Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T02:38:46.305Z Has data issue: false hasContentIssue false

“Garden of Eden” or “Fool's Paradise”? Phylogeny, dispersal, and the southern continent hypothesis of placental mammal origins

Published online by Cambridge University Press:  08 April 2016

John P. Hunter
Affiliation:
Department of Evolution, Ecology, and Organismal Biology, Ohio State University at Newark, 1179 University Drive, Newark, Ohio 43055. E-mail: hunter.360@osu.edu
Christine M. Janis
Affiliation:
Department of Ecology and Evolutionary Biology, Box G-B207, Brown University, Providence, Rhode Island 02912. E-mail: Christine_Janis@brown.edu

Extract

Where did the modern lineages of placental mammals originate? Recent molecular data seemingly have overturned not only schemata of placental relationships based on morphological data, but also hypotheses about the time and place of origin of the modern lineages. The original hypothesis of Northern Hemisphere origin, based on the fossil record, has been replaced by a “Garden of Eden” hypothesis of origins on a southern continent, based on molecular phylogenies. But, do the molecular data really support this new view of placental mammal origins?

Type
Matters of the Record
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Archibald, J. D. 2003. Timing and biogeography of the eutherian radiation: fossils and molecules compared. Molecular Phylogenetics and Evolution 28:350359.CrossRefGoogle Scholar
Asher, R. J., Meng, J., Wible, J. R., McKenna, M. C., Rougier, G. W., and Novacek, M. J. 2005. Stem Lagomorpha and the antiquity of Glires. Science 307:10911094.Google Scholar
Beard, K. C. 1998. East of Eden: Asia as an important center of taxonomic origination in mammalian evolution. Bulletin of the Carnegie Museum of Natural History 34:539.Google Scholar
Brown, J. K. M. 1994. Probabilities of evolutionary trees. Systematic Biology 43:7891.Google Scholar
Donoghue, M. J., and Moore, B. R. 2003. Toward an integrative historical biogeography. Integrative and Comparative Biology 43:261270.Google Scholar
Eizirik, E., Murphy, W. J., and O'Brien, S. J. 2001. Molecular dating and biogeography of the early placental mammal radiation. Journal of Heredity 92:212219.Google Scholar
Felsenstein, J. 1978. The number of evolutionary trees. Systematic Zoology 27:2733.Google Scholar
Foote, M., Hunter, J. P., Janis, C. M., and Sepkoski, J. J. Jr. 1999. Evolutionary and preservational constraints on origins of biologic groups: divergence times of eutherian mammals. Science 283:13101314.CrossRefGoogle ScholarPubMed
Gaudin, T. J., and Branham, D. G. 1998. The phylogeny of the Myrmecophagidae (Mammalia, Xenarthra, Vermilingua) and the relationship of Eurotamandua to the Vermilingua. Journal of Mammalian Evolution 5:237265.Google Scholar
Harding, E. F. 1971. The probabilities of rooted tree-shapes generated by random bifurcation. Advances in Applied Probability 3:4477.Google Scholar
Hayek, L.-A. C., and Buzas, M. A. 1997. Surveying natural populations. Columbia University Press, New York.Google Scholar
Hunter, J. P., and Janis, C. M. 2006. Spiny Norman in the Garden of Eden? Dispersal and early biogeography of Placentalia. Journal of Mammalian Evolution 13(2):89123.Google Scholar
Ji, Q., Luo, Z.-X., Yuan, C.-X., Wible, J. R., Zhang, J.-P., and Georgi, J. A. 2002. The earliest known eutherian mammal. Nature 416:816822.Google Scholar
Luo, Z., Cifelli, R., and Kielan-Jaworowska, Z. 2001. Dual origin of tribosphenic mammals. Nature 409:5357.Google Scholar
Luo, Z., Kielan-Jaworowska, Z., and Cifelli, R. 2002. In quest for a phylogeny of Mesozoic mammals. Acta Palaeontologica Polonica 47:178.Google Scholar
Luo, Z., Ji, Q., Wible, J. R., and Yuan, C.-X. 2003. An Early Cretaceous tribosphenic mammal and metatherian evolution. Science 302:19341940.Google Scholar
Madsen, O., Scally, M., Douady, C. J., Kao, D. J., DeBry, R. W., Adkins, R., Amrine, H. M., Stanhope, M. J., de Jong, W. W., and Springer, M. S. 2001. Parallel adaptive radiations in two major clades of placental mammals. Nature 409:610614.Google Scholar
Meng, J., Hu, Y. M., and Li, C. K. 2003. The osteology of Rhombomylus (Mammalia, Glires): implications for phylogeny and evolution of Glires. Bulletin of the American Museum of Natural History 274:1247.Google Scholar
Murphy, W. J., Eizirik, E., Johnson, W. E., Zhang, Y. P., Ryder, O. A., and O'Brien, S. J. 2001. Molecular phylogenetics and the origins of placental mammals. Nature 409:614618.Google Scholar
Murphy, W. J., Eizirik, E., O'Brien, S. J., Madsen, O., Scally, M., Douady, C. J., Teeling, E., Ryder, O. A., Stanhope, M. J., de Jong, W. W., and Springer, M. S. 2001. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:23482351.Google Scholar
Murray, A. M. 2001. The fossil record and biogeography of the Cichlidae (Actinopterygii: Labroidei). Biological Journal of the Linnean Society 74:517532.Google Scholar
Novacek, M. J. 1999. 100 million years of land vertebrate evolution: the Cretaceous-Early Tertiary transition. Annals of the Missouri Botanical Garden 86:230258.Google Scholar
Rosen, D. E. 1978. Vicariant patterns and historical explanation in biogeography. Systematic Zoology 27:159188.Google Scholar
Springer, M. S., Cleven, G. C., Madsen, O., de Jong, W. W., Waddell, V. G., Amrine, H. M., and Stanhope, M. J. 1997. Endemic African mammals shake the phylogenetic tree. Nature 388:6164.Google Scholar
Springer, M. S., Murphy, W. J., Eizirik, E., and O'Brien, S. J. 2003. Placental mammal diversification and the Cretaceous-Tertiary boundary. Proceedings of the National Academy of Sciences USA 100:10561061.CrossRefGoogle ScholarPubMed
Stanhope, M. J., Waddell, V. G., Madsen, O., de Jong, W. W., Hedges, S. B., Cleven, G. C., Kao, D., and Springer, M. S. 1998. Molecular evidence for multiple origins of Insectivora and for a new order of endemic African insectivore mammals. Proceedings of the National Academy of Sciences USA 95:99679972.Google Scholar
Strait, D. S., and Wood, B. A. 1999. Early hominid biogeography. Proceedings of the National Academy of Sciences USA 96:91969200.Google Scholar
Wible, J. R., Novacek, M. J., and Rougier, G. W. 2004. New data on the skull and dentition in the Mongolian Late Cretaceous eutherian mammal Zalambdalestes. Bulletin of the American Museum of Natural History 281:1144.Google Scholar
Wiley, E. O. 1980. Phylogenetic systematics and vicariance biogeography. Systematic Botany 5:194220.Google Scholar
Zack, S. P., Penkrot, T. A., Bloch, J. I., and Rose, K. D. 2005. Affinities of “hyopsodontids” to elephant-shrews and a Holarctic origin of Afrotheria. Nature 434:497501.CrossRefGoogle Scholar