We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Closed-loop kinematics of a dual-arm robot (DAR) often induces motion conflict. Control formulation is increasingly difficult in face of actuator failures. This article presents a new approach for fault-tolerant control of DARs based on advanced sliding mode control. A comprehensive fractional-order model is proposed taking nonlinear viscous and viscoelastic friction at the joints into account. Using integral fast terminal sliding mode control and fractional calculus, we develop two robust controllers for robots subject to motor faults, parametric uncertainties, and disturbances. Their merits rest with their strong robustness, speedy finite-time convergence, shortened reaching phase, and flexible selection of derivative orders. To avoid the need for full knowledge of faults, robot parameters, and disturbances, two versions of the proposed approach, namely adaptive integral fractional-order fast terminal sliding mode control, are developed. Here, an adaptation mechanism is equipped for estimating a common representative of individual uncertainties. Simulation and experiment are provided along with an extensive comparison with existing approaches. The results demonstrate the superiority of the proposed control technique. The robot performs well the tasks with better responses (e.g., with settling time reduced by at least 16%).
Using a voluntary object-naming paradigm, we examined if bilinguals with high or low L2 proficiency monitor their language selection and production according to their interlocutors' L2 language proficiency. Telugu (L1)–English (L2) bilinguals were introduced to audio-visual stimuli that consisted of animated interlocutors that were high or low proficient in English. In Experiment 1, interlocutors were presented at different frequencies in each block, and in Experiment 2, the presentation of each interlocutor was blocked. We predicted that the frequency of interlocutors would modulate language activation and selection. The participants named the objects language that came to their minds to respond to interlocutors. Indeed, consistent with our predictions, monitoring contexts induced by such interlocutors influenced latencies, language choice and switch-cost. High-L2 proficient participants employed higher language control than low-L2 proficient participants. These results support the hypothesis that bilinguals are sensitive toward their interlocutors' language proficiency and employ context-appropriate cognitive control.
This paper presents a comprehensive strategy to improve the locomotion performance of humanoid robots on various slippery floors. The strategy involves the implementation and adaptation of a divergent component of motion (DCM) based control architecture for the humanoid NAO, and the introduction of an embedded yaw controller (EYC), which is based on a proportional-integral-derivative (PID) control algorithm. The EYC is designed not only to address the slip behavior of the robot on low-friction floors but also to tackle the issue of non-straight walking patterns that we observed in this humanoid, even on non-slippery floors. To fine-tune the PID gains for the EYC, a systematic trial-and-error approach is employed. We iteratively adjusted the P (Proportional), I (Integral), and D (Derivative) parameters while keeping the others fixed. This process allowed us to optimize the PID controller’s response to different walking conditions and floor types. A series of locomotion experiments are conducted in a simulated environment, where the humanoid step frequency and PID gains are varied for each type of floor. The effectiveness of the strategy is evaluated using metrics such as robot stability, energy consumption, and task duration. The results of the study demonstrate that the proposed approach significantly improves humanoid locomotion on different slippery floors, by enhancing stability and reducing energy consumption. The study has practical implications for designing more versatile and effective solutions for humanoid locomotion on challenging surfaces and highlights the adaptability of the existing controller for different humanoid robots.
A force sensorless impedance controller is proposed in this paper for robot manipulators without using force estimators. From the observation of the impedance control law, the force feedback term can be canceled if the inertia matrix in the target impedance is the same as the robot inertia matrix. However, the inertia matrix in the target impedance is almost always a constant matrix, while the robot inertia matrix is a function of the robot configuration, and hence, they may not be identical in general. A modification of the coefficient matrix for the contact force term in the target impedance is suggested in this paper to enable cancelation of the force feedback term in the impedance control law so that a force sensorless impedance controller without using force estimators can be obtained. The tracking performance in the free space phase and the motion trajectory in the compliant motion phase of the new design are almost the same as those in the traditional impedance control. Modification of the inertia matrix in the target impedance will result in small variations of the contact force which is acceptable in practical applications. For robot manipulators containing uncertainties, an adaptive version of the new controller is also developed in this paper to give satisfactory performance without the need for force sensors. Rigorous mathematical justification in closed-loop stability is given in detail, and computer simulations are performed to verify the efficacy of the proposed design.
Industrial robots are widely used in the painting industry, such as automobile manufacturing and solid wood furniture industry. An important problem is how to improve the efficiency of robot programming, especially in the current furniture industry with multiple products, small batches and increasingly high demand for customization. In this work, we propose an outer loop adaptive control scheme, which allow users to realize the practical application of the zero-moment lead-through teaching method based on dynamic model without opening the inner torque control interface of robots. In order to accurately estimate the influence of joint friction, a friction model is established based on static, Coulomb and viscous friction characteristics, and the Sigmoid function is used to represent the transition between motion states. An identification method is used to quickly identify the dynamic parameters of the robot. The joint position/speed command of the robot’s inner joint servo loop is dynamically generated based on the user-designed adaptive control law. In addition, the zero-moment lead-through teaching scheme based on the dynamic model is applied to a spray-painting robot with closed control system. In order to verify our method, CMA GR630ST is used to conduct experiments. We identified the parameters of the dynamic model and carried out the zero-moment lead-through teaching experiment to track the target trajectory. The results show that the proposed method can realize the application of modern control methods in industrial robot with closed control systems, and achieve a preliminary exploration to improve the application scenarios of spray-painting robots.
This article proposes a robust and adaptive controller for industrial robot arms with multiple degrees of freedom without the need for velocity measurement. Many of the controllers designed for manipulators are model-based and require detailed knowledge of the system model. In contrast to these methods, this paper proposes a model-free controller using the Philips q-Bernstein operator as universal approximator. The designed controller can approximate uncertainties including external disturbances and unmodeled dynamics based on its universal approximation capability. Besides, most of the controllers revealed for robot arms are torque-based, which is not a realistic presumption from a practical point of view. In the proposed control method, the voltage applied to the actuator is considered as the control signal. However, unlike many voltage-based methods, the need to know the exact models of the system and the actuator has been eliminated in the presented method. Also, adaptive rules are extracted during the Lyapunov analysis to ensure system stability. Finally, to analyze the performance of the presented controller, this method is simulated for an industrial robot arm, and the results are analyzed. The proposed methodology is also compared to those of a strong state-of-the-art approximator, the Chebyshev neural network.
For robot manipulators, there are two types of disturbances. One is model parametric uncertainty; the other is unmodelled parameters such as joint friction forces and external disturbances. Unmodelled joint frictions and external disturbances reduce performance in terms of positioning accuracy and repeatability. In order to compensate for unmodelled parameters, the design of a new controller is considered. First, the modelled and unmodelled parameters are included in a dynamic model. Then, based on the dynamic model, a new Lyapunov function is developed. After that, new nonlinear joint friction and external disturbance estimation laws are derived as an analytic solution from the Lyapunov function; thus, the stability of the closed system is guaranteed. Better values of the adaptive dynamic compensators can be extracted by fuzzy rules according to the tracking error. Limitations and knowledge about friction and external disturbances are not required for the design of the controller. The controller compensates for all possible model parameter uncertainties, all possible unknown joint frictions and external disturbances.
Spanish–English bilinguals switched between naming pictures in one language and either reading-aloud or semantically classifying written words in both languages. When switching between reading-aloud and picture-naming, bilinguals exhibited no language switch costs in picture-naming even though they produced overt language switches in speech. However, when switching between semantic classification and picture-naming, bilinguals, especially unbalanced bilinguals, exhibited switch costs in the dominant language and switch facilitation in the nondominant language even though they never switched languages overtly. These results reveal language switching across comprehension and production can be cost-free when the intention remains the same. Assuming switch costs at least partially reflect inhibition of the nontarget language, this implies such language control mechanisms are recruited only under demanding task conditions, especially for unbalanced bilinguals. These results provide striking demonstration of adaptive control mechanisms and call into question previous claims that language switch costs necessarily transfer from comprehension to production.
In this paper, a new adaptive control strategy, based on the Modified Function Approximation Technique, is proposed for a manipulator robot with unknown dynamics. This novel strategy benefits from the backstepping control approach and the use of state and output feedback. Unlike the conventional Function Approximation Technique approach, the use of basis functions to approximate the dynamic parameters is completely eliminated in the proposed scheme. Another improvement is eliminating the need to measure velocity by means of integrating a high-order sliding mode observer. Furthermore, utilizing the Lyapunov function theory, it is demonstrated that all controller signals are uniformly ultimately bounded in the closed-loop form. Lastly, simulation and comparative studies are carried out to validate the effectiveness of the proposed control approach.
The present research aims to model, simulate and implement a new hybrid control approach based on a combination of proportional integral derivative (PID) Controller and Model Reference Adaptive Controller (MRAC), in which Lyapunov’s theory is used to ensure asymptotic stability to control a two degrees of freedom (DoF) manipulator driven by McKibben’s artificial pneumatic muscles. The MRAC controller works as a nonlinearity compensator and PID controller works during the transient period, as the MRAC performs poorly in this regime. This new approach is entitled Hybrid Model Reference Adaptive Controller (H-MRAC) and it has an unprecedented topological structure based on three terms. The feedforward term acts in disturbances rejection, the derivative term in oscillations damping and the feedback term acts in error convergence to zero. In this article, a control system dedicated to pneumatic manipulators was developed. As a result, proof of asymptotic convergence was performed for the proposed topological approach, which was validated on a two DoF manipulator. The proposed mechanism satisfactorily met the ISO/TS 15066 standard, and the position tracking obtained a global error of 37.69% and 51.01% smaller than found in the literature examples, entitled MRAC and A-PID, respectively, for simulations and 37.46% and 30.25% for experiments.
In this paper, an improved adaptive motion-force control approach is introduced to control the cooperative manipulators transporting a shared object under limited communication. The adaptive controller is designed based on the backstepping approach to control the motion of the handled object in the presence of uncertainties and external disturbances. Moreover, the force controller is established to maintain constant internal forces. An event-triggered (ET) mechanism is derived based on the Lyapunov analysis to deal with the bandwidth restrictions and maintain the system stability during the cooperative manipulation. The effectiveness of the proposed control scheme is investigated by comparing it with the existing variations of adaptive backstepping control (i.e., traditional and state augmented schemes). Moreover, the designed triggering mechanism is compared with different triggering conditions presented in the literature. The proposed control approach is further validated in a more realistic virtual robot experimentation platform (i.e., V-REP) using two SCORBOT-ER VPlus manipulators. From the TrueTime-based simulation runs, the proposed control scheme exhibits superior performance in tandem with efficient utilization of the network resources during the transportation task.
Thispaper addresses the problem of carrying an unknown nonuniform payload by multiple quadrotor agents. The load is modeled as a rigid body with unknown weight and position of Center of Gravity (CG) for the agents, and is included in their dynamic equations of motion. The agents and the load are assumed to be connected to each other by taut ropes. The Udwadia–Kalaba equation is used to calculate the constraint forces on the ropes acting on each quadrotor. Inner-loop and outer-loop controllers for quadrotors position and attitude control are presented. For the outer loop, an estimation algorithm based on the invariance and immersion adaptive control is utilized to estimate the unknown physical parameters of the payload including mass and CG position without using multi-axes force/torque sensors. The inner-loop controller employs an adaptive controller. Simulation results, for two and four agents carrying a nonuniform rod and cubic payload, show the effectiveness of the proposed algorithm. A case study is also performed to investigate the effect of quadrotors positioning on flight endurance of the cooperative aerial team carrying a nonuniform payload.
This article introduces a robust adaptive controller–observer structure for robotic manipulators such that the need for joints speed measurement is removed. Besides, it is presumed that the system model has uncertainties and is subject to disturbances, and the proposed method must eliminate the impact of these factors on the system response. According to this, for the first time in the robotics field, a model-free scheme is developed based on the Bernstein–Stancu polynomial. The universal approximation property of the Bernstein–Stancu polynomial enables it to accurately estimate the lumped uncertainty, including unmodeled dynamics and disturbances. Moreover, to increase the efficiency of the controller–observer structure, adaptive rules have been proposed to update polynomial coefficients. The boundedness of all system errors is proven using the Lyapunov theorem. Finally, the proposed robust Adaptive controller–observer is applied on a planer robot, and the results are precisely analyzed. The results of the proposed approach are also compared with two state-of-art powerful approximation methods.
This article addresses the problem of pose and force control in a cooperative system comprised of multiple n-degree-of-freedom (n-DOF) electrically driven robotic arms that move a payload. The proposed controller should be capable of maintaining the position and orientation of the payload in the desired path. In addition, the force exerted by robot end effectors on the object must remain limited. The system has unmodeled dynamics, and measuring the robot joint velocities is impossible. Therefore, a FAT-based observer–controller is designed to estimate the uncertainty and velocities based on universal approximation property of Fourier series expansion. The stability of the system is confirmed based on Lyapunov’s stability theorem. Finally, the proposed adaptive controller–observer is applied on two 3-DOF cooperative robotic arms carrying a payload, and the results are precisely analyzed. The results of the proposed approach are also compared with two state-of-art powerful approximation method.
Youth with attention deficit hyperactivity disorder (ADHD) often show reduced post-error slowing (PES) compared to typically developing controls. This finding has been interpreted as evidence that children with ADHD have error recognition and adaptive control impairments. However, several studies report mixed results regarding PES differences in ADHD, and among healthy controls, there is considerable debate about the cognitive-behavioral origin of PES.
Methods:
We tested competing hypotheses aimed at clarifying whether reduced PES in children with ADHD is due to impaired error detection, deficits in adaptive control, and/or attention orienting to novelty. Children aged 7–11 years with a diagnosis of ADHD (n = 74) and controls (n = 30) completed four laboratory-based computer tasks with variable cognitive loads and error types.
Results:
ADHD diagnosis was associated with shorter PES only on a task with high cognitive load and low error-cuing, consistent with impaired error recognition. In contrast, there was no evidence of impaired adaptive control or heightened novelty orienting among children with ADHD.
Conclusions:
The cognitive-behavioral origin of PES is multifactorial, but reduced PES among children with an ADHD diagnosis is due to impaired error recognition during cognitively demanding tasks. Behavioral interventions that scaffold error recognition may facilitate improved performance among children with ADHD.
In this article, we propose a nonlinear Proportional+Derivative (PD) tracking controller with adaptive Fourier series compensation. The proposed controller uses a regressor-free adaptive scheme that relies on a trigonometric polynomial with varying coefficients to solve the control problem. Asymptotic convergence of the position and velocity errors is proven via a formal stability analysis based on Lyapunov and LaSalle theory for discontinuous systems. The proposed controller is validated on a 2-degrees of freedom robot manipulator. The experimental results validate the theoretically obtained results and reflect the effect of certain parameters in the transient behavior of the error dynamics. Certain robustness properties are also observed.
In two experiments, we examined the hypothesis that bilingual speakers modulate their cognitive control settings dynamically in the presence of different interlocutors, and this can be captured through performance on a non-linguistic attention task. We introduced Malayalam–English bilinguals to interlocutors with varying L2 dominance through a pre-experiment familiarisation and interaction phase. Later, participants did the Flanker task while the interlocutors appeared before each trial. While in experiment one participants did the Flanker task with equal distribution of trials, in experiment two we manipulated the monitoring demands by changing the frequency of trials. Results showed that high-L2 proficient bilinguals had lower conflict effect on the Flanker task in the presence of balanced interlocutors in both the experiments. The results provide strong evidence of dynamic adaptation of control settings in bilinguals with regard to different passively present interlocutors. The results further extend the predictions of the adaptive control hypothesis with novel manipulation.
This paper reports on laboratory and field experimental results for controlled robotic manipulators operating on moving platforms with unmodeled dynamics. The aim is to validate theoretical predictions for the dependence on control parameters of an adaptive control strategy. In addition, the results provide insight into different discretizations of the continuous-time formulation, suggesting the most suitable discretization scheme for hardware implementation. The second set of experimental results, obtained from an implementation of the control framework for synchronization and consensus in networks of robotic manipulators, similarly validate theoretical predictions on the sensitivity to network communication delays.
This paper addresses three control implementation issues for trajectory tracking of robotic manipulators: unmodeled dynamics, unknown input saturation and peaking effects during the transient phase. A model-free first-order robust-adaptive control method is used to deal with the unmodeled dynamics. Robust optimality and stability of the controller are proved using the 𝓗∞ technique and the game-algebraic Riccati equation. An intuitive approach is devised to incorporate the unknown input saturation by modifying the speed of the desired trajectory. The trajectory scaling is performed by using only the state errors. Furthermore, two different techniques are utilized to suppress peaking during the transient response of the trajectory tracking. The first method adds an extra term in the input while the second method uses variable gain to improve the transient response. A systematic procedure for finding the controller parameters is formulated using features, such as rise time and settling time. A three-degree-of-freedom robot manipulator is used for the validation of the proposed controller in simulations and experiments.
In the economics literature, there are two dominant approaches for solving models with optimal experimentation (also called active learning). The first approach is based on the value function and the second on an approximation method. In principle the value function approach is the preferred method. However, it suffers from the curse of dimensionality and is only applicable to small problems with a limited number of policy variables. The approximation method allows for a computationally larger class of models, but may produce results that deviate from the optimal solution. Our simulations indicate that when the effects of learning are limited, the differences may be small. However, when there is sufficient scope for learning, the value function solution seems more aggressive in the use of the policy variable.