Palmer amaranth with resistance to dicamba, glufosinate, and protoporphyrinogen oxidase inhibitors has been documented in several southern states. With extensive use of these and other herbicides in South Carolina, a survey was initiated in fall 2020 and repeated in fall 2021 and 2022 to determine the relative response of Palmer amaranth accessions to selected preemergence and postemergence herbicides. A greenhouse screening experiment was conducted in which accessions were treated with three preemergence (atrazine, S-metolachlor, and isoxaflutole) and six postemergence (glyphosate, thifensulfuron-methyl, fomesafen, glufosinate, dicamba, and 2,4-D) herbicides at the 1× and 2× use rates. Herbicides were applied shortly after planting (preemergence) or at the 2- to 4-leaf growth stage (postemergence). Percent survival was evaluated 5 to 14 d after application depending on herbicide activity. Sensitivity to atrazine preemergence was lower for 49 and 33 accessions out of 115 to atrazine applied preemergence at the 1× and 2× rate, respectively. Most of the accessions (90%) were controlled by isoxaflutole applied preemergence at the 1× rate. Response to S-metolachlor applied preemergence indicated that 34% of the Palmer amaranth accessions survived the 1× rate (>60% survival). Eleven accessions exhibited reduced sensitivity to fomesafen applied postemergence; however, these percentages were not different from the 0% survivor group. Glyphosate applied postemergence at the 1× rate did not control most accessions (79%). Palmer amaranth response to thifensulfuron-methyl applied postemergence varied across the accessions, with only 36% and 28% controlled at the 1× rate and 2× rate, respectively. All accessions were controlled by 2,4-D, dicamba, or glufosinate when they were applied postemergence. Palmer amaranth accessions from this survey exhibited reduced susceptibility to several herbicides commonly used in agronomic crops in South Carolina. Therefore, growers should use multiple management tactics to minimize the evolution of herbicide resistance in Palmer amaranth in South Carolina.