Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-22T03:01:57.840Z Has data issue: false hasContentIssue false

Structural Organization of Na- and K-Montmorillonite Suspensions in Response to Osmotic and Thermal Stresses

Published online by Cambridge University Press:  28 February 2024

K. Faisandier
Affiliation:
Université d'Orléans, CRMD-Université, UMR 6619, UFR Faculté des Sciences, rue de Chartres, BP 6759, 45067 Orléans CEDEX 2, France
C. H. Pons
Affiliation:
Université d'Orléans, CRMD-Université, UMR 6619, UFR Faculté des Sciences, rue de Chartres, BP 6759, 45067 Orléans CEDEX 2, France
D. Tchoubar
Affiliation:
Université d'Orléans, CRMD-Université, UMR 6619, UFR Faculté des Sciences, rue de Chartres, BP 6759, 45067 Orléans CEDEX 2, France
F. Thomas
Affiliation:
LEM, UA 235 du CNRS, BP 40, 54501 Vandoeuvre CEDEX, France

Abstract

In order to understand the influence of salt concentration and temperature on the behavior and properties of clays used in drilling muds, we studied montmorillonite supensions (4 g clay/100 g solution) in 0.1, 0.5 and 1 M NaCl and KCl solutions. A fraction of each sample was heated to 200 °C in a closed vessel for 7 d, then cooled at room temperature (RT, 25 °C). Small-angle X-ray scattering (SAXS) spectra were recorded, for all the samples, at RT. The structure of the clay particles was determined by comparing the experimental intensity with the theoretical intensity computed from a model that took into account the number of layers per particle, the hydration state of the layers (0, l, 2, 3 or 4 water layers) and the order in the succession of these states. With this set of parameters, we can compute the mean statistical parameters (mean number of layers per particle), (mean interlayer distance) and δ¯2/2 (parameter describing the disorder of the distribution of interlayer distances). The evolution of these parameters shows that:

  1. 1) At low concentration (0.1 M NaCl or KCl), the samples do not consist of particles but of isolated layers (M = 1). The suspensions form gel-like structures. The difference between Na and K suspensions, or between heated and nonheated samples, is unnoticeable at the studied scale (5–500 Å).

  2. 2) An increase in salt concentration (from 0.1 to 0.5 M) brings the sample in a granular state: we notice the appearance of particles at 0.5 M ( ≥ 25). Differences appear between NaCl and KCl suspensions, and the temperature effect becomes visible. Thus, we noticed that in NaCl suspensions, particles are composed of hydrated layers (1, 2, 3 or 4 water layers) and internal porosity (d > 30 Å), whereas suspensions in KCl are characterized by the presence of interlayer distances of 10 Å, that is, of collapsed layers. Particles in the KCl suspensions are much thicker than in the NaCl corresponding ones, and also less hydrated at the interlayer level as well as at the internal porosity level. Further increase in salt concentration (0.5 to 1 M) amplifies this effect. As far as temperature is concerned, its effect is to promote the clay dispersion by breaking up the particles, dehydrating and disordering them. This effect is more important for low salt concentration, that is, when the system is less stressed.

Type
Research Article
Copyright
Copyright © 1998, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barshad, I., 1953 Adsorptive and swelling properties of clay water system Clays Clay Miner 1 7077 10.1346/CCMN.1952.0010108.CrossRefGoogle Scholar
Ben Rhaiem, H., 1983 Etude du comportement hydrique des montmorillonites calciques et sodiques par analyse de la diffusion des rayons X aux petits angles. Mise en évidence de la transition solide hydraté-gel [Ph.D. thesis] Orléans, France Univ of Orléans.Google Scholar
Ben Rhaiem, H. Pons, C.H. Tessier, D., Schultz, L.G. van Olphen, H. and Mumpton, F.A., 1987 Factors affecting the microstructure of smectites. Role of cation and history of applied stresses Proc Int Clay Conf Denver, USA. Bloomington, IN Clay Miner Soc 292297.Google Scholar
Ben Rhaiem, H. Tessier, D. and Pons, C.H., 1986 Comportement hydrique et évolution structurale et texturale des montmorillonites au cours d’un cycle de desiccation-humectation: I. Cas des montmorillonites calciques Clay Miner 21 929 10.1180/claymin.1986.021.1.02.CrossRefGoogle Scholar
Brindley, G.W., 1981 Long-spacing organics for calibrating of interstratified clay minerais Clays Clay Miner 29 6768 10.1346/CCMN.1981.0290110.CrossRefGoogle Scholar
Calle de la, C. Vidales, M. d. and Pons, C.H., 1993 Stacking order in K/Mg interstratified vermiculite from Malawi Clays Clay Miner 41 133136 10.1346/CCMN.1993.0410508.CrossRefGoogle Scholar
Concaret, J., 1967 Etude des mécanismes de la destruction des agrégats de terre au contact de solutions aqueuses Ann Agron 18 6593.Google Scholar
Farmer, V.C., Greenland, D.J. and Hayes, M.H.B., 1978 Water on particle surfaces The chemistry of soil constituents New York J. Wiley 405448.Google Scholar
Gaboriau, H., 1991 Interstratifiés smectite-kaolinite de l’eure. Relations entre la structure, la texture et les propriétés en fonderie [Ph.D. thesis] Orléans, France Univ of Orléans.Google Scholar
Henin, S., 1971 Les conceptions des agronomes concernant les états de l’eau dans les sols. Bull Groupe Français des Argiles XXIIL9-17 .CrossRefGoogle Scholar
Jin, H., 1994 Etude expérimentale du comportement de suspensions de bentonite au cours des forages [Ph.D. thesis] Nancy, France INPL.Google Scholar
Mac Ewan, D.M.C., 1958 Fourier transform methods for studying scattering from lamellar systems. II: The calculation of X-ray diffraction effects for various types of interstratification Koloidzeitschr 156 6167.Google Scholar
Méring, J., 1946 On the hydratation of montmorillonite Faraday Soc 42b 205219 10.1039/tf946420b205.CrossRefGoogle Scholar
Méring, J., 1949 L’interférence des rayons X dans les systèmes à interstratification désordonnée Acta Cryst 2 371380 10.1107/S0365110X49000977.CrossRefGoogle Scholar
Millot, G., 1964 Géologie des Argiles Paris Masson.Google Scholar
Monnier, G. Stengel, P. and Fies, J.C., 1973 Une méthode de mesure de la densité apparente de petits agglomérats terreux. Application à l’analyse des systèmes de porosité du sol Ann Agron 24 533545.Google Scholar
Newman, A.C.D., 1987 The interaction of water with clay mineral surfaces Chemistry of clays and clay minerals 6 237274.Google Scholar
Norrish, K., 1954 The swelling of montmorillonite Disc Faraday Soc 18 120134 10.1039/df9541800120.CrossRefGoogle Scholar
Pedro, G., 1976 Sols argileux et argiles. Elements généraux en vue d’une introduction à leur étude Science du Sol 2 6984.Google Scholar
Plançon, A., 1981 Diffraction by layer structures containing different kinds of layers and their stacking faults J App Cryst 14 300304 10.1107/S0021889881009424.CrossRefGoogle Scholar
Pons, C.H., 1980 Mise en évidence des relations entre la texture et la structure dans les systèmes eau-smectites par diffusion aux petits angles du rayonnement X-synchrotron [Ph.D. thesis] Orléans, France Univ of Orléans.Google Scholar
Pons, C.H. Rousseaux, F. and Tchoubar, D., 1981 Utilisation du rayonnement synchrotron en diffusion aux petits angles pour l’étude du gonflement des smectites. I: Etude du système eau-montmorillonite Na en fonction de la température Clay Miner 16 2342 10.1180/claymin.1981.016.1.02.CrossRefGoogle Scholar
Pons, C.H. Rousseaux, F. and Tchoubar, D., 1982 Utilisation du rayonnement synchrotron en diffusion aux petits angles pour l’étude du gonflement des smectites. II: Etude de différents systèmes eau-smectite en fonction de la température Clay Miner 17 327338 10.1180/claymin.1982.017.3.05.CrossRefGoogle Scholar
Pons, C.H. Tchoubar, C. and Tchoubar, D., 1980 Organisation des molécules d’eau à la surface des feuillets dans un gel de montmorillonite-Na Bull Mineral 103 452456.Google Scholar
Quirk, J.P., 1968 Particle interaction and soil swelling Israel J Chem 3 213234 10.1002/ijch.196800033.CrossRefGoogle Scholar
Raussel-Colom, J.A. Saez-Aunon, J. and Pons, C.H., 1989 Vermiculite gelation: Structural and textural evolution Clay Miner 24 459478 10.1180/claymin.1989.024.3.01.CrossRefGoogle Scholar
Reynolds, R.C., Brindley, G.W. and Brown, G., 1980 Interstratified clay minerals Crystal structures of clay minerals and their X-ray identification London Mineral Soc 249303.CrossRefGoogle Scholar
Reynolds, R.C. and Hower, J., 1970 The nature of interlayering in mixed-layer illite-montmorillonite Clays Clay Miner 18 2536 10.1346/CCMN.1970.0180104.CrossRefGoogle Scholar
Robertson, R.H.S. Tessier, D. and White, J., 1982 The texture of an English fuller’s earth Clay Miner 17 55257 10.1180/claymin.1982.017.2.11.CrossRefGoogle Scholar
Saez-Aunon, J. Pons, C.H. Iglesias, J.Z. and Rausell-Colom, J.A., 1983 Etude du gonflement des vermiculites-ornithine en solution saline par analyse de la diffusion des rayons X aux petits angles. Méthode d’interprétation et recherche des paramètres d’ordre J Applied Cryst 16 439448 10.1107/S002188988301081X.CrossRefGoogle Scholar
Tchoubar, D. Rousseau, F. Pons, C.H. and Lemmonier, M., 1978 Small-angle setting at LURE: Description and results Nucl Inst Meth 152 301305 10.1016/0029-554X(78)90284-7.CrossRefGoogle Scholar
Tessier, D., 1984 Etude expérimentale de l’organisation des matériaux argileux. Hydratation, gonflement et structuration au cours de la dessication et de la réhumectation [Ph.D. thesis] Paris, France Univ of Paris.Google Scholar
Touret, O. Pons, C.H. Tessier, D. and Tardy, Y., 1990 Etude de la répartition de l’eau dans les argiles saturées Mg2+ aux fortes teneurs en eau Clay Miner 25 217233 10.1180/claymin.1990.025.2.07.CrossRefGoogle Scholar
Van Olphen, H., 1977 An introduction to clay colloid chemistry London J. Wiley.Google Scholar