
Appendix C

Number Theory

We review here the facts of number theory that we use and give references for
their proofs.

C.1 Multiplicative Functions and Euler Products

Analytic number theory frequently deals with functions f defined for integers
n � 1 such that f (mn) = f (m)f (n) whenever m and n are coprime. Any
such function that is not identically zero is called a multiplicative function.1 A
multiplicative function is uniquely determined by the values f (pk) for primes
p and integers k � 1 and satisfies f (1) = 1.

We recall that if f and g are functions defined for positive integers, the
Dirichlet convolution f ! g is defined by

(f ! g)(n) =
∑
d|n
f (d)g

(n
d

)
.

Its key property is that the generating Dirichlet series∑
n�1

(f ! g)(n)n−s

for f ! g is the product of the generating Dirichlet series for f and g
(see Proposition A.4.4). In particular, one deduces that the convolution is
associative and commutative, and that the function δ such that δ(1) = 1
and δ(n) = 0 for all n � 2 is a neutral element. In other words, for any
arithmetic functions f , g, and h, we have

f ! g = g ! f, f ! (g ! h) = (f ! g) ! h, f ! δ = f .

1 We emphasize that it is not required that f (mn) = f (m)f (n) for all pairs of positive integers.
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C.1 Multiplicative Functions and Euler Products 223

Lemma C.1.1 Let f and g be multiplicative functions. Then the Dirichlet
convolution f ! g of f and g is multiplicative. Moreover, the function f � g
defined by

(f � g)(n) =
∑

[a,b]=n
f (a)g(b)

is also multiplicative.

Proof Both statements follow simply from the fact that if n andm are coprime
integers, then any divisor d of nm can be uniquely written d = d ′d ′′, where d ′

divides n and d ′′ divides m.

Example C.1.2 To get an idea of the behavior of a multiplicative function, it
is always useful to write down the values at powers of primes. In the situation
of the lemma, the Dirichlet convolution satisfies

(f ! g)(pk) =
k∑
j=0

f (pj )g(pk−j ),

whereas

(f � g)(pk) =
k−1∑
j=0

(f (pj )g(pk)+ f (pk)g(pj ))+ f (pk)g(pk).

In particular, suppose that f and g are supported on squarefree integers, so that
f (pk) = g(pk) = 0 for any prime if k � 2. Then f � g is also supported on
squarefree integers (this is not necessarily the case for f ! g) and satisfies

(f � g)(p) = f (p)+ g(p)+ f (p)g(p)
for all primes p.

A very important multiplicative function is the Möbius function.

Definition C.1.3 The Möbius function μ(n) is the multiplicative function
supported on squarefree integers such that μ(p) = −1 for all primes p.

In other words, if we factor

n = p1 · · ·pj,
where each pi is prime, then we have μ(n) = 0 if there exists i �= j such that
pi = pj , and otherwise μ(n) = (−1)j .

A key property of multiplicative functions is their Euler product expansion,
as a product over primes.
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Lemma C.1.4 Let f be a multiplicative function such that∑
n�1

|f (n)| < +∞.

Then we have ∑
n�1

f (n) =
∏
p

(∑
j�0

f (pj )

)
,

where the product on the right is absolutely convergent. In particular, for all
s ∈C such that ∑

n�1

f (n)

ns

converges absolutely, we have∑
n�1

f (n)

ns
=
∏
p

(1+ f (p)p−s + · · · + f (pk)p−ks + · · · ),

where the right-hand side converges absolutely.

Proof For any prime p, the series

1+ f (p)+ · · · + f (pk)+ · · ·
is a subseries of

∑
f (n), so that the absolute convergence of the latter (which

holds by assumption) implies that all of these partial series are also absolutely
convergent.

We now first assume that f (n) � 0 for all n. Then, for any N � 1, we have∏
p�N

∑
k�0

f (pk) =
∑
n�1

p|n⇒p�N

f (n)

by expanding the product and using the absolute convergence and the unique-
ness of factorization of integers. It follows that∣∣∣∏

p�N

∑
k�0

f (pk)−
∑
n�N

f (n)

∣∣∣ � ∑
n>N

f (n)

(since we assume f (n) � 0). This converges to 0 as N → +∞, because the
series

∑
f (n) is absolutely convergent. Thus this case is done.

In the general case, replacing f by |f |, the previous argument shows that
the product converges absolutely. Then we get in the same manner∣∣∣∣ ∏

p�N

∑
k�0

f (pk)−
∑
n�N

f (n)

∣∣∣∣ � ∑
n>N

|f (n)| −→ 0

as N →+∞.
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C.1 Multiplicative Functions and Euler Products 225

Corollary C.1.5 For any s ∈ C such that Re(s) > 1, we have∑
n�1

n−s =
∏
p

1

1− p−s , (C.1)

∑
n�1

μ(n)n−s =
∏
p

(1− p−s) = 1

ζ(s)
. (C.2)

Example C.1.6 The fact that the Dirichlet series for the Möbius function is the
inverse of the Riemann zeta function, combined with the link between multi-
plication and Dirichlet convolution, leads to the so-called Möbius inversion
formula: for arithmetic functions f and g, the relations

g(n) =
∑
d|n
f (d) and f (n) =

∑
d|n
μ(d)g

(n
d

)
(for all n � 1) are equivalent. (Indeed, the first means that g = f ! 1, where 1
is the constant function, and the second that f = g ! μ; since μ ! 1 = δ,
which is the multiplicative function version of the identity ζ(s)−1 · ζ(s) = 1,
the equivalence of the two follows from the associativity of the convolution.)

Example C.1.7 Let f and g be multiplicative functions supported on square-
free integers defining absolutely convergent series. Then for σ > 0, we have∑
n�1

f (m)g(n)

[m,n]σ
=
∑
d�1

(f � g)(d)
dσ

=
∏
p

(
1+(f (p)+ g(p)+f (p)g(p))p−σ ) .

For instance, consider the case where f and g are both the Möbius function
μ. Thenμ�μ is supported on squarefree numbers and takes value−1−1+1 =
−1 at primes and so is in fact equal to μ. We obtain the nice formula∑
n�1

μ(m)μ(n)

[m,n]s
=
∑
d�1

(f � g)(d)
ds

=
∏
p

(
1− 1

ps

)
=
∑
n�1

μ(n)n−s = 1

ζ(s)

for Re(s) > 1.

Example C.1.8 Another very important multiplicative arithmetic function is
the Euler function ϕ defined by ϕ(q) = |(Z/qZ)×| for q � 1. This function is
multiplicative, by the Chinese Remainder Theorem, which implies that there
exists an isomorphism of groups

(Z/q1q2Z)×  (Z/q1Z)× × (Z/q2Z)×

when q1 and q2 are coprime integers. We have ϕ(p) = p−1 if p is prime, and
more generally ϕ(pk) = pk − pk−1 for p prime and k � 1 (since an element
x of Z/pkZ is invertible if and only if its unique lift in {0, . . . ,pk − 1} is not
divisible by p). Hence, by factorization, we obtain the product expansion
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226 Appendix C

ϕ(n) =
∏
p|n
(pvp(n) − pvp(n)−1) = n

∏
p|n

(
1− 1

p

)
,

where vp(n) is the power p-adic valuation of n, that is, the exponent of the
power of p dividing exactly n.

We deduce from Lemma C.1.4 the expression∑
n�1

ϕ(n)n−s=
∏
p

(
1+ (p − 1)p−s + (p2 − p)p−2s + · · ·+

(pk − pk−1)p−ks + · · · )
= ζ(s − 1)

ζ(s)
,

again valid for Re(s) > 1. This may also be deduced from the formula

ϕ(n) =
∑
d|n
μ(d)

n

d
,

that is, ϕ = μ ! Id, where Id is the identity arithmetic function.

C.2 Additive Functions

We also often encounter additive functions (although they are not so important
in this book), which are complex-valued functions g defined for integers n� 1
such that g(nm) = g(n) + g(m) for all pairs of coprime integers n and m. In
particular, we have then g(1) = 0.

If g is an additive function, then we can write

g(n) =
∑
p

g
(
pvp(n)

)
for any n� 1, where vp is the p-adic valuation (which is zero for all but finitely
many p). As for multiplicative functions, an additive function is therefore
determined uniquely by its values at prime powers.

Some standard examples are given by g(n) = log n, or more generally
g(n) = log f (n), where f is a multiplicative function that is always positive.
The arithmetic function ω(n) that counts the number of prime factors of an
integer n � 1 (without multiplicity) is also additive; it is of course the subject
of the Erdős–Kac Theorem.

Conversely, if g is an additive function, then for any complex number s ∈ C,
the function n �→ esg(n) is a multiplicative function.
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C.3 Primes and Their Distribution

For any real number x � 1, we denote by π(x) the prime counting function,
that is, the number of prime numbers p � x. This is of course one of the
key functions of interest in multiplicative number theory. Except in the most
elementary cases, interesting statements require some information on the size
of π(x).

The first nontrivial quantitative bounds are due to Chebychev, giving the
correct order of magnitude of π(x), and were elaborated by Mertens to obtain
other very useful estimates for quantities involving primes.

Proposition C.3.1 (Chebychev and Mertens estimates) (1) There exist
positive constants c1 and c2 such that

c1
x

log x
� π(x) � c2

x

log x

for all x � 2.
(2) For any x � 3, we have∑

p�x

1

p
= log log x + O(1).

(3) For any x � 3, we have∑
p�x

logp

p
= log x + O(1).

See, e.g, [59, §2.2] or [52, Th. 7, Th. 414] (resp. [59, (2.15)] or [52, Th.
427]; [59, (2.14)] or [52, Th. 425]) for a proof of the first (resp. second, third)
estimate.

Exercise C.3.2 (1) Show that the first estimate implies that the nth prime is of
size about n log n (up to multiplicative constants) and also implies the bounds

log log x �
∑
p�x

1

p
� log log x

for x � 3.
(2) Let π2(x) be the numbers of integers n � x such that n is the product of

at most two primes (possibly equal). Prove that there exist positive constants c3

and c4 such that

c3
x log log x

log x
� π2(x) � c4

x log log x

log x

for all x � 3.
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The real key result in the study of primes is the Prime Number Theorem
with a strong error term:

Theorem C.3.3 Let A > 0 be an arbitrary real number. For x � 2, we have

π(x) = li(x)+ O

(
x

(log x)A

)
, (C.3)

where li(x) is the logarithmic integral

li(x) =
∫ x

2

dt

log t

and the implied constant depends only on A. More generally, for α � 0 fixed,
we have ∑

p�x
pα =

∫ x

2
tα
dt

log t
+ O

(
x1+α

(log x)A

)
,

where the implied constant depends only on A.

For a proof, see, for instance, [59, §2.4 or Cor. 5.29]. By an elementary
integration by parts, we have

li(x) =
∫ x

2

dt

log t
= x

log x
+ O

(
x

(log x)2

)
,

for x � 2, hence the “usual” simple asymptotic version of the Prime Number
Theorem

π(x) ∼ x

log x
, as x →+∞.

However, note that if one expresses the main term in the “simple” form
x/ log x, the error term cannot be better than x/(log x)2.

The Prime Number Theorem easily implies a stronger form of the Mertens
formula:

Corollary C.3.4 There exists a constant C ∈ R such that∑
p�x

1

p
= log log x + C+ O((log x)−1). (C.4)

Exercise C.3.5 Show that (C.4) is in fact equivalent with the Prime Number
Theorem in the form

π(x) ∼ x

log x

as x →+∞.
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Another estimate that will be useful in Chapter 4 is the following:

Proposition C.3.6 Let A > 0 be a fixed real number. For all x � 2, we have∏
p�x

(
1+ A

p

)
� (log x)A,

∏
p�x

(
1− A

p

)−1

� (log x)A,

where the implied constant depends only on A.

Proof In both cases, if we compute the logarithm, we obtain∑
p�x

(
A

p
+ O

(
1

p2

))
,

where the implied constant depends on A and the result follows from the
Mertens formula.

In Chapter 5, we will also need the generalization of these basic statements
to primes in arithmetic progressions. We recall that for x � 1, and any
modulus q � 1 and integer a ∈ Z, we define

π(x;q,a) =
∑
p�x

p≡a (mod q)

1,

the number of primes p � x that are congruent to a modulo q. If a is not
coprime to q, then π(x;q,a) is bounded as x varies; it was one of the first
major achievements of analytic number theory when Dirichlet proved that,
conversely, there are infinitely many primes p ≡ a (mod q) if (a,q) = 1.
This was done using the theory of Dirichlet characters and L-functions, which
we will survey later (see Section C.5). Here we state the analogue of the
Prime Number Theorem, which shows that, asymptotically, all residue classes
modulo q are roughly equivalent.

Theorem C.3.7 For any fixed q � 1 and A � 1, and for any x � 2, we have

π(x;q,a) = 1

ϕ(q)

x

log x
+ O

( x

(log x)A

)
∼ 1

ϕ(q)
π(x) ∼ 1

ϕ(q)
li(x).
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C.4 The Riemann Zeta Function

As recalled in Section 3.1, the Riemann zeta function is defined first for
complex numbers s such that Re(s) > 1 by means of the absolutely convergent
series

ζ(s) =
∑
n�1

1

ns
.

By Lemma C.1.4, it has also the Euler product expansion

ζ(s) =
∏
p

(1− p−s)−1

in this region. Using this expression, we can compute the logarithmic derivative
of the zeta function, always for Re(s) > 1. We obtain the Dirichlet series
expansion

−ζ
′

ζ
(s) =

∑
p

(logp)p−s

1− p−s =
∑
n�1

�(n)

ns
(C.5)

(using a geometric series expansion), where the function � is called the von
Mangoldt function, defined by

�(n) =
{

logp if n = pk for some prime p and some k � 1,

0 otherwise.
(C.6)

In other words, up to the “thin” set of powers of primes with exponent k �
2, the function � is the logarithm restricted to prime numbers.

Beyond the region of absolute convergence, it is known that the zeta
function extends to a meromorphic function on all of C, with a unique pole
located at s = 1, which is a simple pole with residue 1 (see the argument in
Section 3.1 for a simple proof of analytic continuation to Re(s) > 0). More
precisely, let

ξ(s) = π−s/2�
( s

2

)
ζ(s)

for Re(s) > 1. Then ξ extends to a meromorphic function on C with simple
poles at s = 0 and s = 1, which satisfies the functional equation

ξ(1− s) = ξ(s).
Because the Gamma function has poles at integers −k for k � 0, it follows

that ζ(−2k) = 0 for k � 1 (the case k = 0 is special because of the pole at s =
1). The negative even integers are called the trivial zeros of ζ(s). Hadamard
and de la Vallée Poussin proved (independently) that ζ(s) �= 0 for Re(s) = 1,
and it follows that the nontrivial zeros of ζ(s) are located in the critical strip
0 < Re(s) < 1.
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C.4 The Riemann Zeta Function 231

Proposition C.4.1 (1) For 1/2 < σ < 1, we have

1

2T

∫ T

−T
|ζ(σ + it)|2dt −→ ζ(2σ)

as T →+∞.
(2) We have

1

2T

∫ T

−T
|ζ( 1

2 + it)|2dt ∼ T(log T)

for T →+∞.

See [117, Th. 7.2] for the proof of the first formula and [117, Th. 7.3] for
the second (which is due to Hardy and Littlewood).

Exercise C.4.2 This exercise explains the proof of the first formula (which is
easier than the second one).

(1) Prove that for 1
2 � σ � σ ′ < 1 and for T � 2, we have∑

1�m<n�T

1

(mn)σ

1

log(n/m)
� T2−2σ (log T).

(Consider separately the sum where m < 1
2n and the remainder.)

(2) Prove that

1

2T

∫ T

−T

∣∣∣∑
n�|t |

n−σ−it
∣∣∣2dt → ζ(2σ)

as T →+∞. (Expand the square and integrate using (1).)
(3) Conclude using Proposition C.4.5 below.

For much more information concerning the analytic properties of the Rie-
mann zeta function, see [117]. Note however that the deeper arithmetic aspects
are best understood in the larger framework of L-functions, from Dirichlet
L-functions (which are discussed below in Section C.5) to automorphic L-
functions (see, e.g, [59, Ch. 5]).

We will also use the Hadamard factorization of the Riemann zeta function.
This is an analogue of the factorization of polynomials in terms of their zeros,
which holds for meromorphic functions on C with restricted growth.

Proposition C.4.3 The zeros � of ξ(s) all satisfy 0 < Re(�) < 1, and there
exists constants α and β ∈ C such that

s(s − 1)ξ(s) = eα+βs
∏
�

(
1− s

�

)
e−s/�
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for any s ∈ C, where the product runs over the zeros of ξ(s), counted with
multiplicity, and converges uniformly on compact subsets of C. In fact, we
have ∑

�

1

|�|2 < +∞.

Given that s �→ s(s − 1)ξ(s) is an entire function of finite order, this
follows from the general theory of such functions (see, e.g, [116, Th. 8.24]
for Hadamard’s factorization theorem). What is most important for us is the
following corollary, which is an analogue of partial fraction expansion for the
logarithmic derivative of a polynomial – except that it is most convenient here
to truncate the infinite sum.

Proposition C.4.4 Let s = σ + it ∈ C be such that 1
2 � σ � 1 and ζ(s) �= 0.

Then there are� log(2+ |t |) zeros � of ξ such that |s − �| � 1, and we have

−ζ
′(s)
ζ(s)

= 1

s
+ 1

s − 1
−

∑
|s−�|<1

1

s − � + O(log(2+ |t |)),

where the sum is over zeros � of ζ(s) such that |s − �| < 1, counted with
multiplicity.

Sketch of proof We first claim that the constant β in Proposition C.4.3 satisfies

Re(β) = −
∑
�

Re(�−1), (C.7)

where � runs over all the zeros of ξ(s) with multiplicity. Indeed, applying the
Hadamard product expansion to both sides of the functional equation ξ(1 −
s) = ξ(s) and taking logarithms, we obtain

2 Re(β) = β + β̄ = −
∑
�

(
1

s − � +
1

1− s − �̄ +
1

�
+ 1

�̄

)
.

For any fixed s that is not a zero of ξ(s), we have (s−�)−1− (1− s− �̄)−1 �
|�|−2, where the implied constant depends on s. Similarly, �−1+�̄−1 � |�|−2,
so the series ∑

�

(
1

s − � +
1

1− s − �̄
)

and
∑
�

(
1

�
+ 1

�̄

)
are absolutely convergent. So we can separate them; the first one vanishes,
because the terms cancel out (both � and 1 − �̄ are zeros of ζ(s)), and we
obtain (C.7).
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Now let T � 2 and s = 3+ iT. Using the expansion

−ζ
′(s)
ζ(s)

=
∑
k�0

∑
p

(logp)p−ks,

we get the trivial estimate ∣∣∣∣ζ ′ζ (s)
∣∣∣∣ � ζ ′(3).

By Stirling’s formula (Proposition A.3.3), we have �
′
�
(s/2)� log(2+T), and

for any zero � = β + iγ of ξ(s), we have

2

9+ (T− γ )2 < Re

(
1

s − �
)
<

3

4+ (T− γ )2 .

If we compute the real part of the formula

−ζ
′

ζ
(s) = �

′

�
(s/2)− β + 1

s
+ 1

s − 1
−
∑
�

(
1

s − � +
1

�

)
and rearrange the resulting absolutely convergent series (using (C.7)), we get∑

�

1

1+ (T− γ )2 � log(2+ T). (C.8)

This convenient estimate implies, as claimed, that there are� log(2+T) zeros
� such that |Im(� − T)| � 1.

Now, finally, let s = σ + it such that 1
2 � σ � 1 and ξ(s) �= 0. We have

−ζ
′

ζ
(s) = −ζ

′

ζ
(s)+ ζ

′

ζ
(3+ it)+ O(log(2+ |t |)),

by the previous elementary estimate. Hence (by the Stirling formula again) we
have

−ζ
′

ζ
(s) = 1

s
+ 1

s − 1
−
∑
�

(
1

s − � −
1

3+ it − �
)
+ O(log(2+ |t |)).

In the series, we keep the zeros with |s − �| < 1, and we estimate the
contribution of the others by∑

|s−�|>1

∣∣∣∣ 1

s − � −
1

3+ it − �
∣∣∣∣ � ∑

|s−�|>1

3

1+ (T− γ )2 � log(2+ |t |)

by (C.8).

We will use an elementary approximation for ζ(s) in the strip
1
2 < Re(s) < 1.
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Proposition C.4.5 Let T � 1. For σ > 1/2, and for any s = σ + it with
1/2 � σ < 3/4 and |t | � T, we have

ζ(s) =
∑

1�n�T

n−s + O

(
T1−σ

|t | + 1
+ T−1/2

)
.

Proof This follows from [117, Th. 4.11] (a result first proved by Hardy and
Littlewood) which states that for any σ0 > 0, we have

ζ(s) =
∑

1�n�T

n−s − T1−σ

1− s + O(T−1/2)

for σ � σ0, since 1/(1− s)� 1/(|t | + 1) if 1/2 � σ < 3/4.

The last (and most subtle) result concerning the zeta function that we need
is an important refinement of (2) in Proposition C.4.1.

Proposition C.4.6 Let T � 1 be a real number, and let m, n be integers such
that 1 � m,n � T. Let σ be a real number with 1

2 � σ � 1. We have

1

2T

∫ T

−T

(m
n

)it |ζ(σ + it)|2dt = ζ(2σ)( (m,n)2
mn

)σ
+ 1

2T
ζ(2−2σ)

(
(m,n)2

mn

)1−σ∫ T

−T

(|t |
2π

)1−2σ

dt

+ O(min(m,n)T−σ+ε).

This is essentially due to Selberg [110, Lemma 6], and a proof is given by
Radziwiłł and Soundararajan [95, §6].

C.5 Dirichlet L-Functions

Let q � 1 be an integer. The Dirichlet L-functions modulo q are Dirichlet series
attached to characters of the group of invertible residue classes modulo q. More
precisely, for any such character χ : (Z/qZ)× → C×, we extend it to Z/qZ by
sending noninvertible classes to 0, and then we view it as a q-periodic function
on Z. The resulting function on Z is called a Dirichlet character modulo q.
(See Example B.6.2 (3) for the definition and basic properties of characters
of finite abelian groups; an excellent elementary account can also be found in
Serre’s book [112, §VI.1].)

We denote by 1q the trivial character modulo q (which is identically 1
on all invertible residue classes modulo q and 0 elsewhere). A character χ
such that χ(n) ∈ {±1} for all n coprime to q is called a real character. This
condition is equivalent to having χ real-valued, or to having χ2 = 1q .
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By the duality theorem for finite abelian groups (see Example B.6.2,
(3)), the set of Dirichlet characters modulo q is a group under pointwise
multiplication with 1q as the identity element, and it is isomorphic to (Z/qZ)×;
in particular, the number of Dirichlet characters modulo q is ϕ(q). Moreover,
the Dirichlet characters modulo q form an orthonormal basis of the space of
complex-valued functions on (Z/qZ)×.

Let χ be a Dirichlet character modulo q. By construction, the function χ
is multiplicative on Z, in the strong sense that χ(nm) = χ(n)χ(m) for all
integers n and m (even if they are not coprime).

The orthonormality property of characters of a finite group implies the
following fundamental relation:

Proposition C.5.1 Let q � 1 be an integer. For any x and y in Z, we have

1

ϕ(q)

∑
χ (mod q)

χ(x)χ(y) =
{

1 if x ≡ y (mod q) and x, y are coprime with q,

0 otherwise,

where the sum is over all Dirichlet characters modulo q.

Proof If x or y is not coprime with q, then the formula is valid because both
sides are zero. Otherwise, this is a special case of the general decomposition
formula

1

|G|
∑
χ∈Ĝ

χ(x)χ(y) =
{

1 if x = y,
0 if x �= y (C.9)

for any finite abelian group G and elements x and y of G. Indeed, if we
view y as fixed and x as a variable, this is simply the decomposition of the
characteristic function fy of the element y ∈ G in the orthonormal basis of
characters: this decomposition is

fy =
∑
χ∈Ĝ

〈fy,χ〉χ,

which becomes

fy =
∑
χ∈Ĝ

χ(y)χ,

from which in turn (C.9) follows by evaluating at x.

Let q � 1 be an integer and χ a Dirichlet character modulo q. One defines

L(s,χ) =
∑
n�1

χ(n)

ns
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for all s ∈C such that Re(s) > 1; since |χ(n)| � 1 for all n ∈ Z, this series is
absolutely convergent and defines a holomorphic function in this region, called
the L-function associated to χ .

In the region where Re(s) > 1, the multiplicativity of χ implies that we
have the absolutely convergent Euler product expansion

L(s,χ) =
∏
p

(1− χ(p)p−s)−1

(by Lemma C.1.4 applied to f (n) = χ(n)n−s for any s ∈ C such
that Re(s)> 1). In particular, we deduce that L(s,χ) �= 0 if Re(s) > 1.
Moreover, computing the logarithmic derivative, we obtain the formula

−L′

L
(s,χ) =

∑
n�1

�(n)χ(n)n−s

for Re(s) > 1.
For the trivial character 1q modulo q, we have the formula

L(s,1q) =
∏
p�q

(1− p−s)−1 = ζ(s)
∏
p|q
(1− p−s).

Since the second factor is a finite product of quite simple form, we see
that, when q is fixed, the analytic properties of this particular L-function
are determined by those of the Riemann zeta function. In particular, it has
meromorphic continuation with a simple pole at s = 1, where the residue is∏

p|q
(1− p−1) = ϕ(q)

q
.

For χ nontrivial, we have the following result (see, e.g., [59, §5.9]):

Theorem C.5.2 Let χ be a nontrivial Dirichlet character modulo q. Define
εχ = 0 if χ(−1) = 1 and εχ = 1 if χ(−1) = −1. Let

ξ(s,χ) = π−(s+εχ )/2qs/2�
(
s + εχ

2

)
L(s,χ)

for Re(s) > 1. Furthermore, let

τ(χ) = 1√
q

∑
x∈(Z/qZ)×

χ(x)e
(x
q

)
.

Then ξ(s,χ) extends to an entire function on C which satisfies the functional
equation

ξ(s,χ) = τ(χ)ξ(1− s,χ).
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In Chapter 5, we will require the basic information on the distribution of
zeros of Dirichlet L-functions. We summarize it in the following proposition
(see, e.g., [59, Th. 5.24]).

Proposition C.5.3 Let χ be a Dirichlet character modulo q.
(1) For T � 1, the number N(T;χ) of zeros � of L(s,χ) such that

Re(�) > 0, | Im(�)| � T,

satisfies

N(T;χ) = T

π
log

(
qT

2π

)
− T

π
+ O(log q(T+ 1)), (C.10)

where the implied constant is absolute.
(2) For any ε > 0, the series ∑

�

|�|−1−ε

converges, where � runs over zeros of L(s,χ) such that Re(�) > 0.

Remark C.5.4 These two statements are not independent, and in fact the first
one implies the second by splitting the partial sum∑

|�|�T

1

|�|1+ε

for T � 1 in terms of zeros in intervals of length 1:∑
|�|�T

1

|�|1+ε �
∑

1�N�T

1

N1+ε
∑

N−1�|�|�N

1 �
∑

1�N�T

log N

N1+ε

by (1). Since this is uniformly bounded for all T, we obtain (2).

Corollary C.5.5 Let χ be a Dirichlet character modulo q.
(1) We have ∑

0<γ<T

L( 1
2+iγ ,χ)=0

1

| 12 + iγ |
� (log T)2

for T large enough.
(2) We have ∑

γ>T

L( 1
2+iγ ,χ)=0

1

| 12 + iγ |2
� log T

T

for T � 1.
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Finally, we need a form of the explicit formula linking zeros of Dirichlet
L-functions with the distribution of prime numbers.

Theorem C.5.6 Let q � 1 be an integer, and let χ be a nontrivial Dirichlet
character modulo q. For any x � 2 and any X � 2 such that 2 � x � X, we
have ∑

n�x
�(n)χ(n) = −

∑
L(β+iγ )=0
|γ |�X

xβ+iγ

β + iγ + O

(
x(log qx)2

X

)
,

where the sum is over nontrivial zeros of L(s,χ), counted with multiplicity, and
the implied constant is absolute.

Sketch of proof We refer to, for example, [59, Prop. 5.25] for this result. Here
we wish to justify intuitively the existence of such a relation between sums
(essentially) over primes and sums over zeros of the associated L-function.

Pick a function ϕ defined on [0, + ∞[ with compact support. Using the
Mellin inversion formula (see Proposition A.3.1, (3)), we can write∑

n�1

�(n)χ(n)ϕ
(n
x

)
= 1

2iπ

∫
(2)
−L′

L
(s,χ)ϕ̂(s)xsds

for all x � 1. Assume (formally) that we can shift the integration line to the
left, say, to the line where the real part is 1/4, where the contribution would
be x1/4. The contour shift leads to poles located at all the zeros of L(s,χ),
with residue equal to the opposite of the multiplicity of the zero (since the L-
function is entire, there is no contribution from poles). We can therefore expect
that ∑

n�1

�(n)χ(n)ϕ
(n
x

)
= −

∑
�

ϕ̂(�)x� + (small error),

where � runs over nontrivial zeros of L(s,χ), counted with multiplicity.
If such a formula holds for the characteristic function ϕ of the interval [0,1],

then since

ϕ̂(s) =
∫ 1

0
xs−1dx = 1

s
,

we would obtain∑
n�1

�(n)χ(n)ϕ
(n
x

)
= −

∑
�

x�

�
+ (small error).
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Remark C.5.7 There is nontrivial analytic work to do in order to justify
the computations in this sketch, because of various convergence issues for
instance (which also explains why the formula is most useful in a truncated
form involving only finitely many zeros), but this formal outline certainly
explains the existence of the explicit formula.

This explicit formula explains why the location of zeros of Dirichlet
L-functions is so important in the study of prime numbers in arithmetic
progressions. This motivates the Generalized Riemann Hypothesis modulo q:

Conjecture C.5.8 (Generalized Riemann Hypothesis) For any integer q � 1
and for any Dirichlet character χ modulo q and any zero � = β + iγ of its
L-function such that 0 < β � 1, we have β = 1

2 .

This is the most famous open problem of number theory. In practice, we will
also speak of Generalized Riemann Hypothesis modulo q when considering
only the fixed modulus q instead of all moduli. The case q = 1 corresponds to
the original Riemann Hypothesis for the Riemann zeta function only.

By just applying orthogonality (Proposition C.5.1) and estimating trivially
in the explicit formula with the help of Proposition C.5.3, we deduce:

Proposition C.5.9 Let q � 1 be an integer. Assume that the Generalized
Riemann Hypothesis modulo q holds. Then we have∑

n�x
n≡a (mod q)

�(n) = x

ϕ(q)
+ O(x1/2(log qx)2).

Remark C.5.10 Compare the quality of the error term with the (essentially)
best known unconditional result of Theorem C.3.7.

Another corollary of the explicit formula that will be helpful in Chapter 5
is the following:

Corollary C.5.11 Let q � 1 be an integer and let χ be a nontrivial Dirichlet
character modulo q. Assume that the Generalized Riemann Hypothesis holds
for L(s,χ), i.e., that all nontrivial zeros of L(s,χ) have real part 1/2. For any
x � 2, we have ∫ x

2

(∑
n�t
�(n)χ(n)

)
dt � x3/2,

where the implied constant depends on q.
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Proof Pick X = x in the explicit formula. Using the assumption on the zeros,
we obtain by integration the expression∫ x

2

(∑
n�t
�(n)χ(n)

)
dt

=
∑

L( 1
2+iγ )=0
|γ |�x

∫ x

2

t
1
2+iγ

1
2 + iγ

dt + O(x(log qx)2)

=
∑

L( 1
2+iγ )=0
|γ |�x

x
1
2+iγ+1− 2

1
2+iγ+1

( 1
2 +iγ )( 1

2 + iγ +1)
+O(x(log qx)2)�x3/2,

where the implied constant depends on q, since the series∑
L( 1

2+iγ )=0

1

( 1
2 + iγ )( 1

2 + iγ + 1)

converges absolutely by Proposition C.5.3, (2).

C.6 Exponential Sums

In Chapter 6, we studied some properties of exponential sums. Although we
do not have the space to present a detailed treatment of such sums, we will
give a few examples and try to explain some of the reasons why such sums are
important and interesting. This should motivate the “curiosity driven” study of
the shape of the partial sums. We refer to the notes [75] and to [59, Ch. 11] for
more information, including proofs of the Weil bound (6.1) for Kloosterman
sums.

In principle, any finite sum

SN =
∑

1�n�N

e(αn)

of complex numbers of modulus 1 counts as an exponential sum, and the goal
is – given the phases αn ∈ R – to obtain a bound on S that improves as much
as possible on the “trivial” bound |SN| � N.

On probabilistic grounds, one can expect that for highly oscillating phases,
the sum SN is of size about

√
N. Indeed, if we consider αn to be random

variables that are independent and uniformly distributed in R/Z, then the
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Central Limit Theorem shows that SN/
√

N is distributed approximately like
a standard complex Gaussian random variable, so that the “typical” size of SN

is of order of magnitude
√

N. When this occurs also for deterministic sums (up
to factors of smaller order of magnitude), one says that the sums have square-
root cancellation; this usually only makes sense for an infinite sequence of
sums where N →+∞.

Example C.6.1 For instance, the partial sums

MN =
∑

1�n�N

μ(n)

of the Möbius function can be seen in this light. Estimating MN is vitally
important in analytic number theory, because it is not very hard to check that
the Prime Number Theorem, in the form (C.3), with error term x/(log x)A for
any A > 0, is equivalent with the estimate

MN � N

(log N)A

for any A > 0, where the implied constant depends on A. Moreover, the best
possible estimate is the square-root cancellation

MN � N1/2+ε,

with an implied constant depending on ε > 0, and this is known to be
equivalent to the Riemann Hypothesis for the Riemann zeta function.

The sums that appear in Chapter 6 are, however, of a fairly different nature.
They are sums over finite fields (or subsets of finite fields), with summands
e(αn) of “algebraic nature.” For a prime p and the finite field Fp with p
elements,2 the basic examples are of the following types:

Example C.6.2 (1) [Additive character sums] Fix a rational function f ∈
Fp(T). Then for x ∈ Fp that is not a pole of f , we can evaluate f (x) ∈ Fp,
and e(f (x)/p) is a well-defined complex number. Then consider the sum∑

x∈Fp
f (x) defined

e(f (x)/p).

For fixed a and b in F×p , the example f (T) = aT + bT−1 gives rise to the

Kloosterman sum of Section 6.1. If f (T) = T2, we obtain a quadratic Gauss
sum, namely,

2 For simplicity, we restrict to these particular finite fields, but the theory extends to all.
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∑
x∈Fp

e

(
x2

p

)
.

(2) [Multiplicative character sums] Let χ be a nontrivial character of the
finite multiplicative group F×p ; we define χ(0) = 0 to extend it to Fp.
Let f ∈Fp[T] be a polynomial (or a rational function). The corresponding
multiplicative character sum is ∑

x∈Fp

χ(f (x)).

One may also have finitely many polynomials and characters and sum their
products. An important example of these is∑

x∈Fp

χ1(x)χ2(1− x),

for multiplicative characters χ1 and χ2, which is called a Jacobi sum.
(3) [Mixed sums] In fact, one can mix the two types, obtaining a family

of sums that generalize both: fix rational functions f1 and f2 in Fp(T), and
consider the sum ∑

x∈Fp

χ(f1(x))e(f2(x)/p),

where the summand is defined to be 0 if f2(x) is not defined, or if f1(x) is 0
or not defined.

Some of the key examples are obtained in this manner. Maybe the simplest
interesting ones are the Gauss sums attached to χ , defined by∑

x∈Fp

χ(x)e(ax/p),

where a ∈ Fp is a parameter. Others are the sums∑
x∈F×p

χ(x)e

(
ax + bx̄
p

)

for a,b in Fp, which generalize the Kloosterman sums. When χ is a character
of order 2 (i.e., χ(x) is either 1 or−1 for all x ∈ Fp), this is called a Salié sum.

Remark C.6.3 We emphasize that the sums that we discuss range over the
whole finite field (except for values of x where the summand is not defined).
Sums over smaller subsets of Fp (e.g., over a segment 1 � x � N < p of

https://doi.org/10.1017/9781108888226.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781108888226.011


C.6 Exponential Sums 243

integers) are very interesting and important in applications (indeed, they are
the topic of Chapter 6!), but behave very differently.

Except for a few special cases (some of which are discussed below in
exercises), a simple “explicit” evaluation of exponential sums of the previous
types is not feasible. Even deriving nontrivial bounds is far from obvious, and
the most significant progress requires input from algebraic geometry. The key
result, proved by A. Weil in the 1940s, takes the following form (in a simplified
version that is actually rather weaker than the actual statement). It is a special
case of the Riemann Hypothesis over finite fields.

Theorem C.6.4 (Weil) Let χ be a nontrivial multiplicative character modulo
q. Let f1 and f2 be rational functions in Fp[T], and consider the sum∑

x∈Fp

χ(f1(x))e(f2(x)/p).

Assume that either f1 is not of the form gd1 , where d is the order of χ and
g1 ∈ Fp[T], or f2 has a pole of order not divisible by p, possibly at infinity.

Then, there exists an integer β, depending only on the degrees of the
numerator and denominator of f1 and f2, and for 1 � i � β, there exist
complex numbers αi such that |αi | � √p, with the property that

∑
x∈Fp

χ(f1(x))e(f2(x)/p) = −
β∑
i=1

αi .

In particular, we have∣∣∣∣ ∑
x∈Fp

χ(f1(x))e(f2(x)/p)

∣∣∣∣ � β√p.

In fact, one can provide formulas for the integer β that are quite explicit (in
terms of the zeros and poles of the rational functions f1 and f2), and often one
knows that |αi | = √q for all i. For instance, if f1 = 1 (so that the sum is an
additive character sum) and f2 is a polynomial such that 1 � deg(f2) < p,
then β = deg(f2)− 1, and |αi | = √p for all p.

For more discussion and a proof in either the additive or multiplicative
cases, we refer to [75].

The following exercises illustrate this general result in three important
cases. Note however, that there is no completely elementary proof in the case
of Kloosterman sums, where β = 2, leading to (6.1).
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Exercise C.6.5 (Gauss sums) Let χ be a nontrivial multiplicative character of
F×p and a ∈ F×p . Denote

τ(χ,a) =
∑
x∈Fp

χ(x)e(ax/p),

and put τ(χ) = τ(χ,1) (up to normalization, this is the same sum as occurs
in the functional equation for the Dirichlet L-function L(s,χ), see Theorem
C.5.2).

(1) Prove that

|τ(χ,a)| = √p.

(This proves the corresponding special case of Theorem C.6.4 with β = 1
and |α1| = √

p.) [Hint: Compute the modulus square, or apply the discrete
Parseval identity.]

(2) Prove that for any automorphism σ of the field C, we also have

|σ(τ(χ,a))| = √p.

(This additional property is also true for all αi in Theorem C.6.4 in general; it
means that each αi is a so-called p-Weil number of weight 1.)

Exercise C.6.6 (Jacobi sums) Let χ1 and χ2 be nontrivial multiplicative
characters of F×p . Denote

J(χ1,χ2) =
∑
x∈Fp

χ1(x)χ2(1− x).

(1) Prove that

J(χ1,χ2) = τ(χ1)τ (χ2)

τ (χ1χ2)
,

and deduce that Theorem C.6.4 holds for the Jacobi sums J(χ1,χ2) with β = 1
and |α1| = 1. Moreover, show that α1 satisfies the property of the second part
of the previous exercise.

(3) Assume that p ≡ 1 (mod 4). Prove that there exist integers a and b such
that a2+ b2 = p (a result of Fermat). [Hint: Show that there are characters χ1

of order 2 and χ2 of order 4 of F×p , and consider J(χ1,χ2).]

Exercise C.6.7 (Salié sums) Assume that p � 3.
(1) Check that there is a unique nontrivial real character χ2 of F×p . Prove

that for any x ∈ Fp, the number of y ∈ Fp such that y2 = x is 1+ χ2(y).
(2) Prove that

τ(χ2)τ (χ2) = χ(4)τ (χ)τ(χχ2)
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(Hasse–Davenport relation). [Hint: Use the formula for Jacobi sums, and
compute J(χ,χ) in terms of the number of solutions of quadratic equations;
express this number of solutions in terms of χ2.]

For (a,b) ∈ F×p , define

S(a,b) =
∑
x∈F×p

χ2(x)e

(
ax + bx̄
p

)
.

(3) Show that for b ∈ F×p , we have

S(a,b) =
∑
χ

s(χ)χ(a),

where

s(χ) = χ(b)χ2(b)τ (χ̄)τ (χ̄χ2)

q − 1
.

[Hint: Use a discrete multiplicative Fourier expansion.]
(4) Show that

s(χ) = χ2(b)τ (χ2)

q − 1
χ(4b)τ(χ̄2).

(5) Deduce that

S(a,b) = τ(χ2)
∑
ay2=4b

e

(
y

p

)
.

(6) Deduce that Theorem C.6.4 holds for S(a,b)with either β = 0 or β = 2,
in which case, |α1| = |α2| = √p.
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