We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The general position number of a connected graph is the cardinality of a largest set of vertices such that no three pairwise-distinct vertices from the set lie on a common shortest path. In this paper it is proved that the general position number is additive on the Cartesian product of two trees.
We study the scaling limit of a random forest with prescribed degree sequence in the regime that the largest tree consists of all but a vanishing fraction of nodes. We give a description of the limit of the forest consisting of the small trees, by relating a plane forest to a marked cyclic forest and its corresponding skip-free walk.
We introduce a class of non-uniform random recursive trees grown with an attachment preference for young age. Via the Chen–Stein method of Poisson approximation, we find that the outdegree of a node is characterized in the limit by ‘perturbed’ Poisson laws, and the perturbation diminishes as the node index increases. As the perturbation is attenuated, a pure Poisson limit ultimately emerges in later phases. Moreover, we derive asymptotics for the proportion of leaves and show that the limiting fraction is less than one half. Finally, we study the insertion depth in a random tree in this class. For the insertion depth, we find the exact probability distribution, involving Stirling numbers, and consequently we find the exact and asymptotic mean and variance. Under appropriate normalization, we derive a concentration law and a limiting normal distribution. Some of these results contrast with their counterparts in the uniform attachment model, and some are similar.
In this paper we consider random trees associated with the genealogy of Crump–Mode–Jagers processes and perform Bernoulli bond-percolation whose parameter depends on the size of the tree. Our purpose is to show the existence of a giant percolation cluster for appropriate regimes as the size grows. We stress that the family trees of Crump–Mode–Jagers processes include random recursive trees, preferential attachment trees, binary search trees for which this question has been answered by Bertoin [7], as well as (more general) m-ary search trees, fragmentation trees, and median-of-(
$2\ell+1$
) binary search trees, to name a few, where to our knowledge percolation has not yet been studied.
We prove that, with high probability, in every 2-edge-colouring of the random tournament on n vertices there is a monochromatic copy of every oriented tree of order $O(n{\rm{/}}\sqrt {{\rm{log}} \ n} )$. This generalizes a result of the first, third and fourth authors, who proved the same statement for paths, and is tight up to a constant factor.
The accessibility percolation model is investigated on random rooted labeled trees. More precisely, the number of accessible leaves (i.e. increasing paths) Zn and the number of accessible vertices Cn in a random rooted labeled tree of size n are jointly considered in this work. As n → ∞, we prove that (Zn, Cn) converges in distribution to a random vector whose probability generating function is given in an explicit form. In particular, we obtain that the asymptotic distributions of Zn + 1 and Cn are geometric distributions with parameters e/(1 + e) and 1/e, respectively. Much of our analysis is performed in the context of local weak convergence of random rooted labeled trees.
A tree functional is called additive if it satisfies a recursion of the form
$F(T) = \sum_{j=1}^k F(B_j) + f(T)$
, where B1, …, Bk are the branches of the tree T and f (T) is a toll function. We prove a general central limit theorem for additive functionals of d-ary increasing trees under suitable assumptions on the toll function. The same method also applies to generalized plane-oriented increasing trees (GPORTs). One of our main applications is a log-normal law that we prove for the size of the automorphism group of d-ary increasing trees, but other examples (old and new) are covered as well.
We study the geometry of the component of the origin in the uniform spanning forest of
$\mathbb{Z}^{d}$
and give bounds on the size of balls in the intrinsic metric.
Consider a uniform random rooted labelled tree on n vertices. We imagine that each node of the tree has space for a single car to park. A number m ≤ n of cars arrive one by one, each at a node chosen independently and uniformly at random. If a car arrives at a space which is already occupied, it follows the unique path towards the root until it encounters an empty space, in which case it parks there; if there is no empty space, it leaves the tree. Consider m = ⌊α n⌋ and let An,α denote the event that all ⌊α n⌋ cars find spaces in the tree. Lackner and Panholzer proved (via analytic combinatorics methods) that there is a phase transition in this model. Then if α ≤ 1/2, we have
$\mathbb{P}({A_{n,\alpha}}) \to {\sqrt{1-2\alpha}}/{(1-\alpha})$
, whereas if α > 1/2 we have
$\mathbb{P}({A_{n,\alpha}}) \to 0$
. We give a probabilistic explanation for this phenomenon, and an alternative proof via the objective method. Along the way, we consider the following variant of the problem: take the tree to be the family tree of a Galton–Watson branching process with Poisson(1) offspring distribution, and let an independent Poisson(α) number of cars arrive at each vertex. Let X be the number of cars which visit the root of the tree. We show that
$\mathbb{E}{[X]}$
undergoes a discontinuous phase transition, which turns out to be a generic phenomenon for arbitrary offspring distributions of mean at least 1 for the tree and arbitrary arrival distributions.
A class of graphs is bridge-addable if given a graph
$G$
in the class, any graph obtained by adding an edge between two connected components of
$G$
is also in the class. The authors recently proved a conjecture of McDiarmid, Steger, and Welsh stating that if
${\mathcal{G}}$
is bridge-addable and
$G_{n}$
is a uniform
$n$
-vertex graph from
${\mathcal{G}}$
, then
$G_{n}$
is connected with probability at least
$(1+o_{n}(1))e^{-1/2}$
. The constant
$e^{-1/2}$
is best possible, since it is reached for the class of all forests.
In this paper, we prove a form of uniqueness in this statement: if
${\mathcal{G}}$
is a bridge-addable class and the random graph
$G_{n}$
is connected with probability close to
$e^{-1/2}$
, then
$G_{n}$
is asymptotically close to a uniform
$n$
-vertex random forest in a local sense. For example, if the probability converges to
$e^{-1/2}$
, then
$G_{n}$
converges in the sense of Benjamini–Schramm to the uniformly infinite random forest
$F_{\infty }$
. This result is reminiscent of so-called “stability results” in extremal graph theory, the difference being that here the stable extremum is not a graph but a graph class.
We define a growing model of random graphs. Given a sequence of non-negative integers {dn}n=0∞ with the property that di≤i, we construct a random graph on countably infinitely many vertices v0, v1… by the following process: vertex vi is connected to a subset of {v0, …, vi−1} of cardinality di chosen uniformly at random. We study the resulting probability space. In particular, we give a new characterization of random graphs, and we also give probabilistic methods for constructing infinite random trees.
We consider linear preferential attachment trees, and show that they can be regarded as random split trees in the sense of Devroye (1999), although with infinite potential branching. In particular, this applies to the random recursive tree and the standard preferential attachment tree. An application is given to the sum over all pairs of nodes of the common number of ancestors.
Given a pair of graphs G and H, the Ramsey number R(G, H) is the smallest N such that every red–blue colouring of the edges of the complete graph KN contains a red copy of G or a blue copy of H. If a graph G is connected, it is well known and easy to show that R(G, H) ≥ (|G|−1)(χ(H)−1)+σ(H), where χ(H) is the chromatic number of H and σ(H) is the size of the smallest colour class in a χ(H)-colouring of H. A graph G is called H-good if R(G, H) = (|G|−1)(χ(H)−1)+σ(H). The notion of Ramsey goodness was introduced by Burr and Erdős in 1983 and has been extensively studied since then.
In this paper we show that if n≥ Ω(|H| log4 |H|) then every n-vertex bounded degree tree T is H-good. The dependency between n and |H| is tight up to log factors. This substantially improves a result of Erdős, Faudree, Rousseau, and Schelp from 1985, who proved that n-vertex bounded degree trees are H-good when n ≥ Ω(|H|4).
The Horton–Strahler ordering method, originating in hydrology, formulates the hierarchical structure of branching patterns using a quantity called the bifurcation ratio. The main result of this paper is the central limit theorem for the bifurcation ratio of a general branch order. This is a generalized form of the central limit theorem for the lowest bifurcation ratio, which was previously proved. Some useful relations regarding the Horton–Strahler analysis are also derived in the proofs of the main theorems.
A random binary search tree grown from the uniformly random permutation of [n] is studied. We analyze the exact and asymptotic counts of vertices by rank, the distance from the set of leaves. The asymptotic fraction ck of vertices of a fixed rank k ≥ 0 is shown to decay exponentially with k. We prove that the ranks of the uniformly random, fixed size sample of vertices are asymptotically independent, each having the distribution {ck}. Notoriously hard to compute, the exact fractions ck have been determined for k ≤ 3 only. We present a shortcut enabling us to compute c4 and c5 as well; both are ratios of enormous integers, the denominator of c5 being 274 digits long. Prompted by the data, we prove that, in sharp contrast, the largest prime divisor of the denominator of ck is at most 2k+1 + 1. We conjecture that, in fact, the prime divisors of every denominator for k > 1 form a single interval, from 2 to the largest prime not exceeding 2k+1 + 1.
We propose two distance-based topological indices (level index and Gini index) as measures of disparity within a single tree and within tree classes. The level index and the Gini index of a single tree are measures of balance within the tree. On the other hand, the Gini index for a class of random trees can be used as a comparative measure of balance between tree classes. We establish a general expression for the level index of a tree. We compute the Gini index for two random classes of caterpillar trees and see that a random multinomial model of trees with finite height has a countable number of limits in [0, ⅓], whereas a model with independent level numbers fills the spectrum (0, ⅓].
We consider two notions describing how one finite graph may be larger than another. Using them, we prove several theorems for such pairs that compare the number of spanning trees, the return probabilities of random walks, and the number of independent sets, among other combinatorial quantities. Our methods involve inequalities for determinants, for traces of functions of operators, and for entropy.
We consider a marking procedure of the vertices of a tree where each vertex is marked independently from the others with a probability that depends only on its out-degree. We prove that a critical Galton–Watson tree conditioned on having a large number of marked vertices converges in distribution to the associated size-biased tree. We then apply this result to give the limit in distribution of a critical Galton–Watson tree conditioned on having a large number of protected nodes.
We study the relationship between a $\unicode[STIX]{x1D705}$-Souslin tree $T$ and its reduced powers $T^{\unicode[STIX]{x1D703}}/{\mathcal{U}}$.
Previous works addressed this problem from the viewpoint of a single power $\unicode[STIX]{x1D703}$, whereas here, tools are developed for controlling different powers simultaneously. As a sample corollary, we obtain the consistency of an $\aleph _{6}$-Souslin tree $T$ and a sequence of uniform ultrafilters $\langle {\mathcal{U}}_{n}\mid n<6\rangle$ such that $T^{\aleph _{n}}/{\mathcal{U}}_{n}$ is $\aleph _{6}$-Aronszajn if and only if $n<6$ is not a prime number.
This paper is the first application of the microscopic approach to Souslin-tree construction, recently introduced by the authors. A major component here is devising a method for constructing trees with a prescribed combination of freeness degree and ascent-path characteristics.
We introduce the open degree of a compact space, and we show that for every natural number
$n$
, the separable Rosenthal compact spaces of degree
$n$
have a finite basis.