Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T12:56:23.983Z Has data issue: false hasContentIssue false

The evolution of ecological tolerance in prokaryotes

Published online by Cambridge University Press:  03 November 2011

Andrew H. Knoll
Affiliation:
Botanical Museum, Harvard University, Cambridge, Massachusetts 02138, U.S.A.
John Bauld
Affiliation:
Division of Continental Geology, Bureau of Mineral Resources, Canberra ACT 2601, Australia.

Abstract

The ecological ranges of Archaeobacteria and Eubacteria are constrained by a requirement for liquid water and the physico-chemical stability limits of biomolecules, but within this broad envelope, prokaryotes have evolved adaptations that permit them to tolerate a remarkable spectrum of habitats. Laboratory experiments indicate that prokaryotes can adapt rapidly to novel environmental conditions, yet geological studies suggest early diversification and long-term stasis within the prokaryotic kingdoms. These apparently contradictory perspectives can be reconciled by understanding that, in general, rates and patterns of prokaryotic evolution reflect the developmental history of the Earth's surface environments. Our understanding of modern microbial ecology provides a lens through which our accumulating knowledge of physiology, molecular phylogeny and the Earth's history can be integrated and focussed on the phenomenon of prokaryotic evolution.

Type
Physiological adaptations in some recent and fossil organisms
Copyright
Copyright © Royal Society of Edinburgh 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abeliovich, A., Kellenberg, D. & Shilo, M. 1974. Effect of photooxidative conditions on levels of superoxide dismutase in Anacystis nidulans. PHOTOCHEM PHOTOBIOL 19, 379382.CrossRefGoogle ScholarPubMed
Abeliovich, A. & Shilo, M. 1972. Photooxidative death in blue-green algae. J BACTERIOL 111, 682689.CrossRefGoogle ScholarPubMed
Achenbach-Richter, L., Gupta, R., Stetter, K. O. & Woese, C. R. 1987. Were the original Eubacteria thermophiles? SYSTEM APPL MICROBIOL 9, 3439.CrossRefGoogle ScholarPubMed
Arp, A. J. & Childress, J. J. 1983. Sulfide binding by the blood of the hydrothermal vent tube worm Riftia pachyptlia. SCIENCE 219, 295297.CrossRefGoogle Scholar
Asato, Y. 1970. Isolation and characterization of ultraviolet light-sensitive mutants of the blue-green algae Anacystis nidulans. J BACTERIOL 110, 10581064.CrossRefGoogle Scholar
Atlas, R. M. & Bartha, R. 1987. Microbial Ecology: Fundamentals and Applications. Menlo Park: Benjamin/Cummings Publishing Company.Google Scholar
Awramik, S. M. 1971. Precambrian columnar stromatolite diversity: reflection of metazoan appearance. SCIENCE 174, 825827.CrossRefGoogle ScholarPubMed
Barghoorn, E. S. & Tyler, S. M. 1965. Microorganisms from the Gunflint chert. SCIENCE 147, 563577.CrossRefGoogle ScholarPubMed
Bauld, J. 1981a. Geobiological role of cyanobacterial mats in sedimentary environments: production and preservation of organic matter. BMR J AUSTRAL GEOL GEOPHYS 6, 307317.Google Scholar
Bauld, J. 1981b. Occurrence of benthic microbial mats in saline lakes. HYDROBIOLOGIA 81, 87111.CrossRefGoogle Scholar
Bauld, J. 1984. Microbial mats in marginal marine environments: Shark Bay, Western Australia, and Spencer Gulf, South Australia. In Cohen, Y., Castenholz, R. W. & Halvorson, H. O. (eds.) Microbial Mats: Stromatolites, 3958. New York: Alan R. Liss.Google Scholar
Bauld, J. 1986. Transformation of sulfur species by phototrophic and chemotrophic microbes. In Bernhard, M., Brinckman, F. E. & Sadler, P. J. (eds) The Importance of Chemical “Speciation” in Environmental Processes, Dahlem Konferenzen LS 33, 255273. Berlin: Springer–Verlag.CrossRefGoogle Scholar
Bauld, J. & Brock, T. D. 1973. Ecological studies of Chloroftexus, a gliding photosynthetic bacterium. ARCH MIKROBIOL 92, 267284.CrossRefGoogle Scholar
Baxter, R. M. & Carey, J. H. 1982. Reactions of singlet oxygen in humic waters. FRESHW BIOL 12, 285292.CrossRefGoogle Scholar
Baxter, R. M. & Carey, J. H. 1983. Evidence for photochemical generation of superoxide ion in humic waters. NATURE 306, 575576.CrossRefGoogle Scholar
Benyon, J. L., Beringer, J. E. & Johnston, A. W. B. 1980. Plasmids and host range in Rhizobium leguminosum and Rhizobium phaseoli. J GEN MICROBIOL 120, 421429.Google Scholar
Beringer, J. E. & Hirsch, P. R. 1984. Genetic adaptation to the environment. In Klug, M. L. & Reddy, C. A. (eds) Current Perspectives in Microbial Ecology, 6370. Washington: American Society for Microbiology.Google Scholar
Bernhardt, G., Lödeman, H.-D. & Jaenicke, R. 1984. Biomolecules are unstable under “black smoker” conditions. NATURWISSENSCHAFTEN 71, 583585.CrossRefGoogle Scholar
Berry, W. B. N. & Wilde, P. 1983. Evolutionary and geologic consequences of organic carbon fixation in the primitive anoxic ocean. GEOLOGY 11, 141145.2.0.CO;2>CrossRefGoogle Scholar
Booth, I. R. 1985. Regulation of cytoplasmic pH in bacteria. MICROBIOL REV 49, 359378.CrossRefGoogle ScholarPubMed
Borowitzka, L. J. 1981. The microflora: adaptations to life in extremely saline lakes. HYDROBIOLOGIA 81, 3346.CrossRefGoogle Scholar
Bradley, W. H. 1963. Unmineralized fossil bacteria. SCIENCE 141, 919921.CrossRefGoogle ScholarPubMed
Brock, T. D. 1973. Lower pH limit for the existence of blue-green algae: evolutionary and ecological implications. SCIENCE 179, 480483.CrossRefGoogle ScholarPubMed
Brock, T. D. 1975a. Salinity and the ecology of Dunaliella from Great Salt Lake. J GEN MICROBIOL 89, 285292.CrossRefGoogle Scholar
Brock, T. D. 1975b. Effect of water potential on a Microcoleus (Cyanophyceae) from a desert crust. J PHYCOL 11, 316320.CrossRefGoogle Scholar
Brock, T. D. 1976. Halophilic blue-green algae. ARCH MICROBIOL 107, 109111.CrossRefGoogle ScholarPubMed
Brock, T. D. 1978. Thermophilic Microorganisms and Life at High Temperatures. New York: Springer–Verlag.CrossRefGoogle Scholar
Brock, T. D. 1986. Introduction: an overview of the thermophiles. In Brock, T. D. (ed.) Thermophiles: General, Molecular, and Applied Microbiology, 116. New York: Wiley–Interscience.Google Scholar
Brock, T. D., Brock, K. M., Belly, R. T. & Weiss, R. L. 1972. Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. ARCH MICROBIOL 84, 5468.Google Scholar
Broda, E. 1975. The Evolution of Bioenergetic Processes. Oxford: Pergamon.Google Scholar
Brooks, B. W. & Murrary, R. G. E. 1981. Nomenclature for “Micrococcus radiodurans” and other radiation-resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., Including five species. INT J SYSTEM BACTERIOL 31, 353360.CrossRefGoogle Scholar
Brown, A. D. 1976. Microbial water stress. BACTERIOL REV 40, 803846.CrossRefGoogle ScholarPubMed
Buckley, C. E. & Houghton, J. A. 1976. A study of the effects of near UV radiation of the pigmentation of the blue–green alga Gloeocapsa alpicola. ARCH MICROBIOL 107, 9397.CrossRefGoogle ScholarPubMed
Cairns, J., Overbaugh, J. & Miller, S. 1988. The origin of mutants. NATURE 335, 142145.CrossRefGoogle ScholarPubMed
Calkins, J. & Thordardottir, T. 1980. The ecological significance of solar UV radiation on aquatic organisms. NATURE 283, 563566.CrossRefGoogle Scholar
Campbell, A. 1981. Evolutionary significance of accessory DNA elements in bacteria. ANN REV MICROBIOL 35, 5583.CrossRefGoogle ScholarPubMed
Campbell, S. 1979. Soil stabilization by a prokaryotic desert crust: implications for Precambrian land biota. ORIGINS LIFE 89, 335348.CrossRefGoogle Scholar
Castenholz, R. W. 1979. Evolution and ecology of thermophilic microorganisms. In Shilo, M. (ed.) Strategies of Microbial Life in Extreme Environments, Dahlem Konferenzen LS 13, 373392. Weinheim: Verlag Chemie.Google Scholar
Castenholz, R. W. 1984. Composition of hot spring microbial mats: a summary. In Cohen, Y., Castenholz, R. W. & Halvorson, H. O. (eds.) Microbial Mats: Stromatolites, 101119. New York: Alan R. Liss.Google Scholar
Chang, J. C. H., Ossof, S. F., Lobe, D. C., Dorfman, M. H., Dumais, C. M., Quails, R. G. & Johnson, J. D. 1985. UV inactivation of pathogenic and indicator microorganisms. APPL ENVIRONM MICROBIOL 49, 13611365.CrossRefGoogle ScholarPubMed
Chopin, M.-C., Moillo–Batt, A. & Rouault, A. 1985. Plasmid-mediated UV protection in Streptococcus lactis. FEMS MICROBIOL LETT 26, 243245.CrossRefGoogle Scholar
Ciferri, O. 1983. Spirulina, the edible microorganism. MICROBIOL REV. 47, 551578.CrossRefGoogle ScholarPubMed
Clarke, P. H. 1983. Experimental evolution. In Bendall, D. S. (ed.) Evolution from Molecules to Men, 235252. Cambridge: Cambridge University Press.Google Scholar
Clarke, P. H. 1984. Evolution of new phenotypes. In Klug, M. L. & Reddy, C. A. (eds) Current Perspectives in Microbial Ecology, 7178. Washington: American Society for Microbiology.Google Scholar
Cloud, P. 1968. Atmospheric and hydrospheric evolution on the primitive earth. SCIENCE 160, 729736.CrossRefGoogle ScholarPubMed
Cloud, P. 1974. Evolution of ecosystems. AM SCI 62, 5466.Google Scholar
Cohen, S. N. 1976. Transposable genetic elements and plasmid evolution. NATURE 263, 731738.CrossRefGoogle ScholarPubMed
Cohen, Y., Jørgensen, B. B., Revsbech, N. P. & Poplawski, R. 1986. Adaptation to hydrogen sulfide of oxygenic and anoxygenic photosynthesis among cyanobacteria. APPL ENVIRONM MICROBIOL 51, 398407.CrossRefGoogle ScholarPubMed
Cooper, W. J. & Zika, R. G. 1983. Photochemical formation of hydrogen peroxide in surface and ground waters exposed to sunlight. SCIENCE 220, 711712.CrossRefGoogle ScholarPubMed
DeLong, E. F. & Yayanos, A. A. 1985. Adaptation of the membrane lipids of a deep-sea bacterium to changes in hydrostatic pressure. SCIENCE 228, 11011103.CrossRefGoogle ScholarPubMed
Dickerson, R. E. 1985. Structural conservatism in proteins over three billion years. In Srinivasan, R. (ed.) Biomolecular Structure, Conformation, Function and Evolution, Volume 1, 227249. Oxford: Pergamon.Google Scholar
Döhler, G., Biermann, I. & Zink, J. 1986. Impact of UV–B radiation on photosynthetic assimilation of C-bicarbonate and inorganic N-compounds by cyanobacteria. Z NATUR-FORSCH 41c, 426432.Google Scholar
Dow, C. S., Whittenbury, R. & Carr, N. G. 1983. The “shutdown” or “growth precursor” cell—an adaptation for survival in a potentially hostile environment. In Slater, J. H., Whittenbury, R. & Wimpenny, J. W. T. (eds) Microbes in their Natural Environments, 187247. Cambridge: Cambridge University Press.Google Scholar
Duchač, K. C. & Henor, J. S. 1987. Origin and timing of the metasomatic silicification of an early Archean komatiite sequence, Barberton Mountain Land, South Africa. PRECAMBRIAN RES 37, 125146.CrossRefGoogle Scholar
Eloff, J. N., Steinitz, Y. & Shilo, M. 1976. Photooxidation of cyanobacteria in natural conditions. APPL ENVIRONM MICROBIOL 31, 119216.CrossRefGoogle ScholarPubMed
Fox, G. E., Luehrsen, K. R. & Woese, C. R. 1982. Archaebacterial 5S ribosomal RNA. ZBL BAKT HYG, I. ABT ORIG C3, 330345.Google Scholar
Fredrickson, A. G. & Stephanopoulos, G. 1981. Microbial competition. SCIENCE 213, 972979.CrossRefGoogle ScholarPubMed
Fridovich, I. 1977. Oxygen is toxic! BIOSCIENCE 27, 462466.CrossRefGoogle Scholar
Friedman, E. I. 1980. Endolithic microbial life in hot and cold deserts. ORIGINS LIFE 10, 223235.CrossRefGoogle Scholar
Galinski, E. A. & Trüper, H. G. 1982. Betaine, a compatible solute in the extremely halophilic phototropic bacterium Ectothiorhodospira halochloris. FEMS MICROBIOL LETT 13, 357360.CrossRefGoogle Scholar
Gemerden, H. van & de, Wit R. 1986. Strategies of phototrophic bacteria in sulphide-containing environments. In Herbert, R. A. & Codd, G. A. (eds) Microbes in Extreme Environments, 111127. London: Academic.Google Scholar
Giovannoni, S. J., Turner, S., Olsen, G. J., Barnes, S., Lane, D. J. & Pace, N. R. 1988. Evolutionary relationships among cyanobacteria and green chloroplasts. J BACTERIOL 170, 35843592.CrossRefGoogle ScholarPubMed
Golubic, S. 1985. Microbial mats and modern stromatolites in Shark Bay, Western Australia. In Caldwell, D. E., Brierley, J. A. & Brierley, C. L. (eds) Planetary Ecology, 316. New York: Van Nostrand Reinhold.Google Scholar
Golubic, S. & Hofmann, H. J. 1976. Comparison of Holocene and mid-Precambrian Entophysalidaceae (Cyanophyta) in stromatolitic algal mats: cell division and degradation. J PALEONTOL 50, 10741082.Google Scholar
Goodwin, S. & Zeikus, J. G. 1987. Physiological adaptations of anaerobic bacteria to low pH: metabolic control of proton motive force in Sarcina ventriculi. J BACTERIOL 169, 21502157.CrossRefGoogle Scholar
Gottlieb, S. F. 1971. Effect of hyperbaric oxygen on microorganisms. ANN REV MICROBIOL 25, 111152.CrossRefGoogle ScholarPubMed
Grant, W. D. & Tindall, B. J. 1986. The alkaline saline environment. In Herbert, R. A. & Codd, G. A. (eds) Microbes in Extreme Environments, 2554. London: Academic Press.Google Scholar
Green, A. E. S., Sawada, T. & Shettle, E. P. 1974. The middle ultraviolet reaching the ground. PHOTOCHEM PHOTOBIOL 19, 251259.CrossRefGoogle Scholar
Green, J. W., Knoll, A. H., Golubic, S. & Swett, K. 1987. Paleobiology of distinctive benthic microfossils from the Upper Proterozoic Limestone–Dolomite “Series”, East Greenland. AM J BOT 74, 928940.CrossRefGoogle ScholarPubMed
Green, J. W., Knoll, A. H. & Swett, K. 1988. Microfossils in oolites and pisolites from the Upper Proterozoic Eleonore Bay Group, central East Greenland. J PALEONTOL 62, 835852.CrossRefGoogle ScholarPubMed
Guerrero, R., Pedrós-Alio, C., Esteve, I., Mas, J., Chase, D. & Margulis, L. 1986. Predatory prokaryotes: predation and primary consumption evolved in bacteria. PROC NATL ACAD SCI, USA 83, 21382142.CrossRefGoogle ScholarPubMed
Häder, D.-P. 1984. Effects of UV–B on motility and photoorientation in the cyanobacterium, Phormidium uncinatum. ARCH MICROBIOL 140, 3439.CrossRefGoogle Scholar
Häder, D.-P., Watanabe, M. & Furuya, M. 1986. Inhibition of motility in the cyanobacterium, Phormidium uncinatum, by solar and monochromatic UV irradiation. PLANT CELL PHYSIOL 27, 887894.CrossRefGoogle Scholar
Hall, B. G. 1984. Adaptation by acquisition of novel enzyme activities in the laboratory. In Klug, M. L. & Reddy, C. A. (eds) Current Perspectives in Microbial Ecology, 7986. Washington: American Society for Microbiology.Google Scholar
Hayes, J. M. 1983. Geochemical evidence bearing on the origin of aerobiosis, a speculative hypothesis. In Schopf, J. W. (ed.) Earth's Earliest Biosphere: Its Origin and Evolution, 292301. Princeton: Princeton University Press.Google Scholar
Henis, Y. 1987. Survival and dormancy in bacteria. In Henis, Y. (ed.) Survival and Dormancy of Microorganisms, 1108. New York: Wiley–Interscience.Google Scholar
Herbert, R. A. 1986. The ecology and physiology of psychrophilic microorganisms. In Herbert, R. A. & Codd, G. A. (eds) Microbes in Extreme Environments, 123. London: Academic Press.Google Scholar
Herdmann, M., Janvier, M., Rippka, R. & Stanier, R. Y. 1979. Genome size of cyanobacteria. J GEN MICROBIOL 111, 7385.CrossRefGoogle Scholar
Hofmann, H. J. 1976. Precambrian microflora, Belcher Islands, Canada: significance and systematics. J PALEONTOL 50, 10401073.Google Scholar
Holland, H. D. 1984. The Chemical Evolution of the Atmosphere and Oceans. Princeton: Princeton University Press.CrossRefGoogle Scholar
Horodyski, R. J. & Donaldson, J. A. 1980. Microfossils from the Middle Proterozoic Dismal Lakes Group, Arctic Canada. PRECAMBRIAN RES 11, 125159.CrossRefGoogle Scholar
Huber, R., Langworthy, T. A., König, H., Thomm, M., Woese, C. R., Sleytr, U. B. & Stetter, K. O. 1986. Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. ARCH MICROBIOL 144, 324333.CrossRefGoogle Scholar
Imhoff, J. R. & Rodriguez–Valera, F. 1984. Betaine is the main compatible solute of halophilic eubacteria. J BACTERIOL 160, 478479.CrossRefGoogle ScholarPubMed
Jackson, M. J., Powell, T. G., Summons, R. E. & Sweet, I. P. 1986. Hydrocarbon shows and petroleum source rocks in sediments as old as 1·7 x 109 years. NATURE 322, 727729.CrossRefGoogle Scholar
Jacob, F. 1983. Molecular tinkering in evolution. In Bendall, D. S. (ed.) Evolution from Molecules to Men, 131144. Cambridge: Cambridge University Press.Google Scholar
Jannasch, H. W. 1987. Effects of hydrostatic pressure on growth of marine bacteria. In Jannasch, H. W., Zimmerman, A. M. & Marquis, R. E. (eds) Current Perspectives in High Pressure Biology, 115. London: Academic Press.Google Scholar
Jannasch, H. W., Wirsen, C. O., Molyneaux, S. J. & Langworthy, T. A. 1988. Extremely thermophilic fermentative Archaebacteria of the genus Desulfurococcus from deep-sea hydrothermal vents. APPL ENVIRON MICROBIOL 54, 12031209.CrossRefGoogle ScholarPubMed
Jeenes, D. J. & Williams, R. A. 1982. Excision and integration of degradation pathway genes from TOL plasmid pWWO. J BACTERIOL 150, 188204.CrossRefGoogle Scholar
Jokiel, P. L. & York, R. H. 1984. Importance of ultraviolet radiation in photoinhibition of microalgal growth. LIMNOL OCEANOGR 29, 192199.CrossRefGoogle Scholar
Jordan, D. B. & Ogren, W. L. 1983. Species variation in kinetic properties of ribuolose 1,5-bisphosphate carboxylase/oxygenase. ARCH BIOCHEM BIOPHYS 227, 425433.CrossRefGoogle Scholar
Jørgensen, B. B. 1982. Ecology of the bacteria of the sulfur cycle with special reference to oxic-anoxic interface environments. PHILOS TRANS R SOC LONDON B298, 531561.Google Scholar
Kallas, T. & Castenholz, R. W. 1982. Internal pH and ATP–ADP pools in the cyanobacterium Synechococcus sp. during exposure to growth-inhibiting pH. J BACTERIOL 149, 229236.CrossRefGoogle ScholarPubMed
Kasting, J. F. 1987. Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere. PRECAMBRIAN RES 34, 205229.CrossRefGoogle ScholarPubMed
Kjelleberg, S., Hermannson, M., Mårdén, P. & Jones, G. W. 1987. The transient phase between growth and nongrowth of heterotrophic bacteria, with emphasis on the marine environment. ANN REV MICROBIOL 41, 2549.CrossRefGoogle ScholarPubMed
Klamen, D. L. & Tuveson, R. W. 1982. The effect of membrane fatty acid composition on the near-UV (300–400 nm) sensitivity of Escherichia coli K1060. PHOTOCHEM PHOTOBIOL 35, 167173.CrossRefGoogle ScholarPubMed
Klug, M. J. & Reddy, C. A. (eds) 1984. Current Perspectives in Microbial Ecology. Washington: American Society for Microbiology.Google Scholar
Knoll, A. H. 1979. Archean photoautotrophy: some alternatives and limits. ORIGINS LIFE 9, 313327.CrossRefGoogle ScholarPubMed
Knoll, A. H. 1985a. Patterns of evolution in the Archean and Proterozoic eons. PALEOBIOLOGY 11, 5364.CrossRefGoogle Scholar
Knoll, A. H. 1985b. The distribution and evolution of microbial life in the late Proterozoic era. ANN REV MICROBIOL 39, 391417.CrossRefGoogle ScholarPubMed
Knoll, A. H. & Barghoorn, E. S. 1977. Archean microfossils showing cell division from the Swaziland System of South Africa. SCIENCE 198, 396398.CrossRefGoogle ScholarPubMed
Knoll, A. H. & Golubic, S. 1979. Anatomy and taphonomy of a Precambrian algal stromatolite. PRECAMBRIAN RES 10, 115151.CrossRefGoogle Scholar
Knudson, G. B. 1986. Photoreactivation of ultraviolet-irradiated, plasmid-bearing, and plasmid-free strains of Bacillus anthracis. APPL ENVIRONM MICROBIOL 52, 444449.CrossRefGoogle ScholarPubMed
Koch, A. L. 1981. Evolution of antibiotic resistance gene function. MICROBIOL REV 45, 355378.CrossRefGoogle ScholarPubMed
Kogut, M. 1980. Are there strategies of microbial adaptation to extreme environments? TRENDS BIOCHEM SCI 5, 1518.CrossRefGoogle Scholar
Krinsky, N. I. 1977. Singlet oxygen in biological systems. TRENDS BIOCHEM SCI 2, 3538.CrossRefGoogle Scholar
Krinsky, N. I. 1978. Non-photosynthetic functions of carotenoids. PHILOS TRANS R SOC LONDON B284, 581590.Google Scholar
Kruger, G. H. J. & Eloff, J. N. 1983. Prevention by carbon dioxide of photoinhibition in Microcystis aeruginosa. Z PFLANZEN-PHYSIOL 112, 237245.CrossRefGoogle Scholar
Krulwich, T. A. & Guffanti, A. A. 1983. Physiology of acidophilic and alkalophilic bacteria. ADV MICROBIAL PHYSIOL 24, 173213.CrossRefGoogle ScholarPubMed
Kuenen, J. G. et al. 1979. Oxygen toxicity, group report. In Shilo, M. (ed.) Strategies of Microbial Life in Extreme Environments, Dahlem Konferenzen 13, 223241. Weinheim: Verlag Chemie.Google Scholar
Lake, J. A. 1988. Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences. NATURE 331, 184186.CrossRefGoogle ScholarPubMed
Lake, J. A., Clark, M. W., Henderson, E., Fay, S. P., Oakes, M., Scheinman, A., Thornber, J. P. & Mah, R. A. 1985. Eubacteria, halobacteria, and the origin of photosynthesis: the photocytes. PROC NATL ACAD SCI USA, 82, 37163720.CrossRefGoogle ScholarPubMed
Lambert, J. A. M., Williams, E., O'Brien, P. A. & Houghton, J. A. 1980. Mutation induction in the cyanobacterium Gloeocapsa alpicola. J GEN MICROBIOL 121, 213219.Google Scholar
Langridge, J. 1969. Mutations conferring qualitative and quantitative increases in β-galactosidase activity in Escherichia coli. MOL GENET 105, 7483.CrossRefGoogle ScholarPubMed
Langworthy, T. A. 1978. Microbial life in extreme pH values. In Kushner, D. J. (ed.) Microbial Life in Extreme Environments, 279315. London: Academic Press.Google Scholar
Lanyi, J. K. 1980. Physical chemistry and evolution of salt tolerance in halobacteria. ORIGINS LIFE 10, 161167.CrossRefGoogle Scholar
Levin, B. R. 1984. The evolution of sex in bacteria. In Michod, R. E. & Levin, B. R. (eds) The Evolution of Sex, 194211. Sunderland, Massachusetts: Sinauer.Google Scholar
Lorenzen, C. J. 1979. Ultraviolet radiation and phytoplankton photosynthesis. LIMNOL OCEANOGR 24, 11171120.CrossRefGoogle Scholar
Luckinbill, L. S. 1978. r and K selection in experimental populations of Escherichia coli. SCIENCE 202, 12011203.CrossRefGoogle Scholar
Macdonald, A. G. 1984. The effect of pressure on the molecular structure and physiological functions of cell membranes. PHILOS TRANS R SOC LONDON B304, 4768.Google Scholar
Macdonald, A. G. 1989. Physiological adaptations to extreme pressures. TRANS R SOC EDINBURGH EARTH SCI 80, 263270.Google Scholar
Mackay, M. A., Norton, R. S. & Borowitzka, L. J. 1984. Organic osmoregulatory solutes in cyanobacteria. J GEN MICROBIOL 130, 21772191.Google Scholar
Matthews, M. M. & Krinsky, N. I. 1965. The relationship between carotenoid pigments and resistance to radiation in nonphotosynthetic bacteria. PHOTOCHEM PHOTOBIOL 4, 813817.CrossRefGoogle Scholar
Mazur, P. 1980. Limits to life at low temperatures and at reduced water contents and water activities. ORIGINS LIFE 10, 137159.CrossRefGoogle ScholarPubMed
McMeekin, T. A. & Franzmann, P. D. 1988. Effect of temperature on the growth rates of halotolerant and halophilic bacteria isolated from Antarctic saline lakes. POLAR BIOL 8, 281285.CrossRefGoogle Scholar
Michener, H. D. & Elliott, R. P. 1964. Minimum growth temperatures for food-poisoning, fecal-indicator, and psychrophilic microorganisms. ADV FOOD RES 13, 349396.CrossRefGoogle ScholarPubMed
Mills, A. L. & Mallory, L. M. 1987. The community structure of sessile heterotrophic bacteria stressed by acid mine drainage. MICROB ECOL 14, 219232.CrossRefGoogle ScholarPubMed
Morita, R. Y. 1986. Pressure as an extreme environment. In Herbert, R. A. & Codd, G. A. (eds) Microbes in Extreme Environments, 171185. London: Academic Press.Google Scholar
Morris, J. G. 1976. Oxygen and the obligate anaerobe. J APPL BACTERIOL 40, 229244.CrossRefGoogle ScholarPubMed
Morris, J. G. 1979. The nature of oxygen toxicity in anaerobic microorganisms. In Shilo, M. (ed.) Strategies of Microbial Life in Extreme Environments, Dahlem Konferenzen, 149162. Weinheim: Verlag Chemie.Google Scholar
Mortlock, R. P. 1984 (ed.) Microorganisms as Model Systems for Studying Evolution. New York: Plenum.Google Scholar
Moseley, B. E. B. 1983. Photobiology and radiobiology of Micrococcus (Deinococcus) radiodurans. PHOTOCHEM PHOTOBIOL REV 7, 223274.Google Scholar
Nasim, A. & James, A. P. 1978. Life under conditions of high irradiation. In Kushner, D. J. (ed.) Microbial Life in Extreme Environments, 409439. London: Academic Press.Google Scholar
Newton, J. W., Tyler, D. D. & Slodki, M. E. 1979. Effect of ultraviolet-B (280 to 320 nm) radiation on blue-green algae (cyanobacteria), possible biological indicators of stratospheric ozone depletion. APPL ENVIRONM MICROBIOL 37, 11371141.CrossRefGoogle ScholarPubMed
Nisbet, E. G. 1987. The Young Earth. London: Allen & Unwin.CrossRefGoogle Scholar
Oehler, D. Z. 1978. Microflora of the middle Proterozoic Balbirini Dolomite (McArthur Group) of Australia. ALCHERINGA 2, 269309.CrossRefGoogle Scholar
Olson, J. M. 1978. The Precambrian evolution of photosynthetic and respiratory organisms. EVOL BIOL 10, 137.Google Scholar
Olson, J. M. & Pierson, B. K. 1986. Photosynthesis 3·5 thousand million years ago. PHOTOSYNTHESIS RES 9, 251259.CrossRefGoogle ScholarPubMed
Padan, E. 1979a. Impact of facultatively anaerobic phototrophic metabolism on ecology of cyanobacteria. ADV MICROB ECOL 3, 148.CrossRefGoogle Scholar
Padan, E. 1979b. Facultative anoxygenic photosynthesis in cyanobacteria. ANN REV PLANT PHYSIOL 30, 2740.CrossRefGoogle Scholar
Paerl, H. W. 1984. Cyanobacterial carotenoids: their roles in maintaining optimal photosynthetic production among aquatic bloom forming genera. OECOLOGIA 61, 143149.CrossRefGoogle ScholarPubMed
Paerl, H. W. & Bebout, B. M. 1988. Direct measurement of O2-depleted microzones in marine Oscillatoria: relation to N2 fixation. SCIENCE 241, 442445.CrossRefGoogle ScholarPubMed
Parker, B. C., Simmons, G. M. Jr., Love, F. G., Wharton, R. A. Jr., & Seaburg, K. G. 1981. Modern stromatolites in Antarctic dry valley lakes. BIOSCIENCE 31, 656661.CrossRefGoogle Scholar
Peake, M. J. & Peak, J. G. 1982. Lethal effects on biological systems caused by solar ultraviolet light: molecular considerations. In Calkins, J. (ed.) The Role of Solar Ultraviolet Radiation in Marine Ecosystems, 325336. New York: Plenum.CrossRefGoogle Scholar
Pfennig, N. 1969. Rhodopseudomonas acidophila, sp. n., a new species of the budding purple nonsulfur bacteria. J BACTERIOL 99, 597602.CrossRefGoogle Scholar
Pfennig, N. 1974. Rhodopseudomonas globiformis, sp. n., a new species of the Rhodospirillaceae. ARCH MICROBIOL 100, 197206.CrossRefGoogle Scholar
Pfennig, N. 1977. Phototrophic green and purple bacteria: a comparative systemic survey. ANN REV MICROBIOL 31, 275290.CrossRefGoogle Scholar
Pfennig, N. 1979. Formation of oxygen and microbial processes establishing and maintaining anaerobic environments. In Shilo, M. (ed.) Strategies of Microbial Life in Extreme Environments, Dahlem Konferenzen, 137148. Weinheim: Verlag Chemie.Google Scholar
Pierson, B. K. & Olson, J. M. 1989. Evolution of photosynthesis in anoxygenic photosynthetic procaryotes. In Cohen, Y. & Rosenberg, E. (eds) Microbial Mats: Physiological Ecology of Benthic Microbial Communities, 402427. Washington: American Society for Microbiology.Google Scholar
Platt, T., Rao, D. V. S. & Irwin, B. 1983. Photosynthesis of picoplankton in the oligotrophic ocean. NATURE 301, 702704.CrossRefGoogle Scholar
Poindexter, J. S. 1982. Oligotrophy: fast and famine existence. ADV MICROBIAL ECOL 5, 6389.CrossRefGoogle Scholar
Potts, M. & Bowman, M. A. 1985. Sensitivity of Nostoc commune UNTEX 584 (Cyanobacteria) to water stress. ARCH MICROBIOL 141, 5156.CrossRefGoogle Scholar
Rambler, M. B. & Margulis, L. 1980. Bacterial resistance to ultraviolet irradiation under anaerobiosis: implications for pre-Phanerozoic evolution. SCIENCE 210, 638640.CrossRefGoogle ScholarPubMed
Rengipat, S.Lowe, S. E. & Zeikus, J. G. 1988. Effect of extreme salt concentrations on the physiology and biochemistry of Halobacteroides acetoethylicus. J BACTERIOL 170, 30653071.CrossRefGoogle Scholar
Robson, R. L. & Postgate, J. R. 1980. Oxygen and hydrogen in biological nitrogen fixation. ANN REV MICROBIOL 34, 183207.CrossRefGoogle ScholarPubMed
Schopf, J. M., Ehlers, E. G., Stiles, D. V. & Birle, J. D. 1965. Fossil iron bacteria preserved in pyrite. PROC AM PHILOS SOC 109, 288308.Google Scholar
Schopf, J. W. 1972. Evolutionary significance of the Bitter Springs (Late Precambrian) microflora. PROC 24TH INTERNAT GEOL CONGR, SECT 1, 6877.Google Scholar
Schopf, J. W. 1978. The evolution of the earliest cells. SCIENT AM 239 (3), 110134.CrossRefGoogle ScholarPubMed
Schopf, J. W. (ed.) 1983. Earth's Earliest Biosphere: Its Origin and Evolution. Princeton: Princeton University Press.Google Scholar
Schopf, J. W. & Packer, B. M. 1987. Early Archean (3·3-billion to 3·5-billion-year-old) microfossils from Warrawoona Group, Australia. SCIENCE 237, 7073.CrossRefGoogle ScholarPubMed
Simon, R. D. 1980. Interactions between light and gas vacuoles in Halobacterium salinarium strain 5: effect of ultraviolet light. APPL ENVIRONM MICROBIOL 40, 984987.CrossRefGoogle ScholarPubMed
Smith, R. C., Baker, K. S., Holm-Hansen, O. & Olson, R. 1980. Photoinhibition of photosynthesis in natural waters. PHOTOCHEM PHOTOBIOL 31, 585592.CrossRefGoogle Scholar
Smith, V. H. 1983. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. SCIENCE 221, 669671.CrossRefGoogle ScholarPubMed
Southgate, P. N. 1986. Depositional environment and mechanism of preservation of microfossils, upper Proterozoic Bitter Springs Formation, Australia. GEOLOGY 14, 683686.2.0.CO;2>CrossRefGoogle Scholar
Stahl, F. W. 1988. A unicorn in the garden. NATURE 335, 112113.CrossRefGoogle ScholarPubMed
Stal, L. J. & Krumbein, W. E. 1987. Temporal separation of nitrogen fixation and photosynthesis in the filamentous, non-heterocystous cyanobacterium Oscillatoria sp. ARCH MICROBIOL 149, 7680.CrossRefGoogle Scholar
Steinitz, Y.Mazor, Z. & Shilo, M. 1979. A mutant of the cyanobacterium Plectonema boryanum resistant to photooxidation. PLANT SCI LETT 16, 327335.CrossRefGoogle Scholar
Stetter, K. O. 1985. Thermophilic archaebacteria occurring in submarine hydrothermal areas. In Caldwell, D. E., Brierley, J. A. & Brierley, C. L. (eds) Planetary Ecology, 320332. New York: Van Nostrand Reinhold.Google Scholar
Stetter, K. O. 1986. Diversity of extremely thermophilic archaebacteria. In Brock, T. D. (ed.) Thermophiles: General, Molecular, and Applied Microbiology, 3974. New York: Wiley–Interscience.Google Scholar
Stetter, K. O. & Gaag, G. 1983. Reduction of molecular sulfur by methanogenic bacteria. NATURE 305, 309311.CrossRefGoogle Scholar
Stewart, W. D. P. 1980. Some aspects of structure and function in N2-fixing cyanobacteria. ANN REV MICROBIOL 34, 497536.CrossRefGoogle ScholarPubMed
Strother, P. K., Knoll, A. H. & Barghoorn, E. S. 1983. Micro-organisms from the late Precambrian Narssârssuk Formation, north-western Greenland. PALAEONTOLOGY 26, 26132.Google Scholar
Sundaram, T. K. 1986. Physiology and growth of thermophilic bacteria. In Brock, T. D. (ed.) Thermophiles: General, Molecular, and Applied Microbiology, 75106. New York: Wiley–Interscience.Google Scholar
Tindall, D. R., Yopp, J. H., Miller, D. M. & Schmid, W. E. 1978. Physico-chemical parameters governing the growth of Aphanothece halophytica (Chroococcales) in hypersaline media. PHYCOLOGIA 17, 179185.CrossRefGoogle Scholar
Trüper, H. G. & Galinski, E. A. 1989. Compatible solutes in halophilic phototrophic procaryotes. In Cohen, Y. & Rosenberg, E. (eds) Microbial Mats: Physiological Ecology of Benthic Microbial Communities, 342348. Washington: American Society for Microbiology.Google Scholar
Veldkamp, H., Gemerden, H. van, Harder, W. & Laanbroek, H. J. 1984. Competition among bacteria: an overview. In Klug, M. J. & Reddy, C. A. (eds) Current Perspectives in Microbial Ecology, 279290. Washington: American Society for Microbiology.Google Scholar
Walsh, M. M. & Lowe, D. R. 1985. Filamentous microfossils from the 3500 Myr-old Onverwacht Group, Barberton Mountain Land, South Africa. NATURE 314, 530532.CrossRefGoogle Scholar
Walter, M. R. 1983. Archean stromatolites: evidence of Earth's earliest benthos. In Schopf, J. W. (ed.) Earth's Earliest Biosphere: Its Origin and Evolution, 187213. Princeton: Princeton University Press.Google Scholar
Walter, M. R. & Heys, G. R. 1985. Links between the rise of the metazoa and the decline of stromatolites. PRECAMBRIAN RES 29, 149174.CrossRefGoogle Scholar
Waterbury, J. B., Watson, S. W., Guillard, R. R. L. & Brand, L. E. 1979. Widespread occurrence of a unicellular, marine, planktonic, cyanobacterium. NATURE 277, 293294.CrossRefGoogle Scholar
Waterbury, J. B. & Stanier, R. Y. 1981. Isolation and growth of cyanobacteria from marine and hypersaline environments. In Starr, M. P., Stolp, H., Trüper, H. G. & Schlegel, H. G. (eds) The Prokaryotes: a Handbook on Habitats, Isolation, and Identification of Bacteria, 221223. Berlin: Springer–Verlag.CrossRefGoogle Scholar
Wharton, R. A. Jr., Parker, B. C., Simmons, G. M. Jr., Seaburg, K. G. & Love, F. G. 1982. Biogenic calcite structures forming in Lake Fryxell, Antarctica. NATURE 295, 403405.CrossRefGoogle Scholar
White, R. H. 1984. Hydrolytic stability of biomolecules at high temperatures and its implication for life at 250°C. NATURE 310, 430432.CrossRefGoogle Scholar
Whitelam, G. C. & Codd, G. A. 1986. Damaging effects of light on microorganisms. In Herbert, R. A. & Codd, G. A. (eds) Microbes in Extreme Environments, 129169. London: Academic Press.Google Scholar
Wichlacz, P. L. & Unz, R. F. 1981. Acidophilic heterotrophic bacteria of acid mine water. APPL ENVIRONM MICROBIOL 41, 12541261.CrossRefGoogle Scholar
Wilkinson, C. R. 1979. Bdellovibrio-like parasite of cyanobacteria symbiotic in marine sponges. ARCH MICROBIOL 123, 101103.CrossRefGoogle Scholar
Woese, C. R. 1987. Bacterial evolution. MICROBIOL REV 51, 221271.CrossRefGoogle ScholarPubMed
Woese, C. R., Debrunner-Vosbrinck, B. A., Oyaizu, H., Stackebrandt, E. & Ludwig, W. 1985. Gram-positive bacteria: possible photosynthetic ancestry. SCIENCE 229, 762765.CrossRefGoogle ScholarPubMed
Woese, C. R. & Olsen, G. 1986. Archaebacterial phylogeny: perspectives on the urkingdoms. SYST APPL MICROBIOL 7, 161177.CrossRefGoogle ScholarPubMed
Worrest, R. C., Van, Dyke H. & Thomson, B. E. 1978. Impact of enhanced simulated solar ultraviolet radiation upon a marine community. PHOTOCHEM PHOTOBIOL 27, 471478.CrossRefGoogle Scholar
Worrest, R. C., Wolniakowski, K. U., Scott, J. D., Brooker, D. L., Thomson, B. E. & Van, Dyke H. 1981. Sensitivity of marine phytoplankton to UV–B radiation: Impact upon a model ecosystem. PHOTOCHEM PHOTOBIOL 33, 223227.CrossRefGoogle Scholar
Wuttke, M. 1983. ‘Weichteil–Erhaltung’ durch lithofizierte Mikroorganismen bei mittel–eozänen Vertebraten aus den Ölschiefern der ‘Grube Messel’ bei Darmstadt. SENCK LETHAEA 54, 509527.Google Scholar
Yang, D., Kaine, B. P. & Woese, C. R. 1985. The phylogeny of Archaebacteria. SYST APPL MICROBIOL 6, 251256.CrossRefGoogle Scholar
Yayanos, A. A. & DeLong, E. F. 1987. Deep-sea bacterial fitness to environmental pressures and temperatures. In Jannasch, H. W., Zimmerman, A. M. & Marquis, R. E. (eds) Current Perspectives in High Pressure Biology, 1732. London: Academic Press.Google Scholar
Zhang, Y. 1981. Proterozoic stromatolite microfloras of the Gaoyuzhuang Formation (Early Sinian: Riphean), Hebei, China. J PALEONTOL 55, 485506.Google Scholar
Zillig, W., Schnabel, R. & Stetter, K. O. 1985. Archaebacteria and the origin of the eukaryotic cytoplasm. CURR TOPICS MICROBIOL IMMUNOL 114, 118.Google ScholarPubMed