Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T00:50:05.170Z Has data issue: false hasContentIssue false

Sympatric western lowland gorillas, central chimpanzees and humans are infected with different trichomonads

Published online by Cambridge University Press:  07 October 2019

K. J. Petrželková
Affiliation:
The Czech Academy of Sciences, Institute of Vertebrate Biology, Květná 8, 603 65Brno, Czech Republic The Czech Academy of Sciences, Biology Centre, Institute of Parasitology, Branišovská 31, 370 05České Budějovice, Czech Republic Liberec Zoo, Lidové sady 425/1, 460 01Liberec, Czech Republic
P. Smejkalová
Affiliation:
Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44Prague, Czech Republic Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44Prague, Czech Republic
V. Céza
Affiliation:
Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44Prague, Czech Republic
B. Pafčo
Affiliation:
The Czech Academy of Sciences, Institute of Vertebrate Biology, Květná 8, 603 65Brno, Czech Republic
K. A. Shutt-Phillips
Affiliation:
Fauna & Flora International, Pembroke St, Cambridge, CB2 3QZ, UK
A. Todd
Affiliation:
Dzanga Sangha Project, World Wildlife Fund, Bangui, Central African Republic
K. Jirků-Pomajbíková
Affiliation:
The Czech Academy of Sciences, Biology Centre, Institute of Parasitology, Branišovská 31, 370 05České Budějovice, Czech Republic Department of Medical Biology, Faculty of Sciences, University of South Bohemia, Branišovská 31, České Budějovice, 370 05, Czech Republic
J. Benavides
Affiliation:
Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Republica 440, Santiago, Chile
D. Modrý
Affiliation:
The Czech Academy of Sciences, Biology Centre, Institute of Parasitology, Branišovská 31, 370 05České Budějovice, Czech Republic Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42Brno, Czech Republic European Institute for Technology (CEITEC), University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42Brno, Czech Republic
I. Čepička*
Affiliation:
Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44Prague, Czech Republic
*
Author for correspondence: I. Čepička, E-mail: ivan.cepicka@centrum.cz

Abstract

We investigated intestinal trichomonads in western lowland gorillas, central chimpanzees and humans cohabiting the forest ecosystem of Dzanga-Sangha Protected Area in Central African Republic, using the internal transcribed spacer (ITS) region and SSU rRNA gene sequences. Trichomonads belonging to the genus Tetratrichomonas were detected in 23% of the faecal samples and in all host species. Different hosts were infected with different genotypes of Tetratrichomonas. In chimpanzees, we detected tetratrichomonads from ‘novel lineage 2’, which was previously reported mostly in captive and wild chimpanzees. In gorillas, we found two different genotypes of Tetratrichomonas. The ITS region sequences of the more frequent genotype were identical to the sequence found in a faecal sample of a wild western lowland gorilla from Cameroon. Sequences of the second genotype from gorillas were almost identical to sequences previously obtained from an anorexic French woman. We provide the first report of the presence of intestinal tetratrichomonads in asymptomatic, apparently healthy humans. Human tetratrichomonads belonged to the lineage 7, which was previously reported in domestic and wild pigs and a domestic horse. Our findings suggest that the ecology and spatial overlap among hominids in the tropical forest ecosystem has not resulted in exchange of intestinal trichomonads among these hosts.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Equal authors

References

Blom, A, Almasi, A, Heitkonig, IMA, Kpanou, JB and Prins, HHT (2001) A survey of the apes in the Dzanga-Ndoki National Park, Central African Republic: a comparison between the census and survey methods of estimating the gorilla (Gorilla gorilla gorilla) and chimpanzee (Pan troglodytes) nest group density. African Journal of Ecology 39, 98105.CrossRefGoogle Scholar
Calvignac-Spencer, S, Leendertz, SAJ and Gillespie, TR (2012) Wild great apes as sentinels and sources of infectious disease. Clinical Microbiology and Infection 18, 521527.CrossRefGoogle ScholarPubMed
Carroll, RW (1986) The Creation, Development, Protection, and Management of the Dzanga-Sangha Dense Forest Sanctuary and the Dzanga-Ndoki National Park in Southwestern Central African Republic. New Haven, Connecticut: Yale University School of Forestry and Environmental Studies.Google Scholar
Cepicka, I, Kutisová, K, Tachezy, J, Kulda, J and Flegr, J (2005) Cryptic species within the Tetratrichomonas gallinarum species complex revealed by molecular polymorphism. Veterinary Parasitology 128, 1121.CrossRefGoogle ScholarPubMed
Cepicka, I, Hampl, V, Kulda, J and Flegr, J (2006) New evolutionary lineages, unexpected diversity, and host specificity in the parabasalid genus Tetratrichomonas. Molecular Phylogenetics and Evolution 39, 542551.CrossRefGoogle ScholarPubMed
Cepicka, I, Hampl, V and Kulda, J (2010) Critical taxonomic revision of parabasalids with description of one new genus and three new species. Protist 161, 400433.CrossRefGoogle ScholarPubMed
Čepička, I, Dolan, MF and Gile, GH (2017) Parabasalia. In Archibald, JM, Simpson, AGB and Slamovits, CH (eds), Handbook of the Protists. Cham, Switzerland: Springer, pp. 11751218.CrossRefGoogle Scholar
Chabé, M, Lokmer, A and Ségurel, L (2017) Gut protozoa: friends or foes of the human gut microbiota? Trends in Parasitology 33, 925934.CrossRefGoogle ScholarPubMed
Clayton, JB, Vangay, P, Huang, H, Ward, T, Hillmann, BM, Al-Ghalith, GA, Travis, DA, Long, HT, Tuan, BV, Minh, VV, Cabana, F, Nadler, T, Toddes, B, Murphy, T, Glander, KE, Johnson, TJ and Knights, D (2016) Captivity humanizes the primate microbiome. Proceedings of the National Academy of Sciences 113, 1037610381.CrossRefGoogle ScholarPubMed
Dobell, C and Laidlaw, PP (1926) On the cultivation of Entamoeba histolytica and some other entozoic amoebae. Parasitology 18, 283318.CrossRefGoogle Scholar
dos Santos, CS, de Jesus, VLT, McIntosh, D, Carreiro, CC, Batista, LCO, do Bomfim Lopez, B, Neves, DM and Lopes, CWG (2017) Morphological, ultrastructural, and molecular characterization of intestinal tetratrichomonads isolated from non-human primates in southeastern Brazil. Parasitology Research 116, 24792488.CrossRefGoogle ScholarPubMed
Flick, EW (1954) Experimental analysis of some factors influencing variation in the flagellar number of Trichomonas hominis from man and other primates and their relationship to nomenclature. Experimental Parasitology 3, 105121.CrossRefGoogle ScholarPubMed
Gomez, A, Petrzelkova, K, Yeoman, CJ, Vlckova, K, Mrázek, J, Koppova, I, Carbonero, F, Ulanov, A, Modry, D, Todd, A, Torralba, M, Nelson, KE, Gaskins, HR, Wilson, B, Stumpf, RM, White, BA and Leigh, S (2015) Gut microbiome composition and metabolomic profiles of wild western lowland gorillas (Gorilla gorilla gorilla) reflect host ecology. Molecular Ecology 24, 25512565.CrossRefGoogle ScholarPubMed
Gouba, N, Raoult, D and Drancourt, M (2014) Gut microeukaryotes during anorexia nervosa: a case report. BMC Research Notes 7, 3336.CrossRefGoogle ScholarPubMed
Hall, TA (1999) Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 9598.Google Scholar
Hamad, I, Keita, MB, Peeters, M, Delaporte, E, Raoult, D and Bittar, F (2014) Pathogenic eukaryotes in gut microbiota of western lowland gorillas as revealed by molecular survey. Scientific Reports 4, 6417.CrossRefGoogle ScholarPubMed
Hasegawa, H, Modrý, D, Kitagawa, M, Shutt, KA, Todd, A, Kalousová, B, Profousova, I and Petrželková, KJ (2014) Great apes cohabiting the forest ecosystem in Central African Republic harbour the same hookworms. PLoS Neglected Tropical Diseases 8, e2715.CrossRefGoogle ScholarPubMed
Honigberg, BM (1978) Trichomonads of veterinary importance. In Kreier, JP (ed.), Parasitic Protozoa, vol. 2. New York, US: Academic Press, pp. 163273.Google Scholar
Honigberg, BM (1990) Trichomonads Parasitic in Humans. New York, US: Springer.CrossRefGoogle Scholar
Katoh, K, Misawa, K, Kuma, K and Miyata, T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30, 30593066.CrossRefGoogle ScholarPubMed
Ibañez-Escribano, A, Nogal-Ruiz, JJ, Delclaux, M, Martinez-Nevado, E and Ponce-Gordo, F (2013) Morphological and molecular identification of Tetratrichomonas flagellates from the giant anteater (Myrmecophaga tridactyla). Research in Veterinary Science 95, 176181.CrossRefGoogle Scholar
Keane, TM, Creevey, CJ, Pentony, MM, Naughton, TJ and McInerney, JO (2004) Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evolutionary Biology 6, 29.CrossRefGoogle Scholar
Kutisova, K, Kulda, J, Cepicka, I, Flegr, J, Koudela, B, Teras, J and Tachezy, J (2005) Tetratrichomonads from the oral cavity and respiratory tract of humans. Parasitology 131, 309319.CrossRefGoogle ScholarPubMed
Li, WC, Ying, M, Gong, PT, Li, JH, Yang, J, Li, H and Zhang, XC (2016) Pentatrichomonas hominis: prevalence and molecular characterization in humans, dogs, and monkeys in Northern China. Parasitology Research 115, 569574.CrossRefGoogle ScholarPubMed
Lopez-Escamilla, E, Sanchez-Aguillon, F, Alatorre-Fernandez, CP, Aguilar-Zapata, D, Arroyo-Escalante, S, Arellano, T, Moncada-Barron, D, Romero-Valdovinos, M, Martinez-Hernandez, F, Rodriguez-Zulueta, P and Maravilla, P (2013) New Tetratrichomonas species in two patients with pleural empyema. Journal of Clinical Microbiology 51, 31433146.CrossRefGoogle ScholarPubMed
Maritz, JM, Land, KM, Carlton, JM and Hirt, RP (2014) What is the importance of zoonotic trichomonads for human health? Trends in Parasitology 30, 333341.CrossRefGoogle ScholarPubMed
Myers, BJ and Kuntz, RE (1972) A checklist of parasites and commensals reported for the chimpanzee (Pan). Primates 13, 433471.CrossRefGoogle Scholar
Pafčo, B, Benavides, JA, Pšenková-Profousová, I, Modrý, D, Červená, B, Shutt, KA, Hasegawa, H, Fuh, T, Todd, AF and Petrželková, KJ (2017) Do habituation, host traits and seasonality have an impact on protist and helminth infections of wild western lowland gorillas? Parasitology Research 116, 34013410.CrossRefGoogle ScholarPubMed
Pafčo, B, Čížková, D, Kreisinger, J, Hasegawa, H, Vallo, P, Shutt, K, Todd, A, Petrželková, KJ and Modrý, D (2018) Metabarcoding analysis of strongylid nematode diversity in two sympatric primate species. Scientific Reports 8, 5933.CrossRefGoogle ScholarPubMed
Ratcliffe, LH (1928) The numbers of trichomonads in rats on diets of different protein content in relation to pH and bacteria in the cecum. American Journal of Epidemiology 8, 910934.CrossRefGoogle Scholar
Reardon, LV and Rininger, BF (1968) A survey of parasites in laboratory primates. Laboratory Animal Care 18, 577580.Google ScholarPubMed
Ronquist, F, Teslenko, M, van der Mark, P, Ayres, DL, Darling, A, Höhna, S, Larget, B, Liu, L, Suchard, MA and Huelsenbeck, JP (2012) Mrbayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539542.CrossRefGoogle ScholarPubMed
Rowan-Nash, AD, Korry, BJ, Mylonakis, E and Belenky, P (2019) Cross-domain and viral interactions in the microbiome. Microbiology and Molecular Biology Reviews 83, e00044.CrossRefGoogle ScholarPubMed
Rushmore, J, Allison, AB, Edwards, EE, Bagal, U, Altizer, S, Cranfield, MR, Glenn, TC, Liu, H, Mudakikwa, A, Mugisha, L, Muller, MN, Stumpf, RM, Thompson, ME, Wrangham, R and Yabsley, MJ (2015) Screening wild and semi-free ranging great apes for putative sexually transmitted diseases: evidence of Trichomonadidae infections. American Journal of Primatology 77, 10751085.CrossRefGoogle ScholarPubMed
Sak, B, Petrzelkova, KJ, Kvetonova, D, Mynarova, A, Shutt, KA, Pomajbikova, K, Kalousova, B, Modry, D, Benavides, J, Todd, A and Kvac, M (2013) Long-term monitoring of microsporidia, Cryptosporidium and Giardia infections in western lowland gorillas (Gorilla gorilla gorilla) at different stages of habituation in Dzanga Sangha Protected Areas, Central African Republic. PLoS One 8, e71840.CrossRefGoogle ScholarPubMed
Smejkalová, P, Petrželková, KJ, Pomajbíková, K, Modrý, D and Čepička, I (2012) Extensive diversity of intestinal trichomonads of non-human primates. Parasitology 139, 92102.CrossRefGoogle ScholarPubMed
Stamatakis, A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics (Oxford, England) 30, 13121313.CrossRefGoogle ScholarPubMed
Tachezy, J, Tachezy, R, Hampl, V, Sedinova, M, Vanacova, S, Vrlik, M, van Ranst, M, Flegr, J and Kulda, J (2002) Cattle pathogen Tritrichomonas foetus (Riedmuller, 1928) and pig commensal Tritrichomonas suis (Gruby & Delafond, 1843) belong to the same species. Journal of Eukaryotic Microbiology 49, 154163.CrossRefGoogle ScholarPubMed
Tai, V, James, ER, Nalepa, CA, Scheffrahn, RH, Perlman, SJ and Keeling, CJ (2015) The role of host phylogeny varies in shaping microbial diversity in the hindguts of lower termites. Applied and Environmental Microbiology 81, 10591070.CrossRefGoogle ScholarPubMed
Walker, RL, Hayes, DC, Sawyer, RW, Nordhausen, RW, Van Hoosear, KA and BonDurant, RH (2003) Comparison of the 5.8S rRNA gene and internal transcribed spacer regions of trichomonadid protozoa recovered from the bovine preputial cavity. Journal of Veterinary Diagnostic Investigation 15, 1420.CrossRefGoogle ScholarPubMed
Wenrich, DH (1944) Morphology of the intestinal trichomonad flagellates in man and of similar forms in monkeys, cats, dogs and rats. Journal of Morphology 74, 189211.CrossRefGoogle Scholar
Wong, ZW, Faulder, K and Robinson, JL (2018) Does Dientamoeba fragilis cause diarrhea? A systematic review. Parasitology Research 117, 971980.CrossRefGoogle ScholarPubMed
Supplementary material: File

Petrželková et al. supplementary material

Table S1

Download Petrželková et al. supplementary material(File)
File 15.2 KB