of primary progressive aphasia. Brain 133(Pt 7) 20692088.Google Scholar

References

Aldrich, M. S., Alessi, A. G., Beck, R. W. and Gilman, S. 1987. Cortical blindness: etiology, diagnosis, and prognosis. Ann Neurol 21(2) 149158.Google Scholar
Barton, J. J. 2011. Disorder of higher visual function. Curr Opin Neurol 24(1) 15.Google Scholar
Barton, J. J. 2014. Higher cortical visual deficits. Continuum 20(4) 922941.Google Scholar
Beh, S. C. et al. 2015. Hiding in plain sight: a closer look at posterior cortical atrophy. Pract Neurol 15(1) 513.Google Scholar
Goodale, M. A. and Milner, A. D. 1992. Separate visual pathways for perception and action. Trends Neurosci 15(1) 2025.Google Scholar
Hier, D. B., Mondlock, J. and Caplan, L. R. 1983. Behavioral abnormalities after right hemisphere stroke. Neurology 33(3) 337344.CrossRefGoogle ScholarPubMed
Mesulam, M. M. 1998. From sensation to cognition. Brain 121(6) 10131052.Google Scholar
Riddoch, M. J. et al. 2008. A tale of two agnosias: distinctions between form and integrative agnosia. Cogn Neuropsychol 25(1) 5692.Google Scholar

References

Arciniegas, D. B. 2005. A clinical overview of pseudobulbar affect. Am J Geriatr Pharmacother 3 48.Google Scholar
Blumberg, J. et al. 2012. Dacrystic seizures: demographic, semiologic, and etiologic insights from a multicenter study in long-term video-EEG monitoring units. Epilepsia 53(10) 18101819.Google Scholar
Brooks, B. R. et al. 2013. PRISM: a novel research tool to assess the prevalence of pseudobulbar affect symptoms across neurological conditions. PLoS One 8(8) e72232.Google Scholar
Colamonico, J., Formella, A. and Bradley, W. 2012. Pseudobulbar affect: burden of illness in the USA. Adv Ther 29(9) 775798.Google Scholar
Granadillo, E. D. and Mendez, M. F. 2016. Pathological joking or Witzelsucht revisited. J Neuropsychiatry Clin Neurosci 28(3) 162167.Google Scholar
Miller, A., Pratt, H. and Schiffer, R. B. 2011. Pseudobulbar affect: the spectrum of clinical presentations, etiologies and treatments. Expert Rev Neurother 11(7) 10771088.Google Scholar
Moore, S. R. et al. 1997. A self report measure of affective lability. J Neurol Neurosurg Psychiatry 63(1) 8993.Google Scholar
Parvizi, J. et al. 2009. Neuroanatomy of pathological laughing and crying: a report of the American Neuropsychiatric Association Committee on Research. J Neuropsychiatry Clin Neurosci 21(1) 7587.Google Scholar
Phuong, L. et al. 2009. Involuntary emotional expression disorder (IEED) in Parkinson’s disease. Parkinsonism and Related Disord 15(7) 511515.Google Scholar
Rosen, H. 2008. Dextromethorphan/quinidine sulfate for pseudobulbar affect. Drugs Today 44(9) 661668.CrossRefGoogle ScholarPubMed
Rottenberg, J., Cevaal, A. and Vingerhoets, A. J. 2008. Do mood disorders alter crying? A pilot investigation. Depress Anxiety 25(5) E915.CrossRefGoogle ScholarPubMed
Sauve, W. M. 2016. Recognizing and treating pseudobulbar affect. CNS Spectr 21(S1) 3444.Google Scholar
Tran, T. P. et al. 2014. Different localizations underlying cortical gelastic epilepsy: case series and review of literature. Epilepsy Behav 35 3441.Google Scholar
Work, S. S., Colamonico, J. A., Bradley, W. G. and Kaye, R. E. 2011. Pseudobulbar affect: an under-recognized and under-treated neurological disorder. Adv Ther 28(7) 586601.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×