Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T07:04:41.779Z Has data issue: false hasContentIssue false

Largest-known fossil penguin provides insight into the early evolution of sphenisciform body size and flipper anatomy

Published online by Cambridge University Press:  08 February 2023

Daniel T. Ksepka*
Affiliation:
Bruce Museum, Greenwich, CT, USA
Daniel J. Field
Affiliation:
Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK Museum of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
Tracy A. Heath
Affiliation:
Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
Walker Pett
Affiliation:
Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
Daniel B. Thomas
Affiliation:
School of Natural Sciences, Massey University, Auckland, 0632 New Zealand,
Simone Giovanardi
Affiliation:
School of Natural Sciences, Massey University, Auckland, 0632 New Zealand,
Alan J.D. Tennyson
Affiliation:
Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, New Zealand
*
*Corresponding author.

Abstract

Recent fossil discoveries from New Zealand have revealed a remarkably diverse assemblage of Paleocene stem group penguins. Here, we add to this growing record by describing nine new penguin specimens from the late Paleocene (upper Teurian local stage; 55.5–59.5 Ma) Moeraki Formation of the South Island, New Zealand. The largest specimen is assigned to a new species, Kumimanu fordycei n. sp., which may have been the largest penguin ever to have lived. Allometric regressions based on humerus length and humerus proximal width of extant penguins yield mean estimates of a live body mass in the range of 148.0 kg (95% CI: 132.5 kg–165.3 kg) and 159.7 kg (95% CI: 142.6 kg–178.8 kg), respectively, for Kumimanu fordycei. A second new species, Petradyptes stonehousei n. gen. n. sp., is represented by five specimens and was slightly larger than the extant emperor penguin Aptenodytes forsteri. Two small humeri represent an additional smaller unnamed penguin species. Parsimony and Bayesian phylogenetic analyses recover Kumimanu and Petradyptes crownward of the early Paleocene mainland NZ taxa Waimanu and Muriwaimanu, but stemward of the Chatham Island taxon Kupoupou. These analyses differ, however, in the placement of these two taxa relative to Sequiwaimanu, Crossvallia, and Kaiika. The massive size and placement of Kumimanu fordycei close to the root of the penguin tree provide additional support for a scenario in which penguins reached the upper limit of sphenisciform body size very early in their evolutionary history, while still retaining numerous plesiomorphic features of the flipper.

UUID: https://zoobank.org/15b1d5b2-a5a0-4aa5-ba0a-8ef3b8461730

Type
Articles
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acosta Hospitaleche, C., 2005, Systematic revision of Arthrodytes Ameghino, 1905 (Aves, Spheniscidae) and its assignment to the Paraptenodytinae: Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 7, p. 404414.Google Scholar
Acosta Hospitaleche, C., 2014, New giant penguin bones from Antarctica: systematic and paleobiological significance: Comptes Rendus Palevol, v. 13, p. 555560.CrossRefGoogle Scholar
Acosta Hospitaleche, C., Reguero, M., and Santillana, S., 2017, Aprosdokitos mikrotero gen. et sp. nov., the tiniest Sphenisciformes that lived in Antarctica during the Paleogene: Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 283, p. 2534.Google Scholar
Ando, T., and Fordyce, R.E., 2014, Evolutionary drivers for flightless, wing-propelled divers in the Northern and Southern hemispheres: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 400, p. 5061.CrossRefGoogle Scholar
Baumel, J.J., and Witmer, L.M., 1993, Osteologia, in Baumel, J.J., King, A.S., Breazile, J.E., Evans, H.E., and Vanden Berge, J.C., eds., Handbook of Avian Anatomy: Nomina Anatomica Avium: Cambridge, Massachusetts, Nuttall Ornithology Club, p. 45132.Google Scholar
Bertelli, S., and Giannini, N.P., 2005, A phylogeny of extant penguins (Aves: Sphenisciformes) combining morphology and mitochondrial sequences: Cladistics, v. 21, p. 209239.Google Scholar
Blender Online Community, 2022, Blender—a 3D modelling and rendering package. Blender Foundation, Stichting Blender Foundation, Amsterdam. http://www.blender.org.Google Scholar
Blokland, J.C., Reid, C.M., Worthy, T.H., Tennyson, A.J.D., Clarke, J.A., and Scofield, R.P., 2019, Chatham Island Paleocene fossils provide insight into the palaeobiology, evolution, and diversity of early penguins (Aves, Sphenisciformes): Palaeontologia Electronica, v. 22, 22.3.78. https://doi.org/10.26879/1009.Google Scholar
Boyd, I.L., and Croxall, J.P., 1996, Dive durations in pinnipeds and seabirds: Canadian Journal of Zoology, v. 74, p. 16961705.CrossRefGoogle Scholar
Borboroglu, P.G., and Boersma, P.D., 2013, Penguins: Natural History and Conservation: Seattle, University of Washington Press, 360 p.Google Scholar
Campbell, K.E. Jr., and Marcus, L., 1992, The relationship of hindlimb bone dimensions to body weight in birds: Natural History Museum of Los Angeles County, Science Series, v. 36, p. 395412.Google Scholar
Hoffmeister, Chávez, Carrillo Briceño, M., and Nielsen, J.D, S.N., 2014, The evolution of seabirds in the Humboldt Current: new clues from the Pliocene of Central Chile: PLoS ONE, v. 9, e90043. https://doi.org/10.1371/journal.pone.0090043.Google Scholar
Churchill, M., Clementz, M.T., and Kohno, N., 2015, Cope's rule and the evolution of body size in Pinnipedimorpha (Mammalia: Carnivora): Evolution, v. 69, p. 201215.Google ScholarPubMed
Clarke, J.A., Ksepka, D.T., Stucchi, M., Urbina, M., Giannini, N., Bertelli, S., Narváez, Y., and Boyd, C.A., 2007, Paleogene equatorial penguins challenge the proposed relationship between biogeography, diversity, and Cenozoic climate change: Proceedings of the National Academy of Sciences, v. 104, p. 1154511550.CrossRefGoogle ScholarPubMed
Cole, T.L., Ksepka, D.T., Mitchell, K.J., Tennyson, A.J.D., Thomas, D.B., et al. , 2019, Mitogenomes uncover extinct penguin taxa and reveal island formation as a key driver of speciation: Molecular Biology and Evolution, v. 36, p. 784797.CrossRefGoogle ScholarPubMed
Crouch, E.M., and Brinkhuis, H., 2005, Environmental change across the Paleocene–Eocene transition from eastern New Zealand: a marine palynological approach: Marine Micropaleontology, v. 56, p. 138160.CrossRefGoogle Scholar
Degrange, F.D., Ksepka, D.T., and Tambussi, C.P., 2018, Redescription of the oldest crown clade penguin: cranial osteology, jaw myology, neuroanatomy, and phylogenetic affinities of Madrynornis mirandus: Journal of Vertebrate Paleontology, v. 38, e1445636. https://doi.org/10.1080/02724634.2018.1445636.Google Scholar
Dunning, J.B. Jr., 2008, CRC Handbook of Avian Body Masses, 2nd Edition: Boca Raton, CRC Press, 666 p.Google Scholar
Emslie, S.D., and Guerra Correa, C., 2003, A new species of penguin (Spheniscidae: Spheniscus) and other birds from the Late Pliocene of Chile: Proceedings of the Biological Society of Washington, v. 50, p. 1113.Google Scholar
Field, D.J., Lynner, C., Brown, C., and Darroch, S.A.F., 2013, Skeletal correlates for body mass estimation in modern and fossil flying birds: PLoS ONE, v. 8, e82000. https://doi.org/10.1371/journal.pone.0082000.Google ScholarPubMed
Fordyce, R.E., 1991, A new look at the fossil vertebrate record of New Zealand, in Vickers-Rich, P., Monaghan, J.M., Baird, R.F., and Rich, T.H., eds., Vertebrate Palaeontology of Australasia: Melbourne, Pioneer Design Studio and Monash University, p. 11911316.Google Scholar
Fordyce, R.E., and Jones, C.M., 1990, Penguin history and new fossil material from New Zealand, in Davis, L.S., and Darby, J.T., eds., Penguin Biology: San Diego, Academic Press, p. 419446.Google Scholar
Fordyce, R.E., and Thomas, D.B., 2011, Kaiika maxwelli, a new Early Eocene archaic penguin (Sphenisciformes, Aves) from Waihao Valley, South Canterbury, New Zealand: New Zealand Journal of Geology and Geophysics, v. 54, p. 4351.CrossRefGoogle Scholar
Giovanardi, S., Ksepka., D.T., and Thomas, D.B., 2021, A giant Oligocene fossil penguin from the North Island of New Zealand: Journal of Vertebrate Paleontology, v. 41, e1953047. https://doi.org/10.1080/02724634.2021.1953047.CrossRefGoogle Scholar
Göhlich, U.B., 2007, The oldest fossil record of the extant penguin genus Spheniscus—a new species from the Miocene of Peru: Acta Paleontologica Polonica, v. 52, p. 285298.Google Scholar
Gould, S.J., 1966, Allometry and size in ontogeny and phylogeny: Biological Reviews of the Cambridge Philosophical Society, v. 41, p. 587640.Google ScholarPubMed
Gray, G.R., 1844, Aptenodytes: The Annals and Magazine of Natural History, v. 13, p. 315.Google Scholar
Halsey, L.G., Blackburn, T.M., and Butler, P., 2006, A comparative analysis of the diving behaviour of birds and mammals: Functional Ecology, v. 20, p. 889899.CrossRefGoogle Scholar
Huxley, T.H., 1859, On a fossil bird and a fossil cetacean from New Zealand: Quarterly Journal of the Geological Society, v. 15, p. 670677.Google Scholar
Heath, T.A., Huelsenbeck, J. P., and Stadler, T., 2014, The fossilized birth-death process for coherent calibration of divergence-time estimates: Proceedings of the National Academy of Sciences, v. 111, p. E2957E2966.CrossRefGoogle ScholarPubMed
Höhna, S., Landis, M.J., Heath, T.A., Boussau, B., Lartillot, N., Moore, B.R., Huelsenbeck, J.P., and Ronquist, F., 2016, RevBayes: Bayesian phylogenetic inference using graphical models and an interactive model-specification language: Systematic Biology, v. 65, p. 726736.CrossRefGoogle Scholar
Jadwiszczak, P., 2001, Body size of Eocene Antarctic penguins: Polish Polar Research, v. 22, p. 147158.Google Scholar
Jadwiszczak, P. 2006. Eocene penguins of Seymour Island, Antarctica: taxonomy: Polish Polar Research, v. 27, p. 362.Google Scholar
Jadwiszczak, P., and Mörs, T., 2011, Aspects of diversity in early Antarctic penguins: Acta Palaeontologica Polonica, v. 56, p. 269277.Google Scholar
Jadwiszczak, P., Acosta Hospitaleche, C., and Reguero, M., 2013, Redescription of Crossvallia unienwillia: the only Paleocene Antarctic penguin: Ameghiniana, v. 50, p. 545553.CrossRefGoogle Scholar
Ksepka, D.T., Bertelli, S., and Giannini, N.P., 2006, The phylogeny of the living and fossil Sphenisciformes (penguins): Cladistics, v. 22, p. 412441.CrossRefGoogle Scholar
Ksepka, D.T., Clarke, J.A., DeVries, T.J., and Urbina, M., 2008, Osteology of Icadyptes salasi, a giant penguin from the Eocene of Peru: Journal of Anatomy, v. 213, p. 131147.CrossRefGoogle ScholarPubMed
Ksepka, D.T., Fordyce, R.E., Ando, T., and Jones, C.M., 2012, New fossil penguins (Aves: Sphenisciformes) from the Oligocene of New Zealand reveal the skeletal plan of stem penguins: Journal of Vertebrate Paleontology, v. 32, p. 235254.Google Scholar
Ksepka, D.T., Werning, S., Sclafani, M., and Boles, Z.M., 2015, Bone histology in extant and fossil penguins (Aves: Sphenisciformes): Journal of Anatomy, v. 227, p. 611630.CrossRefGoogle ScholarPubMed
Lartillot, N., and Philippe, H., 2004, A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process: Molecular Biology and Evolution, v. 21, p. 10951109.Google ScholarPubMed
Linnaeus, C., 1758, Systema Naturæ per regna tria naturæ, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata: Holmiæ, Salvius, 824 p.Google Scholar
Marples, B.J., 1952, Early Tertiary penguins of New Zealand: New Zealand Geological Survey Paleontological Bulletin, v. 20, p. 166.Google Scholar
Marples, B.J., 1960, A fossil penguin from the Late Tertiary of North Canterbury: Records of the Canterbury Museum, v. 7, p. 185195.Google Scholar
Mayr, G., Scofield, R.P., De Pietri, V.L., and Tennyson, A.J.D., 2017a, A Paleocene penguin from New Zealand substantiates multiple origins of gigantism in fossil Sphenisciformes: Nature Communications, v. 8, 1927. https://doi.org/10.1038/s41467-017-01959-6.Google ScholarPubMed
Mayr, G., De Pietri, V.L., Love, L., Mannering, A.A., and Scofield, R.P., 2017b, A well-preserved new mid-Paleocene penguin (Aves, Sphenisciformes) from the Waipara Greensand in New Zealand: Journal of Vertebrate Paleontology, v. 37, e1398169. https://doi.org/10.1080/02724634.2017.1398169.Google Scholar
Mayr, G., De Pietri, V.L., Love, L., Mannering, A.A., and Scofield, R.P., 2019, Leg bones of a new penguin species from the Waipara Greensand add to the diversity of very large-sized Sphenisciformes in the Paleocene of New Zealand: Alcheringa, v. 44, p. 194201.Google Scholar
Mayr, G., De Pietri, V.L., Love, L., Mannering, A.A., Bevitt, J.J., and Scofield, R.P., 2020, First complete wing of a stem group sphenisciform from the Paleocene of New Zealand sheds light on the evolution of the penguin flipper: Diversity, v. 12, 46. https://doi.org/10.3390/d12020046.CrossRefGoogle Scholar
Miller, J.F., 1778, Icones Animalium et Plantarum: London, Letterpress, 54 pl.Google Scholar
Moore, P.J., Douglas, M.E., Mills, J.A., McKinley, B., Nelson, D., and Murphy, B., 1991, Results of a pilot study (1990–1991): marine-base activities of yellow-eyed penguins: Science and Research Internal Report No. 110, Wellington, New Zealand, Department of Conservation, 53 p.Google Scholar
Morgans, H.E.G., 2009, Late Paleocene to middle Eocene foraminiferal biostratigraphy of the Hampden Beach section, eastern South Island, New Zealand: New Zealand Journal of Geology and Geophysics, v. 52, p. 273320.Google Scholar
Myrcha, A., Tatur, A., and del Valle, R., 1990, A new species of fossil penguin from Seymour Island, West Antarctica: Alcheringa, v. 14, p. 195205.Google Scholar
Oliver, W.R.B., 1930, New Zealand Birds: Wellington, New Zealand, Fine Arts (N.Z.), 541 p.:Google Scholar
Pittman, M., Heers, A.M., Serrano, F.J., Field, D.J., Habib, M.B., Dececchi, T.A., Kaye, T.G., and Larsson, H.C.E., 2020, Methods of studying early theropod flight: Bulletin of the American Museum of Natural History, v. 440, p. 277294.Google Scholar
Pyenson, N.D., and Vermeij, G.J., 2016, The rise of ocean giants: maximum body size in Cenozoic marine mammals as an indicator for productivity in the Pacific and Atlantic oceans: Biology Letters, v. 12, 20160186. https://doi.org/10.1098/rsbl.2016.0186.CrossRefGoogle ScholarPubMed
Richards, M.D., 2019, Two Giant Penguins from the Eocene–Oligocene of Otago, New Zealand [M.Sc. thesis]: Dunedin, Otago, New Zealand, University of Otago, 237 p.Google Scholar
Riska, B., 1991, Regression models in evolutionary allometry: The American Naturalist, v. 138, p. 283299.CrossRefGoogle Scholar
Sharpe, R.B., 1891, A review of recent attempts to classify birds; an address delivered before the Second International Ornithological Congress on the 18th of May, 1891, in Proceedings of the 2nd International Ornithological Congress, Budapest, Taylor and Francis, 90 p.Google Scholar
Simpson, G.G., 1946, Fossil penguins: Bulletin of the American Museum of Natural History, v. 87, p. 799.Google Scholar
Simpson, G.G., 1971, A review of the pre-Pliocene penguins of New Zealand: Bulletin of the American Museum of Natural History, v. 144, p. 319378.Google Scholar
Simpson, G.G., 1972, Pliocene penguins from North Canterbury: Records of the Canterbury Museum, v. 9, p. 159182.Google Scholar
Simpson, G.G., 1981, Notes on some fossil penguins, including a new genus from Patagonia: Ameghiniana, v. 18, p. 266272.Google Scholar
Slack, K.E., Jones, C.M., Ando, T., Harrison, G.L., Fordyce, R.E., Arnason, U., and Penny, D., 2006, Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution: Molecular Biology and Evolution, v. 23, p. 11441155.CrossRefGoogle ScholarPubMed
Smith, N.A., 2011, Taxonomic revision and phylogenetic analysis of the flightless Mancallinae (Aves, Pan-Alcidae): ZooKeys, v. 91, p. 1116.Google Scholar
Stadler, T., 2010, Sampling-through-time in birth-death trees: Journal of Theoretical Biology, v. 267, p. 396404.CrossRefGoogle ScholarPubMed
Swofford, D.L., 2003, PAUP*. Phylogenetic Analysis Using Parsimony (* and Other Methods): Sunderland, Sinauer Associates.Google Scholar
Tambussi, C.P., Reguero, M.A., Marenssi, S.A., and Santillana, S.N., 2005, Crossvalia unienwillia, a new Spheniscidae (Sphenisciformes, Aves) from the late Paleocene of Antarctica: Geobios, v. 38, p. 667675.Google Scholar
Thomas, D.B., and Ksepka, D.T., 2016, The Glen Murray fossil penguin from the North Island of New Zealand extends the geographic range of Kairuku: Journal of the Royal Society of New Zealand, v. 46, p. 200213.CrossRefGoogle Scholar
Thomas, D.B., Ksepka, D.T., and Fordyce, R.E., 2011, Penguin heat retention structures evolved in a Greenhouse Earth: Biology Letters, v. 7, p. 461464.Google Scholar
Thomas, D.B., Ksepka, D.T., Holvast, E.J., Tennyson, A.J.D., and Scofield, R.P., 2020a, Re-evaluating New Zealand's endemic Pliocene penguin genus: New Zealand Journal of Geology and Geophysics, v. 63, p. 324330.CrossRefGoogle Scholar
Thomas, D.B., Tennyson, A.J.D., Scofield, R.P., Heath, T.A., Pett, W., and Ksepka, D.T., 2020b, Ancient crested penguin constrains timing of recruitment into seabird hotspot: Proceedings of the Royal Society B: Biological Sciences, v. 287, 20201497. https://doi.org/10.1098/rspb.2020.1497.CrossRefGoogle ScholarPubMed
Warheit, K.I., 1992, A review of the fossil seabirds from the Tertiary of the North Pacific—plate-tectonics, paleoceanography, and faunal change: Paleobiology, v. 18, p. 401424.CrossRefGoogle Scholar
Warheit, K.I., and Lindberg, D.R., 1988, Interactions between seabirds and marine mammals through time: interference competition at breeding sites, in Burger, J., ed., Seabirds and Other Marine Vertebrates: Competition, Predation, and Other Interactions: New York, Columbia University Press, p. 292328.Google Scholar
Watanabe, J., Field, D.J., and Matsuoka, H., 2021, Wing musculature reconstruction in extinct flightless auks (Pinguinus and Mancalla) reveals incomplete convergence with penguins (Spheniscidae) due to differing ancestral states: Integrative Organismal Biology, v. 3, p. obaa040. https://doi.org/10.1093/iob/obaa040.Google ScholarPubMed
Watanuki, Y., and Burger, A.E., 1999, Body mass and dive duration in alcids and penguins: Canadian Journal of Zoology, v. 77, p. 18381842.Google Scholar
Williams, T.D., 1995, The Penguins: Oxford, Oxford University Press, 295 p.Google Scholar