Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-18T19:07:50.074Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  04 May 2021

Emmanuel Kowalski
Affiliation:
Swiss Federal Institute of Technology, Zürich
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Arguin, L.-P., Belius, D., Bourgade, P., Radziwiłł, M., and Soundararajan, K.: Maximum of the Riemann zeta function on a short interval of the critical line, Commun. Pure Appl. Math. 72 (2017), 500535.Google Scholar
[2] Arratia, R., Barbour, A. D., and Tavaré, S.: Logarithmic combinatorial structures: a probabilistic approach, EMS Monographs, 2003.Google Scholar
[3] Autissier, P., D. Bonolis, and Y. Lamzouri: The distribution of the maximum of partial sums of Kloosterman sums and other trace functions, preprint arXiv:1909.03266.Google Scholar
[4] Bagchi, B.: Statistical behaviour and universality properties of the Riemann zeta function and other allied Dirichlet series, PhD thesis, Indian Statistical Institute, Kolkata, 1981; available at http://library.isical.ac.in:8080/jspui/bitstream/10263/4256/1/TH47.CV01.pdf.Google Scholar
[5] Barbour, A., Kowalski, E., and A. Nikeghbali: Mod-discrete expansions, Probability Theory and Related Fields, 2013; doi:10.1007/s00440-013-0498-8.Google Scholar
[6] Billingsley, P.: On the distribution of large prime factors, Period. Math. Hungar. 2 (1972), 283289.Google Scholar
[7] Billingsley, P.: Prime numbers and Brownian motion, Am. Math. Monthly 80 (1973), 10991115.Google Scholar
[8] Billingsley, P.: The probability theory of additive arithmetic functions, Ann. Probability 2 (1974), 749791.Google Scholar
[9] Billingsley, P.: Probability and measure, 3rd ed., Wiley, 1995.Google Scholar
[10] Billingsley, P.: Convergence of probability measures, 2nd ed., Wiley, 1999.Google Scholar
[11] Blomer, V., Fouvry, É., E. Kowalski, Ph. Michel, D. Milićević, and W. Sawin: The second moment theory of families of L-functions: the case of twisted Hecke L-functions, Mem. AMS, to appear; arXiv:1804.01450.Google Scholar
[12] Bober, J., Kowalski, E., and W. Sawin: On the support of the Kloosterman paths, preprint (2019).Google Scholar
[13] Bombieri, E. and Bourgain, J.: On Kahane’s ultraflat polynomials, J. Eur. Math. Soc. 11 (2009), 627703.Google Scholar
[14] Bonolis, D.: On the size of the maximum of incomplete Kloosterman sums, preprint arXiv:1811.10563.Google Scholar
[15] Bourbaki, N.: Éléments de mathématique, Topologie générale, Springer, 2007.Google Scholar
[16] Bourbaki, N.: Éléments de mathématique, Fonctions d’une variable réelle, Springer, 2007.Google Scholar
[17] Bourbaki, N.: Éléments de mathématique, Intégration, Springer, 2007.Google Scholar
[18] Bourbaki, N.: Éléments de mathématique, Algèbres et groupes de Lie, Springer, 2007.Google Scholar
[19] Bourbaki, N.: Éléments de mathématique, Théories spectrales, Springer, 2019.Google Scholar
[20] Breiman, L.: Probability, Classic in Applied Mathematics, Vol. 7, SIAM, 1992.Google Scholar
[21] Breuillard, E. and H. Oh (eds): Thin groups and super-strong approximation, MSRI Publications Vol. 61, Cambridge University Press, 2014.Google Scholar
[22] Cellarosi, F. and Marklof, J.: Quadratic Weyl sums, automorphic functions and invariance principles, Proc. Lond. Math. Soc. (3) 113 (2016), 775–828.Google Scholar
[23] Cha, B., Fiorilli, D., and Jouve, F.: Prime number races for elliptic curves over function fields, Ann. Sci. Éc. Norm. Supér. (4) 49 (2016), 1239–1277.Google Scholar
[24] Chebyshev, P. L.: Lettre de M. le Professeur Tchébychev à M. Fuss sur un nouveau théorème relatif aux nombres premiers contenus dans les formes 4n+1 et 4n + 3, in Oeuvres de P.L. Tchebychef, vol. I, Chelsea, 1962, pp. 697–698; also available at https://archive.org/details/117744684001/page/n709.Google Scholar
[25] Cohen, H. and Lenstra, H. W. Jr.: Heuristics on class groups of number fields, in Number theory (Noordwijkerhout, 1983), LNM, Vol. 1068, Springer, 1984, pp. 33–62.Google Scholar
[26] Devin, L.: Chebyshev’s bias for analytic L-functions, Math. Proc. Cambridge Philos. Soc. 169 (2020), 103140.Google Scholar
[27] Donnelly, P. and Grimmett, G.: On the asymptotic distribution of large prime factors, J. London Math. Soc. 47 (1993), 395404.Google Scholar
[28] Duistermaat, J. J. and Kolk, J. A. C.: Distributions: theory and applications, Birkhaüser, 2010.Google Scholar
[29] Duke, W., Friedlander, J., and Iwaniec, H.: Equidistribution of roots of a quadratic congruence to prime moduli, Ann. Math. 141 (1995), 423441.Google Scholar
[30] Einsiedler, M. and T. Ward: Ergodic theory: with a view towards number theory, Graduate Texts in Mathematics, Vol. 259, Springer,2011.Google Scholar
[31] Elkies, N. D. and C. T. McMullen: Gaps in n mod 1 and ergodic theory, Duke Math. J. 123 (2004), 95–139.Google Scholar
[32] Ellenberg, J. S., Venkatesh, A., and Westerland, C.: Homological stability for Hurwitz spaces and the Cohen-Lenstra conjecture over function fields, Ann. Math. 183 (2016), 729786.Google Scholar
[33] Erdős, P.: On the density of some sequences of numbers, III, J. LMS 13 (1938), 119127.Google Scholar
[34] Erdős, P.: On the smoothness of the asymptotic distribution of additive arithmetical functions, Am. J. Math. 61 (1939), 722725.Google Scholar
[35] Erdős, P. and Kac, M.: The Gaussian law of errors in the theory of additive number theoretic functions, Am. J. Math. 62 (1940), 738742.Google Scholar
[36] Erdős, P. and Wintner, A.: Additive arithmetical functions and statistical independence, Am. J. Math. 61 (1939), 713721.Google Scholar
[37] Feller, W.: An introduction to probability theory and its applications, Vol. 2, Wiley, 1966.Google Scholar
[38] Fiorilli, D. and F. Jouve: Distribution of Frobenius elements in families of Galois extensions, preprint, https://hal.inria.fr/hal-02464349.Google Scholar
[39] Fyodorov, Y. V., Hiary, G. A., and Keating, J. P.: Freezing transition, characteristic polynomials of random matrices, and the Riemann zeta-function, Phys. Rev. Lett. 108 (2012), 170601.Google Scholar
[40] Folland, G. B.: Real analysis, Wiley, 1984.Google Scholar
[41] Ford, K.: The distribution of integers with a divisor in a given interval, Ann. Math. 168 (2008), 367433.Google Scholar
[42] Fouvry, É., Kowalski, E., and Michel, Ph.: An inverse theorem for Gowers norms of trace functions over Fp , Math. Proc. Cambridge Philos. Soc. 155 (2013), 277295.Google Scholar
[43] Friedlander, J. and H. Iwaniec: Opera de cribro, Colloquium Publ. 57, AMS, 2010.Google Scholar
[44] Gallagher, P. X.: The large sieve and probabilistic Galois theory, in Proc. Symp. Pure Math., Vol. XXIV, AMS, 1973, pp. 91–101.Google Scholar
[45] Gallagher, P. X.: On the distribution of primes in short intervals, Mathematika 23 (1976), 49.Google Scholar
[46] Gerspach, M.: On the pseudomoments of the Riemann zeta function, PhD thesis, ETH Zürich, 2020.Google Scholar
[47] Ghys, É.: Dynamique des flots unipotents sur les espaces homogènes, Séminaire N. Bourbaki 1991–92, exposé 747; http://numdam.org/item?id=SB_1991-1992_34_93_0.Google Scholar
[48] Granville, A.: The anatomy of integers and permutations, preprint (2008), www.dms.umontreal.ca/∼andrew/PDF/Anatomy.pdf.Google Scholar
[49] Granville, A. and Granville, J.: Prime suspects, illustrated by R. J. Lewis, Princeton University Press, 2019.Google Scholar
[50] Granville, A. and Martin, G.: Prime number races, Am. Math. Monthly 113 (2006), 133.Google Scholar
[51] Granville, A. and K. Soundararajan: Sieving and the Erdös-Kac theorem, in Equidistribution in number theory, an introduction, Springer, 2007, pp. 15–27.Google Scholar
[52] Hardy, G. H. and E. M. Wright: An introduction to the theory of numbers, 5th ed., Oxford University Press, 1979.Google Scholar
[53] Harper, A.: Two new proofs of the Erdős-Kac Theorem, with bound on the rate of convergence, by Stein’s method for distributional approximations, Math. Proc. Camb. Philos. Soc. 147 (2009), 95114.Google Scholar
[54] Harper, A.: The Riemann zeta function in short intervals, Séminaire N. Bourbaki, 71ème année, exposé 1159, March 2019.Google Scholar
[55] Harper, A.: On the partition function of the Riemann zeta function, and the Fyodorov–Hiary–Keating conjecture, preprint (2019); arXiv:1906.05783.Google Scholar
[56] Harper, A. and Lamzouri, Y.: Orderings of weakly correlated random variables, and prime number races with many contestants, Probab. Theory Related Fields 170 (2018), 9611010.Google Scholar
[57] Hooley, C.: On the distribution of the roots of polynomial congruences, Mathematika 11 (1964), 3949.Google Scholar
[58] Ireland, K. and Rosen, M.: A classical introduction to modern number theory, 2nd ed., GTM 84, Springer, 1990.Google Scholar
[59] Iwaniec, H. and Kowalski, E.: Analytic number theory, Colloquium Publ. 53, AMS, 2004.Google Scholar
[60] Kallenberg, O.: Foundations of modern probability theory, Probability and Its Applications, Springer, 1997.Google Scholar
[61] Katz, N. M.: Gauss sums, Kloosterman sums and monodromy groups, Annals of Mathematics Studies, Vol. 116, Princeton University Press, 1988.Google Scholar
[62] Katz, N. M. and Sarnak, P.: Zeroes of zeta functions and symmetry, Bull. Am. Math. Soc. 36 (1999), 126.Google Scholar
[63] Keating, J. P. and Snaith, N. C.: Random matrix theory and ζ(1/2+it), Commun. Math. Phys. 214 (2000), 5789.Google Scholar
[64] Koukoulopoulos, D.: Localized factorizations of integers, Proc. London Math. Soc. 101 (2010), 392426.Google Scholar
[65] Kowalski, E.: The large sieve and its applications, Cambridge Tracts Math., Vol. 175, Cambridge University Press, 2008.Google Scholar
[66] Kowalski, E.: Poincaré and analytic number theory, in The scientific legacy of Poincaré, edited by É. Charpentier, É. Ghys, and A. Lesne, AMS, 2010.Google Scholar
[67] Kowalski, E.: Sieve in expansion, Séminaire Bourbaki, Exposé 1028 (November 2010), in Astérisque 348, Soc. Math. France (2012), 1764.Google Scholar
[68] Kowalski, E.: The large sieve, monodromy, and zeta functions of algebraic curves, II Independence of the zeros, Art. ID rnn 091, IMRN (2008).Google Scholar
[69] Kowalski, E.: Families of cusp forms, Pub. Math. Besançon 2013 (2013), 540.Google Scholar
[70] Kowalski, E.: An introduction to the representation theory of groups, Graduatte Studies in Mathematics, Vol. 155, AMS, 2014.Google Scholar
[71] Kowalski, E.: The Kloostermania page, http://blogs.ethz.ch/kowalski/the-kloostermania-page/.Google Scholar
[72] Kowalski, E.: Bagchi’s Theorem for families of automorphic forms, in Exploring the Riemann Zeta function, Springer, 2017, pp. 180–199.Google Scholar
[73] Kowalski, E.: Averages of Euler products, distribution of singular series and the ubiquity of Poisson distribution, Acta Arithmetica 148.2 (2011), 153187.Google Scholar
[74] Kowalski, E.: Expander graphs and their applications, Cours Spécialisés 26, Soc. Math. France, 2019.Google Scholar
[75] Kowalski, E.: Exponential sums over finite fields, I: elementary methods, www.math.ethz.ch/∼kowalski/exp-sums.pdf.Google Scholar
[76] Kowalski, E. and Michel, Ph.: The analytic rank of J0 (q) and zeros of automorphic L-functions, Duke Math. J. 100 (1999), 503542.Google Scholar
[77] Kowalski, E. and Nikeghbali, A.: Mod-Poisson convergence in probability and number theory, International Mathematics Research Notices 2010; doi:10.1093/imrn/rnq019.Google Scholar
[78] Kowalski, E. and Nikeghbali, A.: Mod-Gaussian convergence and the value distribution of ζ(1/2 + it) and related quantities, J. LMS 86 (2012), 291319.Google Scholar
[79] Kowalski, E. and Sawin, W.: Kloosterman paths and the shape of exponential sums, Compositio Math. 152 (2016), 14891516.Google Scholar
[80] Kowalski, E. and Soundararajan, K.: Equidistribution from the Chinese Remainder Theorem, preprint (2020).Google Scholar
[81] Krylov, N. V.: Introduction to the theory of random processes, Graduate Studies in Mathematics, Vol. 43, AMS, 2002.Google Scholar
[82] Lamzouri, Y.: On the distribution of the maximum of cubic exponential sums, J. Inst. Math. Jussieu 19 (2020), 12591286.Google Scholar
[83] Li, D. and Queffélec, H.: Introduction à l’étude des espaces de Banach; Analyse et probabilités, Cours Spécialisés, Vol. 12, SMF, 2004.Google Scholar
[84] Lubotzky, A., Phillips, R., and Sarnak, P.: Ramanuajan graphs, Combinatorica 8 (1988), 261277.Google Scholar
[85] Bosma, W., Cannon, J., and Playoust, C.: The Magma algebra system, I. The user language, J. Symbolic Comput. 24 (1997), 235–265; also http://magma.maths.usyd.edu.au/magma/.Google Scholar
[86] Markov, J. and Strömbergsson, A.: The three gap theorem and the space of lattices, Am. Math. Monthly 124 (2017), 741745.Google Scholar
[87] Milićević, D. and Zhang, S.: Distribution of Kloosterman paths to high prime power moduli, preprint, arXiv:2005.08865.Google Scholar
[88] Montgomery-Smith, S. J.: The distribution of Rademacher sums, Proc. AMS 109 (1990), 517522.Google Scholar
[89] Morris, D. W.: Ratner’s theorems on unipotent flows, Chicago Lectures in Mathematics, University of Chicago Press, 2005.Google Scholar
[90] Najnudel, J.: On the extreme values of the Riemann zeta function on random intervals of the critical line, Probab. Theory Related Fields 172 (2018), 387452.Google Scholar
[91] Neukirch, J.: Algebraic number theory, Springer, 1999.Google Scholar
[92] Perret-Gentil, C.: Some recent interactions of probability and number theory, Newsl. Eur. Math. Soc. (March 2019).Google Scholar
[93] PARI/GP, version 2.6.0, Bordeaux, 2011, http://pari.math.u-bordeaux.fr/.Google Scholar
[94] Pintz, J.: Cramér vs. Cramér: on Cramér’s probabilistic model for primes, Functiones Approximatio 37 (2007), 361376.Google Scholar
[95] Radziwiłł, M. and Soundararajan, K.: Selberg’s central limit theorem for log |ζ(1/2 + it)|, L’enseignement Math. 63 (2017), 119.Google Scholar
[96] Radziwiłł, M. and Soundararajan, K.: Moments and distribution of central L-values of quadratic twists of elliptic curves, Invent. Math. 202 (2015), 10291068.Google Scholar
[97] Radziwiłł, M. and Soundararajan, K.: Value distribution of L-functions, Oberwolfach report 40/2017, to appear.Google Scholar
[98] Randal-Williams, O.: Homology of Hurwitz spaces and the Cohen–Lenstra heuristic for function fields (after Ellenberg, Venkatesh, and Westerland), Seminaire N. Bourbaki 2019, exposé 1162; arXiv:1906.07447; in Astérisque, to appear.Google Scholar
[99] Ratner, M.: On Raghunathan’s measure conjecture, Ann. Math (2) 134 (1991), 545–607.Google Scholar
[100] Rényi, A. and Turán, P.: On a theorem of Erdős and Kac, Acta Arith. 4 (1958), 7184.Google Scholar
[101] Ricotta, G. and Royer, E.: Kloosterman paths of prime powers moduli, Comment. Math. Helv. 93 (2018), 493532.Google Scholar
[102] Ricotta, G., Royer, E., and I. Shparlinski: Kloosterman paths of prime powers moduli, II, Bull. SMF, to appear.Google Scholar
[103] Rotman, J.: Advanced modern algebra, part I, 3rd ed., Graduate Studies in Mathematics, Vol. 165, AMS, 2015.Google Scholar
[104] Revuz, D. and Yor, M.: Continuous martingales and Brownian motion, 3rd ed., Springer, 1999.Google Scholar
[105] Rubinstein, M. and Sarnak, P.: Chebyshev’s bias, Exp. Math. 3 (1994), 173197.Google Scholar
[106] Rudin, W.: Real and complex analysis, McGraw-Hill, 1970.Google Scholar
[107] Sarnak, P.: letter to B. Mazur on the Chebychev bias for τ(p), https://publications.ias.edu/sites/default/files/MazurLtrMay08.PDF.Google Scholar
[108] Schoenberg, I.: Über die asymptotische Verteilung reeller Zahlen mod 1, Math. Z. 28 (1928), 171199.Google Scholar
[109] Schoenberg, I.: On asymptotic distributions of arithmetical functions, Trans. AMS 39 (1936), 315330.Google Scholar
[110] Selberg, A.: Contributions to the theory of the Riemann zeta function, Arch. Math. Naturvid. 48 (1946), 89–155; or in Collected works, I.Google Scholar
[111] Serre, J.-P.: Linear representations of finite groups, Graduate Texts in Mathematics, Vol. 42, Springer, 1977.Google Scholar
[112] Serre, J.-P.: A course in arithmetic, Graduate Texts in Mathematcis, Vol. 7, Springer, 1973.Google Scholar
[113] Sós, V. T.: On the theory of diophantine approximations, Acta Math. Acad. Sci. Hungar. 8 (1957), 461472.Google Scholar
[114] Talagrand, M.: Concentration of measure and isoperimetric inequalities in product spaces, Publ. Math. IHÉS 81 (1995), 73205.Google Scholar
[115] Tenenbaum, G.: Introduction to analytic and probabilistic number theory, Cambridge Studies in Advanced Mathematics, Vol. 46, Cambridge University Press, 1995.Google Scholar
[116] Titchmarsh, E. C.: The theory of functions, 2nd ed., Oxford University Press, 1939.Google Scholar
[117] Titchmarsh, E. C.: The theory of the Riemann zeta function, 2nd ed., Oxford University Press, 1986.Google Scholar
[118] Tóth, A.: Roots of quadratic congruences, Int. Math. Res. Notices 2000 (2000), 719–739.Google Scholar
[119] Voronin, S. M.: Theorem on the universality of the Riemann zeta function, Izv. Akad. Nauk SSSR, Ser. Matem. 39 (1975), 475–486; English translation in Math. USSR Izv. 9 (1975), 443–445.Google Scholar
[120] Weyl, H.: Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1914), 313–352.Google Scholar
[121] Zygmund, A.: Trigonometric sums, 3rd ed., Cambridge Math Library, Cambridge, University Press 2002.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Emmanuel Kowalski, Swiss Federal Institute of Technology, Zürich
  • Book: An Introduction to Probabilistic Number Theory
  • Online publication: 04 May 2021
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Emmanuel Kowalski, Swiss Federal Institute of Technology, Zürich
  • Book: An Introduction to Probabilistic Number Theory
  • Online publication: 04 May 2021
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Emmanuel Kowalski, Swiss Federal Institute of Technology, Zürich
  • Book: An Introduction to Probabilistic Number Theory
  • Online publication: 04 May 2021
Available formats
×