Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T01:25:49.593Z Has data issue: false hasContentIssue false

6 - The myeloma bone marrow environment and survival signaling

from Section 2 - Biological basis for targeted therapies in myeloma

Published online by Cambridge University Press:  18 December 2013

Stephen A. Schey
Affiliation:
Department of Haematology, King’s College Hospital, London
Kwee L. Yong
Affiliation:
Department of Haematology, University College Hospital, London
Robert Marcus
Affiliation:
Department of Haematology, King’s College Hospital, London
Kenneth C. Anderson
Affiliation:
Dana-Farber Cancer Institute, Boston
Get access

Summary

Introduction

The interactions of clonal cells with the bone marrow begin with the initial establishment of transformed precursor MM cells in specialized niches, and their survival and persistence in such niches during the disease stage termed MGUS. During this stage, which can last for years, the bone marrow is gradually “re-modeled” to provide a permissive environment for the self-renewal of these (pre)malignant PC, with acquisition of (further) genetic lesions that trigger progression from MGUS to MM, accompanied by clonal expansion. Release of clonal cells into the circulation, and their homing to and establishment in other sites of hemopoietic bone marrow, with disruption of the bone homeostasis and angiogenesis, characterize the mature malignancy we call multiple myeloma (MM).

A multitude of players feature in these interactions (Table 6.1). Soluble factors direct migration and homing into bone marrow, upregulate anti-apoptotic pathways for drug resistance, modulate immune responses, act as mitogens to induce self-renewal and clonal expansion and function in many autocrine and paracrine loops to maintain survival, angiogenesis and bone destruction. Reciprocal interactions between MM cells and other cell types in the BM such as osteoblasts, osteoclasts, stromal cells and endothelial cells are mediated by some of these soluble factors, as well as by cell–cell contact dependent mechanisms such as adhesion molecules. Cell contact is also important for interactions with extracellular matrix proteins resulting in anti-apoptotic signaling and consequent drug resistance. This chapter will discuss these players in the context of each stage or component of disease pathogenesis, highlighting key players, and will consider in more detail the biochemical pathways that orchestrate survival and drug resistance of MM cells.

Type
Chapter
Information
Myeloma
Pathology, Diagnosis, and Treatment
, pp. 64 - 83
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barillé, S., Akhoundi, C., Collette, M. et al. Metalloproteinases in multiple myeloma: production of matrix metalloproteinase-9 (MMP-9), activation of proMMP-2, and induction of MMP-1 by myeloma cells. Blood 1997;90(4):1649–55.Google Scholar
Vande Broek, I., Asosingh, K., Allegaert, V. et al. Bone marrow endothelial cells increase the invasiveness of human multiple myeloma cells through upregulation of MMP-9: evidence for a role of hepatocyte growth factor. Leukemia 2004;18(5):976–82.CrossRefGoogle ScholarPubMed
Menu, E., Asosingh, K., Indraccolo, S. et al. The involvement of stromal derived Factor 1alpha in homing and progression of multiple myeloma in the STMM model. Haematologica 2006;91:605–12.Google Scholar
Vanderkerken, K. et al. Monocyte chemoattractant protein-1 (MCP-1), secreted by bone marrow endothelial cells, induces chemoattraction of 5TMM cells. Clin. Exp. Metastasis 2002;19:87–90.CrossRefGoogle Scholar
Alsayed, Y., Ngo, H., Runnels, J. et al. Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood 2007;109(7):2708–17.Google ScholarPubMed
Sanz-Rodriguez, F., Hidalgo, A., Teixido, J.Chemokine stromal cell-derived factor-1α modulates VLA-4 integrin-mediated multiple myeloma cell adhesion to CS-1/fibronectin and VCAM-1. Blood 2001;97:346–51.CrossRefGoogle ScholarPubMed
Diamond, P., Labrinidis, A., Martin, S. K. et al. Targeted disruption of the CXCL12/CXCR4 axis inhibits osteolysis in a murine model of myeloma-associated bone loss. J. Bone Miner. Res. 2009;24:1150–61.CrossRefGoogle Scholar
Azab, A. K., Runnels, J. M., Pitsillides, C. et al. CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood 2009;113(18):4341–5.CrossRefGoogle ScholarPubMed
O'Callaghan, K., Lee, L., Nguyer, N. et al. Targeting CXCR4 with cell-penetrating pepducins in lymphoma and lymphocytic leukemiaBlood 2012;119:1717–25.CrossRefGoogle ScholarPubMed
Asosingh, K. et al. In vivo induction of insulin-like growth factor-I receptor and CD44v6 confers homing and adhesion to murine multiple myeloma cells. Cancer Res. 2000;60:3096–104.Google ScholarPubMed
Tai, Y. T. et al, Insulin-like growth factor-1 induces adhesion and migration in human multiple myeloma cells via activation of beta1-integrin and phosphatidylinositol 3′-kinase/AKT signaling. Cancer Res. 2003;63:5850–8 (Erratum: Cancer Res. 2003;63:7543).Google ScholarPubMed
Asosingh, K., Günthert, U., De Raeve, H. et al. A unique pathway in the homing of murine multiple myeloma cells: CD44v10 mediates binding to bone marrow endothelium. Cancer Res. 2001;61(7):2862–5.Google ScholarPubMed
Van Valckenborgh, E., Matsui, W., Agarwal, P. et al. Tumor-initiating capacity of CD138- and CD138+ tumor cells in the 5T33 multiple myeloma model. Leukemia 2012;26:1436–9.CrossRefGoogle ScholarPubMed
Van Driel, M. et al. CD44 variant isoforms are involved in plasma cell adhesion to bone marrow stromal cells. Leukemia 2002;16:135–43.CrossRefGoogle ScholarPubMed
Neri, P., Ren, L., Azab, A. K. et al. Integrin-β7 mediated regulation of multiple myeloma cell adhesion, migration, and invasion. Blood 2011;117(23):6202–13.CrossRefGoogle ScholarPubMed
Groen, R. W. J., de Rooij, M. F. M., Kocemba, K. A. et al. N-cadherin-mediated interaction with multiple myeloma cells inhibits osteoblast differentiation. Haematologica 2011;96(11):1653–61.CrossRefGoogle ScholarPubMed
Azab, A. K., Quang, P., Azab, F. et al. P-selectin glycoprotein ligand regulates the interaction of multiple myeloma cells with the bone marrow microenvironment. Blood 2012;119(6):1468–78.CrossRefGoogle ScholarPubMed
Zlei, M., Egert, S., Wider, D. et al. Characterization of in vitro growth of multiple myeloma cells. Experimental Hematol. 2007;35[10]:1550–61. (Abstract.)CrossRefGoogle ScholarPubMed
Katz, B. Z.Adhesion molecules. The lifelines of multiple myeloma cells. Seminars in Cancer Biology 2010;20(3):186–95.CrossRefGoogle ScholarPubMed
Klein, B., Zhang, X. G., Lu, Z. Y., Bataille, R.Interleukin-6 in human multiple myeloma. Blood 1995 Feb 15;85(4):863–72.Google ScholarPubMed
Zhang, X. G., Gaillard, J. P., Robillard, N. et al. Reproducible obtaining of human myeloma cell lines as a model for tumor stem cell study in human multiple myeloma. Blood 1994;83(12):3654–6.Google ScholarPubMed
Hilbert, D. M., Kopf, M., Mock, B. A., Kuhler, G., Rudikoff, S.Interleukin 6 is essential for in vivo development of B lineage neoplasms. J. Experimental Med. 1995;182(1):243–8.CrossRefGoogle ScholarPubMed
Mahtouk, K., Moreaux, J., Hose, D. et al. Growth factors in multiple myeloma: a comprehensive analysis of their expression in tumor cells and bone marrow environment using Affymetrix microarrays. BMC Cancer 2010;10:198.CrossRefGoogle ScholarPubMed
Hardin, J., MacLeod, S., Grigorieva, I. et al. Interleukin-6 prevents dexamethasone-induced myeloma cell death. Blood 1994;84(9):3063–7.Google ScholarPubMed
Shain, K. H., Yarde, D. N., Meads, M. B. et al. Integrin adhesion enhances IL-6 mediated STAT3 signaling in myeloma cells: implications for microenvironment influence on tumor survival and proliferation. Cancer Research 2009;69(3):1009–15.CrossRefGoogle ScholarPubMed
Bataille, R., Jourdan, M., Zhang, X. G., Klein, B.Serum levels of interleukin-6, a potent myeloma cell growth factor, as a reflect of disease severity in plasma cell dyscrasias. J. Clin. Invest. 1989;84:2008–11.CrossRefGoogle ScholarPubMed
Klein, B., Wijdenes, J., Zhang, X. G. et al. Murine anti-interleukin-6 monoclonal antibody therapy for a patient with plasma cell leukemia. Blood 1991;78:1198–204.Google ScholarPubMed
Trikha, M., Corringham, R., Klein, B., Rossi, J. F.Targeted anti-interleukin-6 monoclonal antibody therapy for cancer. Clinical Cancer Research 2003;9(13):4653–65.Google ScholarPubMed
Hunsucker, S. A., Magarotto, V., Kuhn, D. J. et al. Blockade of interleukin-6 signalling with siltuximab enhances melphalan cytotoxicity in preclinical models of multiple myeloma. Br. J. Haematol. 2011;152(5):579–92.CrossRefGoogle ScholarPubMed
Condomines, M., Veyrune, J. L., Larroque, M. et al. Increased plasma-immune cytokines throughout the high-dose melphalan-induced lymphodepletion in patients with multiple myeloma: a window for adoptive immunotherapy. J. Immunol. 2010;184(2):1079–84.CrossRefGoogle ScholarPubMed
Sprynski, A. C., Hose, D., Caillot, L. et al. The role of IGF-1 as a major growth factor for myeloma cell lines and the prognostic relevance of the expression of its receptor. Blood 2009;113(19):4614–26.CrossRefGoogle ScholarPubMed
Glassford, J., Rabin, N., Lam, E. W., Yong, K. L.Functional regulation of D-type cyclins by insulin-like growth factor-I and serum in multiple myeloma cells. Br. J. Haematol. 2007;139(2):243–54.CrossRefGoogle ScholarPubMed
Xu, F., Gardner, A., Tu, Y. et al. Multiple myeloma cells are protected against dexamethasone-induced apoptosis by insulin-like growth factors. Br. J. Haematol. 1997;97(2):429–40.CrossRefGoogle ScholarPubMed
Abroun, S., Ishikawa, H., Tsuyama, N. et al. Receptor synergy of interleukin-6 (IL-6) and insulin-like growth factor-I in myeloma cells that highly express IL-6 receptor. Blood 2004;103(6):2291–8.CrossRefGoogle ScholarPubMed
Standal, T., Borset, M., Lenhoff, S. et al. Serum insulin-like growth factor is not elevated in patients with multiple myeloma but is still a prognostic factor. Blood 2002;100(12):3925–9.CrossRefGoogle ScholarPubMed
Mitsiades, C. S., Mitsiades, N. S., McMullan, C. J. et al. Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell 2004;5(3):221–30.CrossRefGoogle ScholarPubMed
Roosnek, E., Burjanadze, M., Dietrich, P. Y. et al. Tumors that look for their springtime in APRIL. Crit. Rev. Oncol./Hematol. 2009;72(2):91–7.CrossRefGoogle ScholarPubMed
Rickert, R. C., Jellusova, J., Miletic, A. V.Signaling by the tumor necrosis factor receptor superfamily in B-cell biology and disease. Immunol. Rev. 2011;244(1):115–33.CrossRefGoogle ScholarPubMed
Castigli, E., Scott, S., Dedeoglu, F. et al. Impaired IgA class switching in APRIL-deficient mice. Proc. Natl. Acad. Sci. USA 2004;101(11):3903–8.CrossRefGoogle ScholarPubMed
Planelles, L., Carvalho-Pinto, C. E., Hardenberg, G. et al. APRIL promotes B-1 cell-associated neoplasm. Cancer Cell 2004;6[4]:399–408.CrossRefGoogle ScholarPubMed
Belnoue, E., Pihlgren, M., McGaha, T. L. et al. APRIL is critical for plasmablast survival in the bone marrow and is poorly expressed by early life bone marrow stromal cells. Blood 2008;111(5):2755–64.CrossRefGoogle ScholarPubMed
Bossen, C., Schneider, P.BAFF, APRIL and their receptors: structure, function and signaling. Semin. Immunol. 2006;18(5):263–75.CrossRefGoogle ScholarPubMed
Moreaux, J., Legouffe, E., Jourdan, E. et al. BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood 2004;103(8):3148–57.CrossRefGoogle ScholarPubMed
Novak, A. J., Darce, J. R., Arendt, B. K. et al. Expression of BCMA, TACI, and BAFF-R in multiple myeloma: a mechanism for growth and survival. Blood 2004;103(2):689–94.CrossRefGoogle ScholarPubMed
Moreaux, J., Sprynski, A. C., Dillon, S. R. et al. APRIL and TACI interact with syndecan-1 on the surface of multiple myeloma cells to form an essential survival loop. Eur. J. Haematol. 2009;83(2):119–29.CrossRefGoogle ScholarPubMed
Matthes, T., Dunand-Sauthier, I., Santiago-Raber, M. L. et al. Production of the plasma-cell survival factor a proliferation-inducing ligand (APRIL) peaks in myeloid precursor cells from human bone marrow. Blood 2011;118(7):1838–44.CrossRefGoogle ScholarPubMed
Quinn, J., Glassford, J., Percy, L. et al. APRIL promotes cell-cycle progression in primary multiple myeloma cells: influence of D-type cyclin group and translocation status. Blood 2011;117:890–901.CrossRefGoogle ScholarPubMed
Moreaux, J., Cremer, F. W., Reme, T. et al. The level of TACI gene expression in myeloma cells is associated with a signature of microenvironment dependence versus a plasmablastic signature. Blood 2005;106(3):1021–30.CrossRefGoogle ScholarPubMed
Yaccoby, S., Pennisi, A., Li, X. et al. Atacicept (TACI-Ig) inhibits growth of TACI high primary myeloma cells in SCID-hu mice and in coculture with osteoclasts. Leukemia 2007;22(2):406–13.CrossRefGoogle ScholarPubMed
Kukreja, A., Hutchinson, A., Dhodapkar, K. et al. Enhancement of clonogenicity of human multiple myeloma by dendritic cells. J. Exp. Med. 2006;203(8):1859–65.CrossRefGoogle ScholarPubMed
Rossi, J. F., Moreaux, J., Hose, D. et al. Atacicept in relapsed/refractory multiple myeloma or active Waldenström's macroglobulinemia: a phase I study. Br. J. Cancer 2009;101(7):1051–8.CrossRefGoogle ScholarPubMed
Guadagnoli, M., Kimberley, F. C., Phan, U. et al. Development and characterization of APRIL antagonistic monoclonal antibodies for treatment of B-cell lymphomas. Blood 2011;117(25):6856–65.CrossRefGoogle ScholarPubMed
Hose, D., Moreaux, J., Meissner, T. et al. Induction of angiogenesis by normal and malignant plasma cells. Blood 2009;114(1):128–43.CrossRefGoogle ScholarPubMed
Iwasaki, T., Sano, H.Predicting treatment responses and disease progression in myeloma using serum vascular endothelial growth factor and hepatocyte growth factor levels. Leuk. Lymphoma 2003;44(8):1275–9.CrossRefGoogle ScholarPubMed
Vacca, A., Ribatti, D., Roncali, L. et al. Bone marrow angiogenesis and progression in multiple myeloma. Br. J. Haematol. 1994;87(3):503–8.CrossRefGoogle ScholarPubMed
Gupta, D., Treon, S. P., Shima, Y. et al. Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia 2001;15(12):1950–6.CrossRefGoogle ScholarPubMed
Dankbar, B., Padró, T., Leo, R. et al. Vascular endothelial growth factor and interleukin-6 in paracrine tumor–stromal cell interactions in multiple myeloma. Blood 2000;95(8):2630–6.Google ScholarPubMed
Le Gouill, S., Podar, K., Amiot, M. et al. VEGF induces Mcl-1 up-regulation and protects multiple myeloma cells against apoptosis. Blood 2004;104(9):2886–92.CrossRefGoogle ScholarPubMed
Borset, M., Hjorth-Hansen, H., Seidel, C., Sundan, A., Waage, A.Hepatocyte growth factor and its receptor c-met in multiple myeloma. Blood 1996;88(10):3998–4004.Google ScholarPubMed
The Nordic Myeloma Study Group. Seidel, C., Børset, M., Turesson, I. et al. Elevated serum concentrations of hepatocyte growth factor in patients with multiple myeloma. Blood 1998;91(3):806–12.Google ScholarPubMed
Hov, H., Tian, E., Holien, T. et al. c-Met signaling promotes IL-6-induced myeloma cell proliferation. Eur. J. Haematol. 2009;82(4):277–87.CrossRefGoogle ScholarPubMed
Seidel, C., Børset, M., Hjertner, O. et al. High levels of soluble syndecan-1 in myeloma-derived bone marrow: modulation of hepatocyte growth factor activity. Blood 2000;96(9):3139–46.Google ScholarPubMed
Klein, B., Seckinger, A., Moehler, T., Hose, D.Molecular pathogenesis of multiple myeloma: chromosomal aberrations, changes in gene expression, cytokine networks, and the bone marrow microenvironment. Recent Results Cancer Res. 2011;183:39–86.CrossRefGoogle ScholarPubMed
Pellat-Deceunynck, C., Barille, S., Puthier, D. et al. Adhesion molecules on human myeloma cells: significant changes in expression related to malignancy, tumor spreading, and immortalization. Cancer Res. 1995;55(16):3647–53.Google ScholarPubMed
Noborio-Hatano, K., Kikuchi, J., Takatoku, M. et al. Bortezomib overcomes cell-adhesion-mediated drug resistance through downregulation of VLA-4 expression in multiple myeloma. Oncogene 2009;28(2):231–42.CrossRefGoogle ScholarPubMed
Damiano, J. S., Cress, A. E., Hazlehurst, L. A., Shtil, A. A., Dalton, W. S.Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 1999;93(5):1658–67.Google ScholarPubMed
Hazlehurst, L. A., Damiano, J. S., Buyuksal, I., Pledger, W. J., Dalton, W. S.Adhesion to fibronectin via beta1 integrins regulates p27kip1 levels and contributes to cell adhesion mediated drug resistance (CAM-DR). Oncogene 2000;19(38):4319–27.CrossRefGoogle Scholar
Shain, K. H., Yarde, D. N., Meads, M. B. et al. Integrin adhesion enhances IL-6 mediated STAT3 signaling in myeloma cells: implications for microenvironment influence on tumor survival and proliferation. Cancer Research 2009;69(3):1009–15.CrossRefGoogle ScholarPubMed
Abe, M.Targeting the interplay between myeloma cells and the bone marrow microenvironment in myeloma. Int. J. Hematol. 2011;94(4):334–43.CrossRefGoogle Scholar
Perez, L. E., Parquet, N., Meads, M., Anasetti, C., Dalton, W.Bortezomib restores stroma-mediated APO2L/TRAIL apoptosis resistance in multiple myeloma. Eur. J. Haematol. 2010;84(3):212–22.CrossRefGoogle ScholarPubMed
Landowski, T. H., Olashaw, N. E., Agrawal, D., Dalton, W. S.Cell adhesion-mediated drug resistance (CAM-DR) is associated with activation of NF-kappaB (RelB/p50) in myeloma cells. Oncogene 2003;22(16):2417–21.CrossRefGoogle Scholar
Dalton, W. S.The tumor microenvironment: focus on myeloma. Cancer Treatment Rev. 2003;29(Suppl. 1):11–19.CrossRefGoogle ScholarPubMed
Zlei, M., Egert, S., Wider, D. et al. Characterization of in vitro growth of multiple myeloma cells. Exp. Hematol. 2007;35[10]:1550–61.CrossRefGoogle ScholarPubMed
Bataille, R., Chappard, D., Marcelli, C. et al. Recruitment of new osteoblasts and osteoclasts is the earliest critical event in the pathogenesis of human multiple myeloma. J. Clin. Invest. 1991;88(1):62–6.CrossRefGoogle ScholarPubMed
Aubin, J. E.Regulation of osteoblast formation and function. Rev. Endocr. Metab. Disord. 2001;2:81094.CrossRefGoogle ScholarPubMed
Corre, J., Mahtouk, K., Attal, M. et al. Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia 2007;21:1079–88.CrossRefGoogle ScholarPubMed
Garderet, L., Mazurier, C., Chapel, A. et al. Mesenchymal stem cell abnormalities in patients with multiple myeloma. Leuk. Lymphoma 2007;48:2032–41.CrossRefGoogle ScholarPubMed
Todoerti, K., Lisignoli, G., Storti, P. et al. Distinct transcriptional profiles characterize bone microenvironment mesenchymal cells rather than osteoblasts in relationship with multiple myeloma bone disease. Exp. Hematol. 2010;38(2):141–53.CrossRefGoogle ScholarPubMed
Yaccoby, S., Wezeman, M. J., Zangari, M. et al. Inhibitory effects of osteoblasts and increased bone formation on myeloma in novel culture systems and a myelomatous mouse model. Haematologica 2006;91(2):192–9.Google Scholar
Reagan, M. R., Ghobrial, I. M.Multiple myeloma mesenchymal stem cells: characterization, origin, and tumor-promoting effects. Clinical Cancer Research 2012;18(2):342–9.CrossRefGoogle ScholarPubMed
Li, X., Ling, W., Khan, S., Yaccoby, S.Therapeutic effects of intrabone and systemic mesenchymal stem cell cytotherapy on myeloma bone disease and tumour growth. J. Bone Mineral. Res. 2012;27:1635.CrossRefGoogle Scholar
Yaccoby, S., Wezeman, M. J., Henderson, A. et al. Cancer and the microenvironment: myeloma-osteoclast interactions as a model. Cancer Res. 2004;64(6):2016–20.CrossRefGoogle Scholar
Moreaux, J., Hose, D., Kassambara, A. et al. Osteoclast-gene expression profiling reveals osteoclast-derived CCR2 chemokines promoting myeloma cell migration. Blood 2011;117(4):1280–90.CrossRefGoogle ScholarPubMed
Chauhan, D., Singh, A. V., Brahmandam, M. et al. Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: a therapeutic target. Cancer Cell 2009;16(4):309–23.CrossRefGoogle ScholarPubMed
Zheng, Y., Cai, Z., Wang, S. et al. Macrophages are an abundant component of myeloma microenvironment and protect myeloma cells from chemotherapy drug-induced apoptosis. Blood 2009;114(17):3625–8.CrossRefGoogle ScholarPubMed
Martin, S. K., Diamond, P., Williams, S. A. et al. Hypoxia-inducible factor-2 is a novel regulator of aberrant CXCL12 expression in multiple myeloma plasma cells. Haematologica 2010;95:776–84.CrossRefGoogle ScholarPubMed
Giatromanolaki, A., Bai, M., Margaritis, D. et al. Hypoxia and activated VEGF/ receptor pathway in multiple myeloma. Anticancer Res. 2010;30:2831–6.Google ScholarPubMed
Iriuchishima, H., Takubo, K., Miyakawa, Y. et al. Neovascular niche for human myeloma cells in immunodeficient mouse bone. PloS One 2012;7(2):e30557.CrossRefGoogle ScholarPubMed
Shain, K. H., Dalton, W. S.Environmental-mediated drug resistance: a target for multiple myeloma therapy. Expert. Rev. Hematol. 2009;2(6):649–62.CrossRefGoogle ScholarPubMed
Grivennikov, S. I., Greten, F. R., Karin, M.Immunity, inflammation, and cancer. Cell 2010;140(6):883–99.CrossRefGoogle Scholar
Hurt, E. M., Wiestner, A., Rosenwald, A. et al. Overexpression of c-maf is a frequent oncogenic event in multiple myeloma that promotes proliferation and pathological interactions with bone marrow stroma. Cancer Cell 2004;5(2):191–9.CrossRefGoogle ScholarPubMed
DiDonato, J. A., Mercurio, F., Karin, M.NF-kappaB and the link between inflammation and cancer. Immunol. Rev. 2012;246(1):379–400.CrossRefGoogle ScholarPubMed
Rickert, R. C., Jellusova, J., Miletic, A. V.Signaling by the tumor necrosis factor receptor superfamily in B-cell biology and disease. Immunol. Rev. 2011;244(1):115–33.CrossRefGoogle ScholarPubMed
Keats, J. J., Fonseca, R., Chesi, M. et al. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 2007;12(2):131–44.CrossRefGoogle ScholarPubMed
Annunziata, C. M., Davis, R. E., Demchenko, Y. et al. Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 2007;12(2):115–30.CrossRefGoogle ScholarPubMed
Chapman, M. A., Lawrence, M. S., Keats, J. J. et al. Initial genome sequencing and analysis of multiple myeloma. Nature 2011;471(7339):467–72.CrossRefGoogle ScholarPubMed
Endo, T., Nishio, M., Enzler, T. et al. BAFF and APRIL support chronic lymphocytic leukemia B-cell survival through activation of the canonical NF-kappaB pathway. Blood 2007;109(2):703–10.CrossRefGoogle ScholarPubMed
Baud, V., Karin, M.Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat. Rev. Drug Discov. 2009;8(1):33–40.CrossRefGoogle ScholarPubMed
Hideshima, T., Chauhan, D., Schlossman, R., Richardson, P., Anderson, K. C.The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: therapeutic applications. Oncogene 2001;20(33):4519–27.CrossRefGoogle ScholarPubMed
Markovina, S., Callander, N. S., O'Connor, S. L. et al. Bortezomib-resistant nuclear factor-kappaB activity in multiple myeloma cells. Mol. Cancer Res. 2008;6(8):1356–64.CrossRefGoogle ScholarPubMed
Hideshima, T., Ikeda, H., Chauhan, D. et al. Bortezomib induces canonical nuclear factor-kappaB activation in multiple myeloma cells. Blood 2009;114(5):1046–52.CrossRefGoogle ScholarPubMed
McMillin, D. W., Jacobs, H. M., Delmore, J. E. et al. Molecular and cellular effects of NEDD8-activating enzyme inhibition in myeloma. Mol. Cancer Ther. 2012;11(4):942–51.CrossRefGoogle Scholar
Romagnoli, M., Desplanques, G., Maiga, S. et al. Canonical nuclear factor kappaB pathway inhibition blocks myeloma cell growth and induces apoptosis in strong synergy with TRAIL. Clin. Cancer Res. 2007;13(20):6010–18.CrossRefGoogle ScholarPubMed
Hideshima, T., Neri, P., Tassone, P. et al. MLN120B, a novel IkappaB kinase beta inhibitor, blocks multiple myeloma cell growth in vitro and in vivo. Clin. Cancer Res. 2006;12(19):5887–94.CrossRefGoogle ScholarPubMed
Tagoug, I., Sauty De Chalon, A., Dumontet, C.Inhibition of IGF-1 signalling enhances the apoptotic effect of AS602868, an IKK2 inhibitor, in multiple myeloma cell lines. PLoS One 2011;6(7):e22641.CrossRefGoogle ScholarPubMed
Fabre, C., Mimura, N., Bobb, K. et al. Dual inhibition of canonical and non-canonical NF-kappaB pathways demonstrates significant anti-tumor activities in multiple myeloma. Clin. Cancer Res. 2012; 18(17): 4669–81.CrossRefGoogle Scholar
Hideshima, T., Chauhan, D., Kiziltepe, T. et al. Biologic sequelae of I{kappa}B kinase (IKK) inhibition in multiple myeloma: therapeutic implications. Blood 2009;113(21):5228–36.CrossRefGoogle ScholarPubMed
Khwaja, A.PI3K as a target for therapy in haematological malignancies. Curr. Top. Microbiol. Immunol. 2010;347:169–88.Google ScholarPubMed
Vanhaesebroeck, B., Stephens, L., Hawkins, P.PI3K signalling: the path to discovery and understanding. Nat. Rev. Mol. Cell Biol. 2012;13(3):195–203.CrossRefGoogle ScholarPubMed
Tiedemann, R. E., Gonzalez-Paz, N., Kyle, R. A. et al. Genetic aberrations and survival in plasma cell leukemia. Leukemia 2008;22(5):1044–52.CrossRefGoogle ScholarPubMed
Laplante, M., Sabatini, D. M.mTOR signaling in growth control and disease. Cell 2012;149(2):274–93.CrossRefGoogle ScholarPubMed
Manning, B. D., Cantley, L. C.AKT/PKB signaling: navigating downstream. Cell 2007;129(7):1261–74.CrossRefGoogle ScholarPubMed
Tai, Y. T., Podar, K., Mitsiades, N. et al. CD40 induces human multiple myeloma cell migration via phosphatidylinositol 3-kinase/AKT/NF-kappa B signaling. Blood 2003;101(7):2762–9.CrossRefGoogle ScholarPubMed
Mitsiades, C. S., Mitsiades, N., Poulaki, V. et al. Activation of NF-kappaB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications. Oncogene 2002;21(37):5673–83.CrossRefGoogle ScholarPubMed
Hideshima, T., Nakamura, N., Chauhan, D., Anderson, K. C.Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene 2001;20(42):5991–6000.CrossRefGoogle ScholarPubMed
Moreaux, J., Legouffe, E., Jourdan, E. et al. BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood 2004;103(8):3148–57.CrossRefGoogle ScholarPubMed
Ge, N. L., Rudikoff, S.Insulin-like growth factor I is a dual effector of multiple myeloma cell growth. Blood 2000;96(8):2856–61.Google ScholarPubMed
Khwaja, A., Rodriguez-Viciana, P., Wennstrom, S., Warne, P. H., Downward, J.Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J. 1997;16(10):2783–93.CrossRefGoogle ScholarPubMed
McNamara, C. R., Degterev, A.Small-molecule inhibitors of the PI3K signaling network. Future Med. Chem. 2011;3(5):549–65.CrossRefGoogle ScholarPubMed
Willems, L., Tamburini, J., Chapuis, N. et al. PI3K and mTOR signaling pathways in cancer: new data on targeted therapies. Curr. Oncol. Rep. 2012;14(2):129–38.CrossRefGoogle ScholarPubMed
Richardson, P. G., Eng, C., Kolesar, J., Hideshima, T., Anderson, K. C.Perifosine, an oral, anti-cancer agent and inhibitor of the Akt pathway: mechanistic actions, pharmacodynamics, pharmacokinetics, and clinical activity. Expert Opin. Drug Metab. Toxicol. 2012;8(5):623–33.CrossRefGoogle ScholarPubMed
Hideshima, T., Catley, L., Yasui, H. et al. Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood 2006;107(10):4053–62.CrossRefGoogle ScholarPubMed
Jakubowiak, A. J., Richardson, P. G., Zimmerman, T. et al. Perifosine plus lenalidomide and dexamethasone in relapsed and relapsed/refractory multiple myeloma: a Phase I Multiple Myeloma Research Consortium study. Br. J. Haematol. 2012;158(4):472–80.CrossRefGoogle ScholarPubMed
Richardson, P. G., Wolf, J., Jakubowiak, A. et al. Perifosine plus bortezomib and dexamethasone in patients with relapsed/refractory multiple myeloma previously treated with bortezomib: results of a multicenter phase I/II trial. J. Clin. Oncol. 2011;29(32):4243–9.CrossRefGoogle ScholarPubMed
Stengel, C., Cheung, C. W., Quinn, J., Yong, K., Khwaja, A. Optimal induction of myeloma cell death requires dual blockade of phosphoinositide 3-kinase and mTOR signalling and is determined by translocation subtype. Leukemia 2012 (epub Mar 14).
Frost, P., Moatamed, F., Hoang, B. et al. In vivo antitumor effects of the mTOR inhibitor CCI-779 against human multiple myeloma cells in a xenograft model. Blood 2004;104(13):4181–7.CrossRefGoogle Scholar
Farag, S. S., Zhang, S., Jansak, B. S. et al. Phase II trial of temsirolimus in patients with relapsed or refractory multiple myeloma. Leuk. Res. 2009;33(11):1475–80.CrossRefGoogle ScholarPubMed
Shi, Y., Yan, H., Frost, P., Gera, J., Lichtenstein, A.Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade. Mol. Cancer Ther. 2005;4(10):1533–40.CrossRefGoogle ScholarPubMed
Hoang, B., Frost, P., Shi, Y. et al. Targeting TORC2 in multiple myeloma with a new mTOR kinase inhibitor. Blood 2010;116(22):4560–8.CrossRefGoogle ScholarPubMed
Maiso, P., Liu, Y., Morgan, B. et al. Defining the role of TORC1/2 in multiple myeloma. Blood 2011;118(26):6860–70.CrossRefGoogle ScholarPubMed
Hoang, B., Benavides, A., Shi, Y. et al. The PP242 mammalian target of rapamycin (mTOR) inhibitor activates extracellular signal-regulated kinase (ERK) in multiple myeloma cells via a target of rapamycin complex 1 (TORC1)/ eukaryotic translation initiation factor 4E (eIF-4E)/RAF pathway and activation is a mechanism of resistance. J. Biol. Chem. 2012;287(26):21 796–805.CrossRefGoogle Scholar
Ghobrial, I. M., Weller, E., Vij, R. et al. Weekly bortezomib in combination with temsirolimus in relapsed or relapsed and refractory multiple myeloma: a multicentre, phase 1/2, open-label, dose-escalation study. Lancet Oncol. 2011;12(3):263–72.CrossRefGoogle ScholarPubMed
Hofmeister, C. C., Yang, X., Pichiorri, F. et al. Phase I trial of lenalidomide and CCI-779 in patients with relapsed multiple myeloma: evidence for lenalidomide-CCI-779 interaction via P-glycoprotein. J. Clin. Oncol. 2011;29(25):3427–34.CrossRefGoogle ScholarPubMed
Steinbrunn, T., Stuhmer, T., Gattenlohner, S. et al. Mutated RAS and constitutively activated Akt delineate distinct oncogenic pathways, which independently contribute to multiple myeloma cell survival. Blood 2011;117(6):1998–2004.CrossRefGoogle ScholarPubMed
Lentzsch, S., Chatterjee, M., Gries, M. et al. PI3-K/AKT/FKHR and MAPK signaling cascades are redundantly stimulated by a variety of cytokines and contribute independently to proliferation and survival of multiple myeloma cells. Leukemia 2004;18(11):1883–90.CrossRefGoogle ScholarPubMed
Sousa, S. F., Fernandes, P. A., Ramos, M. J.Farnesyltransferase inhibitors: a detailed chemical view on an elusive biological problem. Curr. Med. Chem. 2008;15(15):1478–92.CrossRefGoogle ScholarPubMed
Yauch, R. L., Settleman, J.Recent advances in pathway-targeted cancer drug therapies emerging from cancer genome analysis. Curr. Opin. Genet. Dev. 2012;22(1):45–9.CrossRefGoogle ScholarPubMed
Ramakrishnan, V., Timm, M., Haug, J. L. et al. Sorafenib, a dual Raf kinase/vascular endothelial growth factor receptor inhibitor has significant anti-myeloma activity and synergizes with common anti-myeloma drugs. Oncogene 2010;29(8):1190–202.CrossRefGoogle ScholarPubMed
Tai, Y. T., Fulciniti, M., Hideshima, T. et al. Targeting MEK induces myeloma-cell cytotoxicity and inhibits osteoclastogenesis. Blood 2007;110(5):1656–63.CrossRefGoogle ScholarPubMed
Kontzias, A., Kotlyar, A., Laurence, A., Changelian, P., O'shea, J. J. Jakinibs: a new class of kinase inhibitors in cancer and autoimmune disease. Curr. Opin. Pharmacol. 2012(Jul 19).
Khwaja, A.The role of Janus kinases in haemopoiesis and haematological malignancy. Br. J. Haematol. 2006;134(4):366–84.CrossRefGoogle ScholarPubMed
Vila-Coro, A. J., Rodriguez-Frade, J. M., Martin De Ana, A. et al. The chemokine SDF-1alpha triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB J. 1999;13(13):1699–710.CrossRefGoogle ScholarPubMed
Frank, D. A.STAT3 as a central mediator of neoplastic cellular transformation. Cancer Lett. 2007;251(2):199–210.CrossRefGoogle ScholarPubMed
Chen, E., Staudt, L. M., Green, A. R.Janus kinase deregulation in leukemia and lymphoma. Immunity 2012;36(4):529–41.CrossRefGoogle ScholarPubMed
Galm, O., Yoshikawa, H., Esteller, M., Osieka, R., Herman, J. G.SOCS-1, a negative regulator of cytokine signaling, is frequently silenced by methylation in multiple myeloma. Blood 2003;101(7):2784–8.CrossRefGoogle ScholarPubMed
Pedranzini, L., Dechow, T., Berishaj, M. et al. Pyridone 6, a pan-Janus-activated kinase inhibitor, induces growth inhibition of multiple myeloma cells. Cancer Res. 2006;66(19):9714–21.CrossRefGoogle ScholarPubMed
Kockeritz, L., Doble, B., Patel, S., Woodgett, J. R.Glycogen synthase kinase-3 – an overview of an over-achieving protein kinase. Curr. Drug Targets 2006;7(11):1377–88.CrossRefGoogle ScholarPubMed
Hoeflich, K. P., Luo, J., Rubie, E. A. et al. Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature 2000;406(6791):86–90.CrossRefGoogle ScholarPubMed
Zhou, Y., Uddin, S., Zimmerman, T. et al. Growth control of multiple myeloma cells through inhibition of glycogen synthase kinase-3. Leuk. Lymphoma 2008;49(10):1945–53.CrossRefGoogle ScholarPubMed
Gunn, W. G., Krause, U., Lee, N., Gregory, C. A.Pharmaceutical inhibition of glycogen synthetase kinase-3beta reduces multiple myeloma-induced bone disease in a novel murine plasmacytoma xenograft model. Blood 2011;117(5):1641–51.CrossRefGoogle Scholar
Busino, L., Millman, S. E., Scotto, L. et al. Fbxw7alpha- and GSK3-mediated degradation of p100 is a pro-survival mechanism in multiple myeloma. Nat. Cell Biol. 2012;14(4):375–85.CrossRefGoogle ScholarPubMed
Herr, P., Hausmann, G., Basler, K. WNT secretion and signalling in human disease. Trends Mol. Med. 2012(Jul 13).
Derksen, P. W., Tjin, E., Meijer, H. P. et al. Illegitimate WNT signaling promotes proliferation of multiple myeloma cells. Proc. Natl. Acad. Sci. USA 2004;101(16):6122–7.CrossRefGoogle ScholarPubMed
Qiang, Y. W., Shaughnessy, J. D., Yaccoby, S.Wnt3a signaling within bone inhibits multiple myeloma bone disease and tumor growth. Blood 2008;112(2):374–82.CrossRefGoogle ScholarPubMed
Edwards, C. M., Edwards, J. R., Lwin, S. T. et al. Increasing Wnt signaling in the bone marrow microenvironment inhibits the development of myeloma bone disease and reduces tumor burden in bone in vivo. Blood 2008;111(5):2833–42.CrossRefGoogle ScholarPubMed
Pinzone, J. J., Hall, B. M., Thudi, N. K. et al. The role of Dickkopf-1 in bone development, homeostasis, and disease. Blood 2009;113(3):517–25.CrossRefGoogle ScholarPubMed
Ferrando, A. A. The role of NOTCH1 signaling in T-ALL. Hematology Am. Soc. Hematol. Educ. Program 2009:353–61.
Houde, C., Li, Y., Song, L. et al. Overexpression of the NOTCH ligand JAG2 in malignant plasma cells from multiple myeloma patients and cell lines. Blood 2004;104(12):3697–704.CrossRefGoogle ScholarPubMed
Chiron, D., Maiga, S., Descamps, G. et al. Critical role of the NOTCH ligand JAG2 in self-renewal of myeloma cells. Blood Cells Mol. Dis. 2012;48(4):247–53.CrossRefGoogle ScholarPubMed
Nefedova, Y., Cheng, P., Alsina, M., Dalton, W. S., Gabrilovich, D. I.Involvement of Notch-1 signaling in bone marrow stroma-mediated de novo drug resistance of myeloma and other malignant lymphoid cell lines. Blood 2004;103(9):3503–10.CrossRefGoogle ScholarPubMed
Groth, C., Fortini, M. E.Therapeutic approaches to modulating Notch signaling: Current challenges and future prospects. Semin. Cell Dev. Biol. 2012;23(4):465–72.CrossRefGoogle ScholarPubMed
Nefedova, Y., Sullivan, D. M., Bolick, S. C., Dalton, W. S., Gabrilovich, D. I.Inhibition of Notch signaling induces apoptosis of myeloma cells and enhances sensitivity to chemotherapy. Blood 2008;111(4):2220–9.CrossRefGoogle Scholar
Jhaveri, K., Taldone, T., Modi, S., Chiosis, G.Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Biochim. Biophys. Acta 2012;1823(3):742–55.CrossRefGoogle ScholarPubMed
Castellano, E., Downward, J.RAS interaction with PI3K: more than just another effector pathway. Genes Cancer 2011;2(3):261–74.CrossRefGoogle ScholarPubMed
Gillings, A. S., Balmanno, K., Wiggins, C. M., Johnson, M., Cook, S. J.Apoptosis and autophagy: BIM as a mediator of tumour cell death in response to oncogene-targeted therapeutics. FEBS J. 2009;276(21):6050–62.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×