Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T01:30:51.550Z Has data issue: false hasContentIssue false

1 - Epidemiology of myeloma

from Section 1 - Overview of myeloma

Published online by Cambridge University Press:  18 December 2013

Stephen A. Schey
Affiliation:
Department of Haematology, King’s College Hospital, London
Kwee L. Yong
Affiliation:
Department of Haematology, University College Hospital, London
Robert Marcus
Affiliation:
Department of Haematology, King’s College Hospital, London
Kenneth C. Anderson
Affiliation:
Dana-Farber Cancer Institute, Boston
Get access

Summary

Introduction

Epidemiology is the basic quantitative science of public health; and as such is concerned with the distribution, determinants, treatment, management and potential control of disease. Concentrating on the first two of these, this chapter reviews the epidemiology of myeloma, which accounts for around 1%–2% of all newly diagnosed cancers, and 10%–15% of all newly diagnosed hematological malignancies[1,2].

Descriptive epidemiology

The accurate description of underlying disease patterns and trends provides the foundation for etiological research[3], hence before considering the epidemiology of myeloma in any depth issues relating to disease ascertainment and classification are briefly discussed below.

Cancer ascertainment and classification

Whilst cancer registration has a long history in many countries, particularly those in the more affluent regions of the world, nearly 80% of the global population is not covered by such systems [1]. Furthermore, for hematological cancers, information gathering and dissemination has long been acknowledged to be a major problem even in countries that have adequate collations processes. These concerns were summarized in EUROCARE 4 in their 2009 statement that “the evolving classification and poor standardization of data collection on haematological malignancies vitiate the comparison of disease incidence and survival over time and across regions” [4]. The main issue here is that, unlike many other cancers, the majority of hematological neoplasms are diagnosed by using multiple parameters, including a combination of histology, cytology, immunophenotyping, cytogenetics, imaging and clinical information.

Type
Chapter
Information
Myeloma
Pathology, Diagnosis, and Treatment
, pp. 1 - 10
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ferlay, J., Shin, H.-R., Bray, F., et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 2010;127(12):2893–917.CrossRefGoogle ScholarPubMed
Swerdlow, S.WHO classification of tumours of haematopoietic and lymphoid tissues, 4th edn. Lyon France: International Agency for Research on Cancer; 2008.Google Scholar
Boyle, P.World cancer report 2008. Lyon: IARC Press; 2008.Google Scholar
Sant, M., Allemani, C., Santaquilani, M., et al. EUROCARE-4. Survival of cancer patients diagnosed in 1995–1999. Results and commentary. Eur. J. Cancer. 2009;45(6):931–91.CrossRefGoogle ScholarPubMed
Jaffe, E., World Health Organization. Pathology and genetics of tumours of haematopoietic and lymphoid tissues. Lyon; Oxford: IARC Press; Oxford University Press (distributor); 2001.Google Scholar
Fritz, A.International classification of diseases for oncology: ICD-O. 3rd edn. Geneva: World Health Organization; 2000.Google Scholar
International statistical classification of diseases and related health problems, ICD-10. Vol. 3, Alphabetical index. Geneva: World Health Organization; 1994.
Siegel, R., Naishadham, D., Jemal, A.Cancer statistics, 2012. CA Cancer J. Clin. 2012;62(1):10–29.CrossRefGoogle ScholarPubMed
National Cancer Intelligence Network. Cancer incidence and survival by major ethnic group, England, 2002–2006 [Internet]. 2009; Available from:
Ferlay, J., Shin, H.-R., Bray, F., et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer [Internet]. 2010 Jun 17 [cited 2010 Aug 26]; Available from:
Rajkumar, S. V., Gahrton, G., Bergsagel, P. L.Approach to the treatment of multiple myeloma: a clash of philosophies. Blood 2011;118(12):3205–11.CrossRefGoogle ScholarPubMed
Bird, J. M., Owen, R. G., D’Sa, S., et al. Guidelines for the diagnosis and management of multiple myeloma 2011. Br. J. Haematol. 2011;154(1):32–75.CrossRefGoogle ScholarPubMed
Landgren, O.Monoclonal gammopathy of undetermined significance and smoldering myeloma: new insights into pathophysiology and epidemiology. ASH Education Program Book. 2010 December 4(1):295–302.Google Scholar
Wadhera, R. K., Rajkumar, S. V.Prevalence of monoclonal gammopathy of undetermined significance: a systematic review. Mayo Clin. Proc. 2010;85(10):933–42.CrossRefGoogle ScholarPubMed
Kyle, R. A., Therneau, T. M., Rajkumar, S. V., et al. Prevalence of monoclonal gammopathy of undetermined significance. N. Engl. J. Med. 2006;354(13):1362–9.CrossRefGoogle ScholarPubMed
Iwanaga, M., Tagawa, M., Tsukasaki, K., Kamihira, S., Tomonaga, M.Prevalence of monoclonal gammopathy of undetermined significance: study of 52,802 persons in Nagasaki City, Japan. Mayo Clin. Proc. 2007;82(12):1474–9.CrossRefGoogle ScholarPubMed
Landgren, O., Katzmann, J. A., Hsing, A. W., et al. Prevalence of monoclonal gammopathy of undetermined significance among men in Ghana. Mayo Clin. Proc. 2007;82(12):1468–73.CrossRefGoogle ScholarPubMed
Smith, A., Howell, D., Patmore, R., Jack, A., Roman, E.Incidence of haematological malignancy by sub-type: a report from the Haematological Malignancy Research Network. Br. J. Cancer 2011;105(11):1684–92.CrossRefGoogle ScholarPubMed
Kristinsson, S. Y., Björkholm, M., Andersson, T. M.-L., et al. Patterns of survival and causes of death following a diagnosis of monoclonal gammopathy of undetermined significance: a population-based study. Haematologica 2009;94(12):1714–20.CrossRefGoogle ScholarPubMed
Turesson, I., Velez, R., Kristinsson, S. Y., Landgren, O.Patterns of multiple myeloma during the past 5 decades: stable incidence rates for all age groups in the population but rapidly changing age distribution in the clinic. Mayo Clin. Proc. 2010;85(3):225–30.CrossRefGoogle ScholarPubMed
Phekoo, K. J., Schey, S. A., Richards, M. A., et al. A population study to define the incidence and survival of multiple myeloma in a National Health Service Region in UK. Br. J. Haematol. 2004;127(3):299–304.CrossRefGoogle Scholar
Smith, A., Roman, E., Howell, D., et al. The Haematological Malignancy Research Network (HMRN): a new information strategy for population based epidemiology and health service research. Br. J. Haematol. 2010;148(5):739–53.CrossRefGoogle ScholarPubMed
Levi, F., Lucchini, F., Negri, E., Boyle, P., La Vecchia, C.Cancer mortality in Europe, 1995–1999, and an overview of trends since 1960. Int. J. Cancer 2004;110(2):155–69.CrossRefGoogle ScholarPubMed
Kyle, R. A., Therneau, T. M., Rajkumar, S. V., et al. Incidence of multiple myeloma in Olmsted County, Minnesota: trend over 6 decades. Cancer 2004;101(11):2667–74.CrossRefGoogle ScholarPubMed
Kaya, H., Peressini, B., Jawed, I., et al. Impact of age, race and decade of treatment on overall survival in a critical population analysis of 40,000 multiple myeloma patients. Int. J. Hematol. 2012;95(1):64–70.CrossRefGoogle Scholar
Pulte, D., Gondos, A., Brenner, H.Improvement in survival of older adults with multiple myeloma: results of an updated period analysis of SEER data. The Oncologist 2011;16(11):1600–3.CrossRefGoogle ScholarPubMed
Kumar, S. K., Rajkumar, S. V., Dispenzieri, A., et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood 2008;111(5):2516–20.CrossRefGoogle ScholarPubMed
Raab, M. S., Podar, K., Breitkreutz, I., Richardson, P. G., Anderson, K. C.Multiple myeloma. Lancet 2009;374(9686):324–39.CrossRefGoogle ScholarPubMed
Renshaw, C., Ketley, N., Møller, H., Davies, E. A.Trends in the incidence and survival of multiple myeloma in South East England 1985–2004. BMC Cancer 2010;10:74.CrossRefGoogle Scholar
Roman, E., Smith, A. G.Epidemiology of lymphomas. Histopathology 2011;58(1):4–14.CrossRefGoogle ScholarPubMed
Greenberg, A. J., Vachon, C. M., Rajkumar, S. V. Disparities in the prevalence, pathogenesis and progression of monoclonal gammopathy of undetermined significance and multiple myeloma between blacks and whites. Leukemia [Internet]. 2011 Dec 23 [cited 2012 Feb 9]; Available from:
Waxman, A. J., Mink, P. J., Devesa, S. S., et al. Racial disparities in incidence and outcome in multiple myeloma: a population-based study. Blood 2010;116(25):5501–6.CrossRefGoogle ScholarPubMed
Jemal, A., Siegel, R., Xu, J., Ward, E.Cancer statistics, 2010. CA Cancer J. Clin. 2010;60(5):277–300.CrossRefGoogle ScholarPubMed
Howlader, N., Noone, A. M., Krapcho, M., et al. SEER Cancer Statistics Review 1975–2008 [Internet]. [cited 2012 Feb 19]; Available from:
Landgren, O, Weiss, B. M.Patterns of monoclonal gammopathy of undetermined significance and multiple myeloma in various ethnic/racial groups: support for genetic factors in pathogenesis. Leukemia 2009;23(10):1691–7.CrossRefGoogle ScholarPubMed
Landgren, O., Kristinsson, S. Y., Goldin, L. R., et al. Risk of plasma cell and lymphoproliferative disorders among 14621 first-degree relatives of 4458 patients with monoclonal gammopathy of undetermined significance in Sweden. Blood 2009;114(4):791–5.CrossRefGoogle ScholarPubMed
Kristinsson, S. Y., Björkholm, M., Goldin, L. R., et al. Patterns of hematologic malignancies and solid tumors among 37,838 first-degree relatives of 13,896 patients with multiple myeloma in Sweden. Int. J. Cancer 2009;125(9):2147–50.CrossRefGoogle ScholarPubMed
Vachon, C. M., Kyle, R. A., Therneau, T. M., et al. Increased risk of monoclonal gammopathy in first-degree relatives of patients with multiple myeloma or monoclonal gammopathy of undetermined significance. Blood 2009;114(4):785–90.CrossRefGoogle ScholarPubMed
Greenberg, A. J., Rajkumar, S. V., Vachon, C. M.Familial monoclonal gammopathy of undertermined significance and multiple myeloma: epidemiology, risk factors and biological characteristics. Blood 2012;119(23):5359–66.CrossRefGoogle Scholar
Broderick, P., Chubb, D., Johnson, D. C., et al. Common variation at 3p22.1 and 7p15.3 influences multiple myeloma risk. Nat. Genet. 2012;44(1):58–61.CrossRefGoogle Scholar
Boyd, K. D., Ross, F. M., Chiecchio, L., et al. Gender disparities in the tumor genetics and clinical outcome of multiple myeloma. Cancer Epidemiol. Biomarkers Prevention 2011;20(8):1703–7.CrossRefGoogle ScholarPubMed
Purdue, M. P., Lan, Q., Menashe, I., et al. Variation in innate immunity genes and risk of multiple myeloma. Hematol. Oncol. 2011;29(1):42–6.CrossRefGoogle ScholarPubMed
Vangsted, A., Klausen, T. W., Vogel, U.Genetic variations in multiple myeloma I: effect on risk of multiple myeloma. Eur. J. Haematol. 2012;88(1):8–30.CrossRefGoogle ScholarPubMed
Hervé, A.-L., Florence, M., Philippe, M., et al. Molecular heterogeneity of multiple myeloma: pathogenesis, prognosis, and therapeutic implications. J. Clin. Oncol. 2011;29(14):1893–7.CrossRefGoogle ScholarPubMed
Martino, A., Campa, D., Buda, G., et al. Polymorphisms in xenobiotic transporters ABCB1, ABCG2, ABCC2, ABCC1, ABCC3 and multiple myeloma risk: a case-control study in the context of the International Multiple Myeloma rESEarch (IMMEnSE) consortium. Leukemia [Internet]. 2011 Dec 20 [cited 2012 Feb 9]; Available from:
Brown, L. M., Gridley, G., Check, D., Landgren, O.Risk of multiple myeloma and monoclonal gammopathy of undetermined significance among white and black male United States veterans with prior autoimmune, infectious, inflammatory, and allergic disorders. Blood 2008;111(7):3388–94.CrossRefGoogle ScholarPubMed
Goldin, L. R., Landgren, O.Autoimmunity and lymphomagenesis. Int. J. Cancer 2009;124(7):1497–502.CrossRefGoogle ScholarPubMed
Shiels, M. S., Cole, S. R., Kirk, G. D., Poole, C.A meta-analysis of the incidence of non-AIDS cancers in HIV-infected individuals. J. Acquir. Immune. Defic. Syndr. 2009;52(5):611–22.CrossRefGoogle ScholarPubMed
Lichtman, M. A.Obesity and the risk for a hematological malignancy: leukemia, lymphoma, or myeloma. The Oncologist 2010;15(10):1083–101.CrossRefGoogle ScholarPubMed
Wallin, A., Larsson, S. C.Body mass index and risk of multiple myeloma: a meta-analysis of prospective studies. Eur. J. Cancer 2011;47(11):1606–15.CrossRefGoogle ScholarPubMed
Landgren, O., Rajkumar, S. V., Pfeiffer, R. M., et al. Obesity is associated with an increased risk of monoclonal gammopathy of undetermined significance among black and white women. Blood 2010;116(7):1056–9.CrossRefGoogle ScholarPubMed
Kanda, J., Matsuo, K., Inoue, M., et al. Association of anthropometric characteristics with the risk of malignant lymphoma and plasma cell myeloma in a Japanese population: a population-based cohort study. Cancer Epidemiol. Biomarkers Prev. 2010;19(6):1623–31.CrossRefGoogle Scholar
Harvey, A. E., Lashinger, L. M., Hursting, S. D.The growing challenge of obesity and cancer: an inflammatory issue. Ann. N. Y. Acad. Sci. 2011;1229:45–52.CrossRefGoogle Scholar
Cardis, E., Vrijheid, M., Blettner, M., et al. The 15-country collaborative study of cancer risk among radiation workers in the nuclear industry: estimates of radiation-related cancer risks. Radiat. Res. 2007;167(4):396–416.CrossRefGoogle ScholarPubMed
United Nations. Scientific Committee on the Effects of Atomic Radiation. Effects of ionizing radiation. Volume 1, UNSCEAR 2006 report to the General Assembly, with scientific annexes. New York: United Nations; 2008.
Merhi, M., Raynal, H., Cahuzac, E., et al. Occupational exposure to pesticides and risk of hematopoietic cancers: meta-analysis of case-control studies. Cancer Causes Control 2007;18(10):1209–26.CrossRefGoogle ScholarPubMed
Galbraith, D., Gross, S. A., Paustenbach, D.Benzene and human health: a historical review and appraisal of associations with various diseases. Crit. Rev. Toxicol. 2010;40 Suppl. 2:1–46.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×