Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T11:56:36.650Z Has data issue: false hasContentIssue false

A review and analysis of the elasto-caloric effect for solid-state refrigeration devices: Challenges and opportunities

Published online by Cambridge University Press:  21 December 2015

Aditya Chauhan
Affiliation:
School of Engineering, Indian Institute of Technology Mandi, Mandi, Himachal pradesh, 175 001, India
Satyanarayan Patel
Affiliation:
School of Engineering, Indian Institute of Technology Mandi, Mandi, Himachal pradesh, 175 001, India
Rahul Vaish*
Affiliation:
School of Engineering, Indian Institute of Technology Mandi, Mandi, Himachal pradesh, 175 001, India
Chris R. Bowen
Affiliation:
Department of Mechanical Engineering, University of Bath, Bath, Somerset, BA2 7AY, United Kingdom
*
a) Address all correspondence to Rahul Vaish at rahul@iitmandi.ac.in
Get access

Abstract

This review article deals with the current state-of-art research and developments in the field of elasto-caloric effect as applicable for solid-state refrigeration devices. Furthermore, the current challenges and future prospects in the field of elasto-caloric refrigeration technology have also been discussed.

Solid-state refrigeration is of interest since it has the potential to be a light-weight and environmentally-friendly alternative for small scale cooling. Much research is currently being undertaken to develop solid-state cooling technologies which is primarily achieved by utilizing the significant caloric effect exhibited by particular classes of materials. A variety of caloric effects exist including: electro-caloric, magneto-caloric, baro-caloric, and elasto-caloric. Among these, the elasto-caloric effect has shown potential within the field of mechanical refrigeration with shape-memory alloys being potential materials for producing significant levels of elasto-caloric cooling. This article explains the elasto-caloric effect in shape memory alloys, polymers, and ferroelectric materials. Technical parameters associated with the elasto-caloric performance of these materials are discussed. A discussion regarding existing functional shortcomings and future prospects in the field of mechanical refrigeration is covered. Aspects related to the long term environmental impact of solid-state cooling technology are also discussed. This study is aimed at promoting the understanding and commercial investigation of the elasto-caloric effect in the field of solid state refrigeration.

Type
Review
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

These authors contributed equally to this work.

References

REFERENCES

Ju, Y.S.: Solid-state refrigeration based on the electrocaloric effect for electronics cooling. J. Electron. Packag. 132(4), 041004 (2010).CrossRefGoogle Scholar
Chen, Z-J. and Lin, W-h.: Dynamic simulation and optimal matching of a small-scale refrigeration system. Int. J. Refrig. 14(6), 329335 (1991).CrossRefGoogle Scholar
Eames, I., Aphornratana, S., and Haider, H.: A theoretical and experimental study of a small-scale steam jet refrigerator. Int. J. Refrig. 18(6), 378386 (1995).CrossRefGoogle Scholar
Mongia, R., Masahiro, K., DiStefano, E., Barry, J., Chen, W., Izenson, M., Possamai, F., Zimmermann, A., and Mochizuki, M.: Small scale refrigeration system for electronics cooling within a notebook computer. In The Tenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems, 2006. ITHERM’06, IEEE: San Diego, California, USA, 2006; pp. 751758.Google Scholar
Phelan, P.E., Swanson, J., Chiriac, F., and Chiriac, V.: Designing a mesoscale vapor-compression refrigerator for cooling high-power microelectronics. In Thermal and Thermomechanical Phenomena in Electronic Systems, 2004. ITHERM’04, IEEE: Las Vegas, Nevada, USA, 2004; pp. 218223.Google Scholar
Manosa, L., Planes, A., and Acet, M.: Advanced materials for solid-state refrigeration. J. Mater. Chem. A 1(16), 49254936 (2013).CrossRefGoogle Scholar
Lu, S-G. and Zhang, Q.: Electrocaloric materials for solid-state refrigeration. Adv. Mater. 21(19), 19831987 (2009).CrossRefGoogle Scholar
Brück, E.: Developments in magnetocaloric refrigeration. J. Phys. D: Appl. Phys. 38(23), R381 (2005).CrossRefGoogle Scholar
Krenke, T., Duman, E., Acet, M., Wassermann, E.F., Moya, X., Mañosa, L., and Planes, A.: Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys. Nat. Mater. 4(6), 450454 (2005).CrossRefGoogle ScholarPubMed
Gschneidner, K.A. and Pecharsky, V.K.: Magnetocaloric materials. Annu. Rev. Mater. Sci. 30(1), 387429 (2000).CrossRefGoogle Scholar
Mischenko, A., Zhang, Q., Scott, J., Whatmore, R., and Mathur, N.: Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3 . Science 311(5765), 12701271 (2006).CrossRefGoogle Scholar
Neese, B., Chu, B., Lu, S-G., Wang, Y., Furman, E., and Zhang, Q.: Large electrocaloric effect in ferroelectric polymers near room temperature. Science 321(5890), 821823 (2008).CrossRefGoogle ScholarPubMed
Mañosa, L., González-Alonso, D., Planes, A., Barrio, M., Tamarit, J-L., Titov, I.S., Acet, M., Bhattacharyya, A., and Majumdar, S.: Inverse barocaloric effect in the giant magnetocaloric La–Fe–Si–Co compound. Nat. Commun. 2, 595 (2011).CrossRefGoogle ScholarPubMed
Mañosa, L., González-Alonso, D., Planes, A., Bonnot, E., Barrio, M., Tamarit, J-L., Aksoy, S., and Acet, M.: Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy. Nat. Mater. 9(6), 478481 (2010).CrossRefGoogle ScholarPubMed
Imamura, Y., Sakamoto, S-i., and Watanabe, Y.: Modulation of sound field in looped-tube thermoacoustic cooling system with membrane. Jpn. J. Appl. Phys 46, 4417 (2007).CrossRefGoogle Scholar
Paek, I., Braun, J.E., and Mongeau, L.: Evaluation of standing-wave thermoacoustic cycles for cooling applications. Int. J. Refrig. 30(6), 10591071 (2007).CrossRefGoogle Scholar
Fähler, S., Rößler, U.K., Kastner, O., Eckert, J., Eggeler, G., Emmerich, H., Entel, P., Müller, S., Quandt, E., and Albe, K.: Caloric effects in ferroic materials: New concepts for cooling. Adv. Eng. Mater. 14(1–2), 1019 (2012).CrossRefGoogle Scholar
Gaskill, H.V.: Method of using the peltier effect for cooling equipment. U.S. Patent No. 2984077, 1961.Google Scholar
Abramov, V.S., Shishov, A.V., Scherbakov, N.V., Sushkov, V.P., and Ivanov, A.A.: Peltier cooling systems with high aspect ratio. U.S. Patent No. 7823393 B2, 2010.Google Scholar
Cui, J., Wu, Y., Muehlbauer, J., Hwang, Y., Radermacher, R., Fackler, S., Wuttig, M., and Takeuchi, I.: Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires. Appl. Phys. Lett. 101(7), 073904 (2012).CrossRefGoogle Scholar
Lisenkov, S. and Ponomareva, I.: Giant elastocaloric effect in ferroelectric Ba0.5Sr0.5TiO3 alloys from first-principles. Phys. Rev. B 86(10), 104103 (2012).CrossRefGoogle Scholar
Nikitin, S.A., Myalikgulyev, G., Annaorazov, M.P., Tyurin, A.L., Myndyev, R.W., and Akopyan, S.A.: Giant elastocaloric effect in FeRh alloy. Phys. Lett. A 171(3–4), 234236 (1992).CrossRefGoogle Scholar
Xiao, F., Fukuda, T., and Kakeshita, T.: Significant elastocaloric effect in a Fe-31.2Pd (at. %) single crystal. Appl. Phys. Lett. 102(16), 161914 (2013).CrossRefGoogle Scholar
Castillo-Villa, P.O., Soto-Parra, D.E., Matutes-Aquino, J.A., Ochoa-Gamboa, R.A., Planes, A., Mañosa, L., González-Alonso, D., Stipcich, M., Romero, R., Ríos-Jara, D., and Flores-Zúñiga, H.: Caloric effects induced by magnetic and mechanical fields in a Ni50Mn25-xGa25Cox magnetic shape memory alloy. Phys. Rev. B 83(17), 174109 (2011).CrossRefGoogle Scholar
Fukuhara, M., Inoue, A., and Nishiyama, N.: Rubberlike entropy elasticity of a glassy alloy. Appl. Phys. Lett. 89(10), 101903 (2006).CrossRefGoogle Scholar
Holzapfel, G.A. and Simo, J.C.: Entropy elasticity of isotropic rubber-like solids at finite strains. Comput. Methods Appl. Mech. Eng. 132(1–2), 1744 (1996).CrossRefGoogle Scholar
Kim, H.Y., Satoru, H., Kim, J.I., Hosoda, H., and Miyazaki, S.: Mechanical properties and shape memory behavior of Ti-Nb alloys. Mater. Trans. 45(7), 24432448 (2004).CrossRefGoogle Scholar
Melton, K.N. and Mercier, O.: The mechanical properties of NiTi-based shape memory alloys. Acta Metall. 29(2), 393398 (1981).CrossRefGoogle Scholar
Chauhan, A., Patel, S., and Vaish, R.: Multicaloric effect in Pb(Mn1/3Nb2/3)O3-32PbTiO3 single crystals. Acta Mater. 89, 384395 (2015).CrossRefGoogle Scholar
Chauhan, A., Patel, S., and Vaish, R.: Multicaloric effect in Pb(Mn1/3Nb2/3)O3-32PbTiO3 single crystals: Modes of measurement. Acta Mater. 97, 1728 (2015).CrossRefGoogle Scholar
Patel, S., Chauhan, A., and Vaish, R.: Caloric effects in bulk lead-free ferroelectric ceramics for solid-state refrigeration. Energy Technol. (2015). doi: 10.1002/ente.201500205.Google Scholar
Patel, S., Chauhan, A., and Vaish, R.: Multiple caloric effects in (Ba0.865Ca0.135Zr0.1089Ti0.8811Fe0.01)O3 ferroelectric ceramic. Appl. Phys. Lett. 107(4), 042902 (2015).CrossRefGoogle Scholar
Chauhan, A., Patel, S., and Vaish, R.: Elastocaloric effect in ferroelectric ceramics. Appl. Phys. Lett. 106(17), 172901 (2015).CrossRefGoogle Scholar
Guyomar, D., Li, Y., Sebald, G., Cottinet, P-J., Ducharne, B., and Capsal, J-F.: Elastocaloric modeling of natural rubber. Appl. Therm. Eng. 57(1–2), 3338 (2013).CrossRefGoogle Scholar
Pellicer, J., Manzanares, J.A., Zúñiga, J., Utrillas, P., and Fernández, J.: Thermodynamics of rubber elasticity. J. Chem. Educ. 78(2), 263 (2001).CrossRefGoogle Scholar
Bonnot, E., Romero, R., Mañosa, L., Vives, E., and Planes, A.: Elastocaloric effect associated with the martensitic transition in shape-memory alloys. Phys. Rev. Lett. 100(12), 125901 (2008).CrossRefGoogle ScholarPubMed
Huang, W.: On the selection of shape memory alloys for actuators. Mater. Des. 23(1), 1119 (2002).CrossRefGoogle Scholar
Schetky, L.M.: Shape-memory alloys. In Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, Inc.: New York, USA, 2000. doi: 10.1002/0471238961.1908011619030805.a01.Google Scholar
Schmidt, M., Schütze, A., and Seelecke, S.: Cooling efficiencies of a NiTi-based cooling process. In Conference on Smart Materials, Adaptive Structures and Intelligent Systems, 2013, ASME: Snowbird, Utah, USA, September 16–18, 2013; p. V001T04A014.Google Scholar
Melvin, M.V.: Theory of giant-caloric effects in multiferroic materials. J. Phys. D: Appl. Phys. 46(34), 345304 (2013).Google Scholar
Boonstra, B.B.S.T.: Stress-strain properties of natural rubber under biaxial strain. J. Appl. Phys. 21(11), 10981104 (1950).CrossRefGoogle Scholar
Cottinet, P-J., Guyomar, D., Galineau, J., and Sebald, G.: Electro-thermo-elastomers for artificial muscles. Sens. Actuators, A 180, 105112 (2012).CrossRefGoogle Scholar
Otubo, J., Rigo, O.D., Coelho, A.A., Neto, C.M., and Mei, P.R.: The influence of carbon and oxygen content on the martensitic transformation temperatures and enthalpies of NiTi shape memory alloy. Mater. Sci. Eng., A 481482, 639642 (2008).CrossRefGoogle Scholar
Wu, S.K. and Wayman, C.M.: Martensitic transformations and the shape memory effect in Ti50Ni10Au40 and Ti50Au50 alloys. Metallography 20(3), 359376 (1987).CrossRefGoogle Scholar
Otsuka, K. and Shimizu, K.: Pseudoelasticity and shape memory effects in alloys. Int. Met. Rev. 31(1), 93114 (1986).CrossRefGoogle Scholar
Manosa, L., Planes, A., Vives, E., Bonnot, E., and Romero, R.: The use of shape-memory alloys for mechanical refrigeration. Funct. Mater. Lett. 02(02), 7378 (2009).CrossRefGoogle Scholar
Orgéas, L. and Favier, D.: Stress-induced martensitic transformation of a NiTi alloy in isothermal shear, tension and compression. Acta Mater. 46(15), 55795591 (1998).CrossRefGoogle Scholar
Boyd, J.G. and Lagoudas, D.C.: A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy. Int. J. Plast. 12(6), 805842 (1996).CrossRefGoogle Scholar
Tanaka, K., Kobayashi, S., and Sato, Y.: Thermomechanics of transformation pseudoelasticity and shape memory effect in alloys. Int. J. Plast. 2(1), 5972 (1986).CrossRefGoogle Scholar
Raniecki, B. and Lexcellent, C.: Thermodynamics of isotropic pseudoelasticity in shape memory alloys. Eur. J. Mech. A-Solid 17(2), 185205 (1998).CrossRefGoogle Scholar
McKelvey, A.L. and Ritchie, R.O.: On the temperature dependence of the superelastic strength and the prediction of the theoretical uniaxial transformation strain in nitinol. Philos. Mag. 80(8), 17591768 (2000).CrossRefGoogle Scholar
Bechtold, C., Chluba, C., Lima de Miranda, R., and Quandt, E.: High cyclic stability of the elastocaloric effect in sputtered TiNiCu shape memory films. Appl. Phys. Lett. 101(9), 091903 (2012).CrossRefGoogle Scholar
Castillo-Villa, P.O., Manosa, L., Planes, A., Soto-Parra, D.E., Sanchez-Llamazares, J.L., Flores-Zuniga, H., and Frontera, C.: Elastocaloric and magnetocaloric effects in Ni-Mn-Sn(Cu) shape-memory alloy. J. Appl. Phys. 113(5), 053506 (2013).CrossRefGoogle Scholar
Lisenkov, S., Mani, B.K., Chang, C.M., Almand, J., and Ponomareva, I.: Multicaloric effect in ferroelectric PbTiO3 from first principles. Phys. Rev. B 87(22), 224101 (2013).CrossRefGoogle Scholar
Entel, P., Sahoo, S., Siewert, M., Gruner, M.E., Herper, H.C., Comtesse, D., Acet, M., Buchelnikov, V.D., and Sokolovskiy, V.V.: First-principles investigations of caloric effects in ferroic materials. AIP Conf. Proc. 1461(1), 1123 (2012).CrossRefGoogle Scholar
Choi, Y., Fisher, T., Lima Sharma, A., Qin, Z., Zhou, T., and Cheong, S-W.: Competition between magnetocaloric and elastocaloric effect in phase separated manganites under pressure. APS March Meeting Abstracts, 2010; p. 1037.Google Scholar
Annaorazov, M.P., Nikitin, S.A., Tyurin, A.L., Akopyan, S.A., and Myndyev, R.W.: Cooling scheme based on the AF–F transition in Fe–Rh alloys induced by tensile stress. Phys. Status Solidi A 194(1), 304314 (2002).3.0.CO;2-4>CrossRefGoogle Scholar
Moya, X., Kar-Narayan, S., and Mathur, N.: Caloric materials near ferroic phase transitions. Nat. Mater. 13(5), 439450 (2014).CrossRefGoogle ScholarPubMed
de Oliveira, N.A. and von Ranke, P.J.: Theoretical aspects of the magnetocaloric effect. Phys. Rep. 489(4–5), 89159 (2010).CrossRefGoogle Scholar
Barr, J.A., Beckman, S.P., and Nishimatsu, T.: Elastocaloric response of PbTiO3 predicted from a first-principles effective hamiltonian. J. Phys. Soc. Jpn. 84(2), 024716 (2015).CrossRefGoogle Scholar
Liu, Y., Infante, I.C., Lou, X., Bellaiche, L., Scott, J.F., and Dkhil, B.: Giant room-temperature elastocaloric effect in ferroelectric ultrathin films. Adv. Mater. 26(35), 61326137 (2014).CrossRefGoogle ScholarPubMed
Liu, Y., Wei, J., Janolin, P-E., Infante, I.C., Kreisel, J., Lou, X., and Dkhil, B.: Prediction of giant elastocaloric strength and stress-mediated electrocaloric effect in BaTiO3 single crystals. Phys. Rev. B 90(10), 104107 (2014).CrossRefGoogle Scholar
Lu, B., Xiao, F., Yan, A., and Liu, J.: Elastocaloric effect in a textured polycrystalline Ni-Mn-In-Co metamagnetic shape memory alloy. Appl. Phys. Lett. 105(16), 161905 (2014).CrossRefGoogle Scholar
Patel, S., Chauhan, A., and Vaish, R.: A technique for giant mechanical energy harvesting using ferroelectric/antiferroelectric materials. J. Appl. Phys. 115(8), 084908 (2014).CrossRefGoogle Scholar
Hwang, S.C., Lynch, C.S., and McMeeking, R.M.: Ferroelectric/ferroelastic interactions and a polarization switching model. Acta Metall. 43(5), 20732084 (1995).CrossRefGoogle Scholar
Dong, W.D., Finkel, P., Amin, A., and Lynch, C.S.: Giant electro-mechanical energy conversion in [011] cut ferroelectric single crystals. Appl. Phys. Lett. 100(4), 042903 (2012).CrossRefGoogle Scholar
Chen, W. and Lynch, C.S.: A micro-electro-mechanical model for polarization switching of ferroelectric materials. Acta Mater. 46(15), 53035311 (1998).CrossRefGoogle Scholar
Patel, S., Chauhan, A., and Vaish, R.: Enhanced energy harvesting in commercial ferroelectric materials. Mater. Res. Express 1(2), 025504 (2014).CrossRefGoogle Scholar
Patel, S., Chauhan, A., and Vaish, R.: Analysis of high-field energy harvesting using ferroelectric materials. Energy Technol. 2(5), 480485 (2014).CrossRefGoogle Scholar
Valadez, J., Sahul, R., Alberta, E., Hackenberger, W., and Lynch, C.: The effect of a hydrostatic pressure induced phase transformation on the unipolar electrical response of Nb modified 95/5 lead zirconate titanate. J. Appl. Phys. 111(2), 024109 (2012).CrossRefGoogle Scholar
Marsilius, M., Frederick, J., Hu, W., Tan, X., Granzow, T., and Han, P.: Mechanical confinement: An effective way of tuning properties of piezoelectric crystals. Adv. Funct. Mater. 22(4), 797802 (2012).CrossRefGoogle Scholar
Xiao, F., Jin, M., Liu, J., and Jin, X.: Elastocaloric effect in Ni50Fe19Ga27Co4 single crystals. Acta Mater. 96, 292300 (2015).CrossRefGoogle Scholar
Tušek, J., Engelbrecht, K., Mikkelsen, L.P., and Pryds, N.: Elastocaloric effect of Ni-Ti wire for application in a cooling device. J. Appl. Phys. 117(12), 124901 (2015).CrossRefGoogle Scholar
Ossmer, H., Chluba, C., Krevet, B., Quandt, E., Rohde, M., and Kohl, M.: Elastocaloric cooling using shape memory alloy films. J. Phys.: Conf. Ser. 476(1), 012138 (2013).Google Scholar
McLaughlin, E.A., Liu, T., and Lynch, C.S.: Relaxor ferroelectric PMN-32%PT crystals under stress, electric field and temperature loading: II-33-mode measurements. Acta Mater. 53(14), 40014008 (2005).CrossRefGoogle Scholar
McLaughlin, E.A., Liu, T., and Lynch, C.S.: Relaxor ferroelectric PMN-32%PT crystals under stress and electric field loading: I-32 mode measurements. Acta Materialia 52(13), 38493857 (2004).CrossRefGoogle Scholar
Thacher, P.: Electrocaloric effects in some ferroelectric and antiferroelectric Pb(Zr,Ti)O3 compounds. J. Appl. Phys. 39(4), 19962002 (1968).CrossRefGoogle Scholar
Wunderlich, B. and Baur, H.: Heat Capacities of Linear High Polymers (Springer-Verlag Berlin Heidelberg, Germany, 1970).CrossRefGoogle Scholar
Alam, K.A., Saha, B., Kang, Y., Akisawa, A., and Kashiwagi, T.: Heat exchanger design effect on the system performance of silica gel adsorption refrigeration systems. Int. J. Heat Mass Transfer 43(24), 44194431 (2000).CrossRefGoogle Scholar
Valant, M.: Electrocaloric materials for future solid-state refrigeration technologies. Prog. Mater. Sci. 57(6), 9801009 (2012).CrossRefGoogle Scholar
Mars, W.V. and Fatemi, A.: A literature survey on fatigue analysis approaches for rubber. Int. J. Fatigue 24(9), 949961 (2002).CrossRefGoogle Scholar
Sauer, J.A. and Richardson, G.C.: Fatigue of polymers. Int. J. Fract. 16(6), 499532 (1980).CrossRefGoogle Scholar
Hornbogen, E.: Review thermo-mechanical fatigue of shape memory alloys. J. Mater. Sci. 39(2), 385399 (2004).CrossRefGoogle Scholar
Eggeler, G., Hornbogen, E., Yawny, A., Heckmann, A., and Wagner, M.: Structural and functional fatigue of NiTi shape memory alloys. Mater. Sci. Eng., A 378(1–2), 2433 (2004).CrossRefGoogle Scholar
Xu, Y., Lu, B., Sun, W., Yan, A., and Liu, J.: Large and reversible elastocaloric effect in dual-phase Ni54Fe19Ga27 superelastic alloys. Appl. Phys. Lett. 106(20), 201903 (2015).CrossRefGoogle Scholar
Schmidt, M., Ullrich, J., Wieczorek, A., Frenzel, J., Schütze, A., Eggeler, G., and Seelecke, S.: Thermal stabilization of NiTiCuV shape memory alloys: Observations during elastocaloric training. Shap. Mem. Superelasticity 1, 132141 (2015).CrossRefGoogle Scholar
Chon, U., Kim, K-B., Jang, H.M., and Yi, G-C.: Fatigue-free samarium-modified bismuth titanate (Bi4−xSmxTi3O12) film capacitors having large spontaneous polarizations. Appl. Phys. Lett. 79(19), 31373139 (2001).CrossRefGoogle Scholar
Schäufele, A.B. and Heinz Härdtl, K.: Ferroelastic properties of lead zirconate titanate ceramics. J. Am. Ceram. Soc. 79(10), 26372640 (1996).CrossRefGoogle Scholar
Moazzami, R., Hu, C., and Shepherd, W.H.: Endurance properties of ferroelectric PZT thin films. In International Technical Digest on Electron Devices Meeting, 1990. IEDM’90, 1990; pp. 417420.Google Scholar
Warren, W.L., Tuttle, B.A., and Dimos, D.: Ferroelectric fatigue in perovskite oxides. Appl. Phys. Lett. 67(10), 14261428 (1995).CrossRefGoogle Scholar
Brennan, C.: Model of ferroelectric fatigue due to defect/domain interactions. Ferroelectrics 150(1), 199208 (1993).CrossRefGoogle Scholar
Pan, W., Yue, C-F., and Tosyali, O.: Fatigue of ferroelectric polarization and the electric field induced strain in lead lanthanum zirconate titanate ceramics. J. Am. Ceram. Soc. 75(6), 15341540 (1992).CrossRefGoogle Scholar
Gerber, P., Kügeler, C., Ellerkmann, U., Schorn, P., Böttger, U., and Waser, R.: Effects of ferroelectric fatigue on the piezoelectric properties (d33) of tetragonal lead zirconate titanate thin films. Appl. Phys. Lett. 86(11), 112908 (2005).CrossRefGoogle Scholar
Chen, J., Harmer, M.P., and Smyth, D.M.: Compositional control of ferroelectric fatigue in perovskite ferroelectric ceramics and thin films. J. Appl. Phys. 76(9), 53945398 (1994).CrossRefGoogle Scholar
Tang, Z.X., Sorensen, C.M., Klabunde, K.J., and Hadjipanayis, G.C.: Size-dependent curie temperature in nanoscale MnFe2O4 particles. Phys. Rev. Lett. 67(25), 36023605 (1991).CrossRefGoogle ScholarPubMed
Brouha, M. and Buschow, K.: Pressure dependence of the Curie temperature of intermetallic compounds of iron and rare-earth elements, Th, and Zr. J. Appl. Phys. 44(4), 18131816 (1973).CrossRefGoogle Scholar
Cross, L.E.: Relaxor ferroelectrics. Ferroelectrics 76(1), 241267 (1987).CrossRefGoogle Scholar
Moya, X., Defay, E., Heine, V., and Mathur, N.D.: Too cool to work. Nat. Phys. 11(3), 202205 (2015).CrossRefGoogle Scholar
Tušek, J., Engelbrecht, K., Millán-Solsona, R., Mañosa, L., Vives, E., Mikkelsen, L.P., and Pryds, N.: The elastocaloric effect: A way to cool efficiently. Adv. Energy Mater. 5(13), 1500361 (2015).CrossRefGoogle Scholar
Rodriguez, C. and Brown, L.: The thermal effect due to stress-induced martensite formation in Β-CuAlNi single crystals. Metall. Mater. Trans. A 11(1), 147150 (1980).CrossRefGoogle Scholar
Brown, L.: The thermal effect in pseudoelastic single crystals of β-CuZnSn. Metall. Trans. A 12(8), 14911494 (1981).CrossRefGoogle Scholar
Shaw, J.A. and Kyriakides, S.: Thermomechanical aspects of NiTi. J. Mech. Phys. Solids 43(8), 12431281 (1995).CrossRefGoogle Scholar
Pieczyska, E., Gadaj, S., Nowacki, W., and Tobushi, H.: Phase-transformation fronts evolution for stress-and strain-controlled tension tests in TiNi shape memory alloy. Exp. Mech. 46(4), 531542 (2006).CrossRefGoogle Scholar
Quarini, J. and Prince, A.: Solid state refrigeration: Cooling and refrigeration using crystalline phase changes in metal alloys. Proc. Inst. Mech. Eng., Part C 218(10), 11751179 (2004).CrossRefGoogle Scholar
Xiao, F., Takashi, F., Tomoyuki, K., and Xuejun, J.: Elastocaloric effect by a weak first-order transformation associated with lattice softening in an Fe-31.2 Pd (at.%) alloy. Acta Materialia 87, 814 (2015).CrossRefGoogle Scholar
Annaorazov, M., Nikitin, S., Tyurin, A., Asatryan, K., and Dovletov, A.K.: Anomalously high entropy change in FeRh alloy. J. Appl. Phys. 79(3), 16891695 (1996).CrossRefGoogle Scholar
Pataky, G.J., Ertekin, E., and Sehitoglu, H.: Elastocaloric cooling potential of NiTi, Ni2FeGa, and CoNiAl. Acta Mater. 96, 420427 (2015).CrossRefGoogle Scholar
Huang, Y.J., Hu, Q.D., Bruno, N.M., Chen, J-H., Karaman, I., Ross, J.H. Jr., and Li, J.G.: Giant elastocaloric effect in directionally solidified Ni–Mn–In magnetic shape memory alloy. Scr. Mater. 105, 4245 (2015).CrossRefGoogle Scholar
Millán-Solsona, R., Stern-Taulats, E., Vives, E., Planes, A., Sharma, J., Nayak, A.K., Suresh, K.G., and Mañosa, L.: Large entropy change associated with the elastocaloric effect in polycrystalline Ni-Mn-Sb-Co magnetic shape memory alloys. Appl. Phys. Lett. 105(24), 241901 (2014).CrossRefGoogle Scholar
Li, B., Wang, L., and Casati, G.: Thermal diode: Rectification of heat flux. Phys. Rev. Lett. 93(18), 184301 (2004).CrossRefGoogle ScholarPubMed
Mathur, N. and Mishchenko, A.: Solid state electrocaloric cooling devices and methods. U.S. Patent No. WO2006056809A1, 2006.Google Scholar
Hwalek, J. and Carr, E.: A liquid crystal “heat switch”. Heat Transfer Eng. 8(1), 3638 (1987).CrossRefGoogle Scholar
Schmidt, M., Schütze, A., and Seelecke, S.: Scientific test setup for investigation of shape memory alloy based elastocaloric cooling processes. Int. J. Refrig. 54, 8897 (2015).CrossRefGoogle Scholar
Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., and Johnson, C.: Climate Change 2001: The Scientific Basis, Vol. 881 (Cambridge University Press, Cambridge, 2001).Google Scholar
Root, T.L., Price, J.T., Hall, K.R., Schneider, S.H., Rosenzweig, C., and Pounds, J.A.: Fingerprints of global warming on wild animals and plants. Nature 421(6918), 5760 (2003).CrossRefGoogle ScholarPubMed
Mendelsohn, R., Nordhaus, W.D., and Shaw, D.: The impact of global warming on agriculture: A Ricardian analysis. Am. Econ. Rev. 84, 753771 (1994).Google Scholar
Collins, M., An, S.-I., Cai, W., Ganachaud, A., Guilyardi, E., Jin, F.-F., Jochum, M., Lengaigne, M., Power, S., and Timmermann, A.: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci. 3(6), 391397 (2010).CrossRefGoogle Scholar
Miller, J.R. and Russell, G.L.: The impact of global warming on river runoff. J. Geophys. Res.: Atmos. 97(D3), 27572764 (1992).CrossRefGoogle Scholar
Kyoto Protocol: United Nations Framework Convention on Climate Change (Kyoto Protocol, Kyoto, 1997).Google Scholar
U.N.E.P.O. Secretariat: Handbook for the Montreal Protocol on Substances that Deplete the Ozone Layer (UNEP/Earthprint: Nairobi, Kenya, 2006).Google Scholar
Ashare Handbook: HVAC Systems and Equipment (ASHRAE Eng.: American Society of Heating Atlanta, Georgia, USA, 1996).Google Scholar
Powell, R.L., Poole, J.E., Capper, J.D., and Thomas, J.V.: R 22 replacement refrigerant. U.S. Patent No. 6606868 B1, 2003.Google Scholar
Wong, K.K., Yudin, B., Bonaquist, D.P., and Rashad, M.A-A.: Multicomponent refrigeration fluid refrigeration system with auxiliary ammonia cascade circuit. U.S. Patent No. 6494054, 2002.Google Scholar
Dingquan, X.: Environmentally conscious ferroelectrics research—present and prospect. Ferroelectrics 231(1), 133141 (1999).CrossRefGoogle Scholar
Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T., and Nakamura, M.: Lead-free piezoceramics. Nature 432(7013), 8487 (2004).CrossRefGoogle ScholarPubMed