We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This research paper assessed textural, microstructural, sensory and colour properties of set-yoghurts produced using milk from two indigenous cattle types, Thamankaduwa White (TW) and Lankan cattle (LC) compared to two generic cattle breeds, Friesian and Jersey. Instrumental texture profile (firmness, adhesiveness, cohesiveness and springiness), colour space (L* a* b*) and scanning electron micrographs of set-yoghurts during 21 d of storage (4 ± 1°C) were evaluated. Sensory quality attributes were evaluated with 40 untrained panellists using a five-point hedonic scale. Set-yoghurts prepared using indigenous cow milk showed higher (P < 0.05) firmness, cohesiveness and apparent viscosity values compared to those prepared using generic cow milk. As revealed by micrographs, set-yoghurts made from TW milk had lesser and smaller void spaces and a dense protein gel network than gels made from LC and the two generic breeds. The gel network made from Friesian milk showed a comparatively larger porous gel structure and thinner protein strands resulting in a weaker gel than other milk gels. The highest lightness (L*) and yellowness (b*) were observed from set-yoghurt produced from Friesian and LC milk, respectively. Set-yoghurts from TW milk had the highest (P < 0.05) sensory scores for all sensory attributes. The lowest sensory acceptance was recorded in set-yoghurt made from Friesian milk. Thus, milk from TW and LC is likely to be suitable in producing set-yoghurts with superior textural, microstructural and sensory properties, compared to milk from Jersey and Friesian. Our results suggest the merits of using indigenous cow milk in producing set-yoghurts and, thereby, prioritizing the preservation of the genetic pool of these indigenous breeds.
That Telemann’s annual cycles of church cantatas are differentiated from one through text, music, and scoring was first recognized in the previous century by Werner Menke and Wolf Hobohm. Subsequent studies by Ute Poetzsch-Seban, Christiane Jungius, and others have advanced our understanding of this phenomenon by considering several cycles in relation to others. The present author’s dissertation on Telemann’s Stolbergischer Jahrgang to poetry by Gottfried Behrndt provided the first comprehensive overview of one of the composer’s cycles, including perspectives on his strategies for establishing their individual profiles. This chapter pursues two goals: to offer insights and evaluations of the Stolbergischer Jahrgang in terms of the cantatas’ texts, tonality, scoring, and movement types; and to reflect on Telemann’s tendencies and motivations across his output of cantata cycles. Along the way, I formulate open questions and outline the present state of knowledge regarding Telemann’s efforts to give his cantata cycles distinct profiles.
It is well known that most of Telemann’s regular church music was conceived in the context of annual cantata cycles. Yet there are still many individual works that have not been assigned to any cycle, raising the possibility that they may offer clues to identifying previously unknown ones. In some fortunate circumstances, published poetry allows us to assign music to a particular cantata cycle, as in the case of poems by Erdmann Neumeister, Tobias Heinrich Schubart, Gottfried Behrndt, and others. When this is not the case, one must investigate formal, musical, or other parameters in order to establish a likely connection to a cycle. These methodological possibilities are applied here to identify a fragmentarily preserved cycle that was first performed in Hamburg during the 1733–34 church year.
Gray-level co-occurrence matrix (GLCM) analysis is a contemporary and innovative computational method for the assessment of textural patterns, applicable in almost any area of microscopy. The aim of our research was to perform the GLCM analysis of cell nuclei in Saccharomyces cerevisiae yeast cells after the induction of sublethal cell damage with ethyl alcohol, and to evaluate the performance of various machine learning (ML) models regarding their ability to separate damaged from intact cells. For each cell nucleus, five GLCM parameters were calculated: angular second moment, inverse difference moment, GLCM contrast, GLCM correlation, and textural variance. Based on the obtained GLCM data, we applied three ML approaches: neural network, random trees, and binomial logistic regression. Statistically significant differences in GLCM features were observed between treated and untreated cells. The multilayer perceptron neural network had the highest classification accuracy. The model also showed a relatively high level of sensitivity and specificity, as well as an excellent discriminatory power in the separation of treated from untreated cells. To the best of our knowledge, this is the first study to demonstrate that it is possible to create a relatively sensitive GLCM-based ML model for the detection of alcohol-induced damage in Saccharomyces cerevisiae cell nuclei.
The analogy between music and language is both problematic and essential for any rich understanding of musical Romanticism. Few commentators today would accept that music functions as a language; but the idea that music has poetic, literary, or dramatic substance is foundational to Romantic aesthetics and find expression in music as stylistically disparate as Berlioz’s Symphonie fantastique and Schumann’s Papillons. This chapter explores the musical languages of Romanticism, focusing both on the melodic, harmonic, and formal dimensions of musical practice and on the literary and linguistic labour they perform. It explores music from Beethoven and Field at the turn of the nineteenth century to Brahms and Mussorgsky at the century’s end, paying attention to the contrasted thematic cultures that Beethoven and Field instantiate, the harmonic innovations of Schubert, Liszt, Brahms, and Mussorgsky, and the intersections of form and narrative in Schumann’s Second Symphony.
Methods based on the evaluation of textural patterns in microscopy, such as the “gray-level co-occurrence matrix” (GLCM) analysis are modern and innovative computer and mathematical algorithms that can be used to quantify subtle structural changes in cells and their organelles. Potential application of GLCM method in the fields of psychophysiology and psychiatry to this date has not been systematically investigated. The main objective of our study was to test the existence and strength of the association between chromatin structural organization of peripheral blood neutrophils and levels of self-perceived mental stress. The research was done on a sample of 100 healthy student athletes, and the Depression, Anxiety, and Stress Scales (DASS-21) were used for the estimation of psychological distress. Chromatin textural homogeneity and uniformity were negatively correlated (p < 0.01) with mental distress and had relatively good discriminatory power in differentiating participants with normal and elevated stress levels. As an addition, we propose the creation of a machine learning model based on binomial logistic regression that uses these and other GLCM features to predict stress elevation. To the best of our knowledge, these results are one of the first to establish the link between neutrophil chromatin structural organization quantified by the GLCM method and indicators of normal psychological functioning.
Chapter 4 is an introduction to the architecture and makeup of soils as observed during study and sampling. This chapter is abridged in such a way as to provide an understandable foundation for the following chapters. In the classroom, this chapter can be presented and illustrated with any number of soil profile photos, and associated data, all of which are readily accessible on the internet. Additionally, even in urban settings, a class can be taught outdoors near the classroom, and a soil core can be extracted, laid sequentially on a tarp, and examined using the concepts and terms introduced in the chapter.
Thin films of platinum deposited by physical vapor deposition (PVD) processes such as evaporation and sputtering are used in many academic and industrial settings, for example to provide metallization when tolerance to corrosive thermal cycling is desired, or in electrocatalysis research. In this review, various practical considerations for platinum (Pt) metallization on both Si and SiO2 are placed in context with a comprehensive data review of diffusion measurements. The relevance of diffusion phenomena to the development of microstructure during deposition as well as the effect of microstructure on the properties of deposited films are discussed with respect to the Pt–Si system. Since Pt and Si readily form silicides, diffusion barriers are essential components of Pt metallization on Si, and various failure modes for diffusion barriers between Pt and Si are clarified with images obtained by electron microscopy. Adhesion layers for Pt films deposited on SiO2 are also considered.
The effects of trace Ca and Sr addition on dynamic precipitates, dynamic recrystallization (DRX) behavior, and texture evolution of Mg–5Zn alloy sheets fabricated by high strain rate rolling (HSRR) were investigated by electron backscattered diffraction (EBSD), transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS), and X-ray diffraction (XRD). The Zn-rich precipitates formed with plate shapes, short-rod shapes, and near-spherical shapes, indicating that the most important function of adding Ca and Sr is to promote the precipitation process. The precipitate density increases, but the precipitate size and DRX volume fraction decrease with the addition of the alloying elements. It is concluded that the effects of combined Ca/Sr addition on promoting precipitation and refining precipitate size are more effective than that of single Ca addition, and the reduction in DRX volume fraction can be attributed to the inhibition of fine precipitation on the nucleation and growth of DRX. Moreover, the macro-texture intensity is mainly related to DRX as the DRX grains are much more randomly oriented than deformed grains. In addition, the texture intensity in DRX regions is primarily associated with the precipitates, which can inhibit DRX grain rotation due to their pinning effect on the grain boundaries.
This chapter rejoins the methodology of normative approaches to voice-ranges and functions sketched in Chapter 5. Renaissance polyphony is considered in terms of the related compositional determinants of scoring, texture, and scale. The principal topics are: fifteenth-century pieces that lie outside the normative parameters seen in Chapter 5; the rise of imitation, viewed as a sub-category of texture, through to its paradigmatic status in the sixteenth century; the polyphony of the English Renaissance, much of whose earlier history develops along very different lines to continental music; and finally, the changes of approach to scale in Renaissance polyphony, from the ‘out-sized’ cyclic Masses at the turn of the sixteenth century to the growing emphasis on the number of voices, culminating in the ‘sonic blockbusters’ fashionable in European courts at the end of the century, whose most enduring manifestation is Tallis’ forty-part motet ‘Spem in alium’.
The formation of shear bands during hot deformation of a two-phase (α2 + γ) titanium aluminide and its consequences on dynamics softening has been investigated. The starting material consists of a colony of lamellar grains along with the segregated vanadium and niobium which was subjected to hot deformation in the temperature range 1000–1175 °C at the strain rate 10 s−1. Microstructures of the deformed samples indicate that, with increase in the deformation temperature, the orientation of shear bands changes. Moreover, the extent of dynamic recrystallization also increases with deformation temperature. The softening behaviour and crystallographic orientation change within lamellae during hot deformation have been explored. The nucleation of newly recrystallized grains has been observed at twin–parent grain boundary and within the twined γ phase. Lamellae of the γ and α2 phase have been also observed to be twisted and tilted, leading to the band formations under the load, whose mechanisms have also been explored in the present study.
In this study, mechanical properties and microstructural investigation of Ti64 at high strain rate are studied using a split-Hopkinson pressure bar method under compression for temperatures up to 800 °C. Flow softening in the mechanical response of material to such loading conditions hints at instability in compression, which increases with an increase in temperature. Microstructural characterization of the deformed material is characterized using the electron-backscattered diffraction technique. It reveals the presence of instabilities in Ti64 in the form of a fine network of shear bands. The shear band width grows with an increase in temperature along with the area fraction of shear band in the material, displaying its improved capacity to contain microstructural instabilities at higher temperature. After a detailed microstructural investigation, a mechanism for shear band widening is proposed. Based on this mechanism, a path generating nuclei within shear bands is discussed.
Traumatic brain injury (TBI) is a main cause of death and disabilities in young adults. Although learning and memory impairments are a major clinical manifestation of TBI, the consequences of TBI on the hippocampus are still not well understood. In particular, how lesions to the sensorimotor cortex damage the hippocampus, to which it is not directly connected, is still elusive. Here, we study the effects of sensorimotor cortex ablation (SCA) on the hippocampal dentate gyrus, by applying a highly sensitive gray-level co-occurrence matrix (GLCM) analysis. Using GLCM analysis of granule neurons, we discovered, in our TBI paradigm, subtle changes in granule cell (GC) morphology, including textual uniformity, contrast, and variance, which is not detected by conventional microscopy. We conclude that sensorimotor cortex trauma leads to specific changes in the hippocampus that advance our understanding of the cellular underpinnings of cognitive impairments in TBI. Moreover, we identified GLCM analysis as a highly sensitive method to detect subtle changes in the GC layers that is expected to significantly improve further studies investigating the impact of TBI on hippocampal neuropathology.
A detailed electron backscatter diffraction (EBSD) characterization was utilized to investigate abnormal grain growth behavior of nanocrystalline (NC) Au films constrained by a flexible substrate under cyclic loading. Abnormally grown grains (AGGs) in front of about 15 fatigue cracks were picked out to investigate the grain reorientation behavior during abnormal grain growth in the fatigue crack tip in the cyclically deformed thin films. It shows that the AGGs exhibited 〈001〉 orientation along the loading direction, whereas grains grown far away from fatigue cracks had no significant texture change. The cyclic cumulative shear strain was found to play a key role in grain reorientation. A lattice rotation model was proposed to elucidate the grain reorientation mechanism during abnormal grain growth. Such grain reorientation behavior of NC metals was found to provide an intrinsic resistance of the NC metals to fatigue damage.
Phase change materials (PCMs) are getting increasing interest due to their capacity to absorb, store and release heat energy. Their effectiveness is characterized by quantities of absorbed/released heat energy, expressed as enthalpy. Specifically, the larger is the enthalpy, the more efficient thermoregulation effect is achieved. With this in mind, PCMs can be used in the manufacture of thermally regulated clothing in order to minimize heat strain and simultaneously improve thermal comfort. Moreover, such materials also modify their infrared radiation emission during phase transition, thus they can be envisioned to exploit thermal shielding applications. The aim of the present research was to investigate the infrared emissivity of textiles composed by cotton yarns with dispersed PCMs. The organic microcapsules of phase change materials, having different binding to the fibre mechanisms, were padded onto the fabric surface by pad-dry-cure method. The thermal properties and stabilities were measured using differential scanning calorimetry, while infrared emissivity was characterized using infrared thermographic technique. The obtained experimental results show a dynamic tuning of IR emissivity during heating/cooling process which can be correlated to the type and properties (enthalpy of fusion) of the corresponding PCM.
Fe–6.5 Si–0.05 B alloy was used in the study to investigate the texture evolution and magnetic property of the ferromagnetic crystal under an axial high magnetic field during bulk solidification. Optical microscopy (OM) and X-ray diffraction (XRD) were applied to analyze the microstructures and texture evolution of the alloy solidified under different magnetic field intensities. The result shows that with an increase in the magnetic field intensity from 0 to 2 T, the texture gradually changes from random orientation to {100} 〈120〉, eventually becoming a mixture of cube and Goss texture. The alloys treated at 1 and 2 T showed magnetic anisotropic behavior, while the alloy treated at 0 T showed magnetic isotropic behavior. The change in magnetic property comes from the evolution of α-Fe crystal orientation. Furthermore, a method for controlling the crystallization process and crystallographic orientation by adjusting the magnetic field intensity was proposed.
A thin-walled copper (Cu)–tin (Sn) alloy cylinder was treated after spinning at 200–400°C for 0.5 h. The characteristics of the alloy microstructure under different temperatures were analyzed through electron back-scattered diffraction. The results were as follows. The grain size at 200–300°C decreases as the heat treatment temperature rises, but the grain size at 400°C increases. At 200–300°C, the microstructure primarily consists of deformed grains. It is found that the main reason for the formation of high-angle grain boundaries (HAGBs) is static recrystallization. For the grain boundary orientation differential, the low-angle sub-grain boundary gradually grows into the HAGB, and multiple annealing twin Σ9 boundaries appear. Grain orientation is generally random at any temperature range. The mechanical property test indicated that, at the upper critical recrystallization temperature of 300°C, the elongation of the Cu–Sn alloy gradually increases, and its yield strength and ultimate tensile strength rapidly decrease.
A novel solid-clad-by-liquid method was developed to form a 10-m long by 10-mm wide by 80-μm thick Ni–5 at.% W/Ni–9.3 at.% W/Ni–5 at.% W composite tape. Three deformation routes (cold rolling, cold rolling with intermediate annealing, and cold rolling combined with warm rolling) have been investigated in short Ni–5 at.% W/Ni–9.3 at.% W/Ni–5 at.% W composite substrate. To optimize the dynamic continuous annealing parameters for the long composite substrates, air-cooled and furnace-cooled annealing procedures were compared in short Ni–5 at.% W/Ni–9.3 at.% W/Ni–5 at.% W composite substrates. Improved cube texture of 98.7% in a 10-m long by 10-mm wide by 80-μm thick Ni–5 at.% W/Ni–9.3 at.% W/Ni–5 at.% W composite substrate was achieved via warm rolling deformation at 550 °C and two-step dynamic continuous annealing (750 °C for 1 h followed by 1200 °C for 1 h). The yield strength, Curie temperature, and saturation magnetization of 176 MPa, 324 K, and 18 emu/g, respectively, were obtained.
This paper aims at understanding the texture evolution in extruded oxide dispersion strengthened 18Cr ferritic steel during high-temperature uniaxial compression testing at 1,423 K at a strain rate of 0.01/s based on extensive electron back scatter diffraction characterization. The α-fiber texture is observed along the extrusion direction (ED) in the initial microstructure. The flow curves generated during uniaxial compression test are used to determine the associated hardening parameters. In addition, the degree of texture evolution after deformation along the ED and the transverse direction (TD) with respect to the initial condition has been predicted using VPSC-5 constitutive model. The prediction shows that the deformation along the ED produces a dominant γ-fiber texture in contrast to the TD. This is in agreement with the experimental results where γ-fiber texture is observed, due to enhanced dynamic recrystallization at high-temperature deformation.
In the present work, a β-Ti alloy (Ti–15V–3Sn–3Cr–3Al) was unidirectionally cold rolled to 80% thickness reduction, followed by recrystallization at two temperatures: (i) 1013 K and (ii) 1053 K. The microstructural developments were studied using light optical microscopy, scanning electron microscopy X-ray peak profile analysis, and electron backscattered diffraction. The bulk texture of deformed and fully recrystallized samples was studied using X-ray diffraction. The deformed microstructures showed the presence of high fraction of shear bands, and these bands were preferentially formed in γ-fiber grains than in the grains with other orientations. Cold rolled β-Ti alloy samples were fully recrystallized in 10 min at 1053 K and in 90 min at 1013 K. Strong α- and γ-fibers were formed after 80% cold rolling, while strong discontinuous γ-fiber (with very strong {111}〈112〉 component) was formed after complete recrystallization. Oriented nucleation was found to be the dominant mechanism for the development of recrystallization texture.