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Abstract
We extend the notion of universal graphs to a geometric setting. A geometric graph is universal for a class
H of planar graphs if it contains an embedding, that is, a crossing-free drawing, of every graph inH. Our
main result is that there exists a geometric graph with n vertices and O

(
n log n

)
edges that is universal for

n-vertex forests; this generalises a well-known result by Chung and Graham, which states that there exists
an (abstract) graph with n vertices and O

(
n log n

)
edges that contains every n-vertex forest as a subgraph.

The upper bound of O
(
n log n

)
edges cannot be improved, even if more than n vertices are allowed. We

also prove that every n-vertex convex geometric graph that is universal for n-vertex outerplanar graphs has
a near-quadratic number of edges, namely �h(n2−1/h), for every positive integer h; this almost matches the
trivial O(n2) upper bound given by the n-vertex complete convex geometric graph. Finally, we prove that
there exists an n-vertex convex geometric graph with n vertices and O

(
n log n

)
edges that is universal for

n-vertex caterpillars.
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1. Introduction
A graph G is universal for a class H of graphs if G contains every graph in H as a subgraph. The
study of universal graphs was initiated by Rado [30] in the 1960s. Obviously, the complete graph
Kn is universal for any family H of n-vertex graphs. Research focused on finding the minimum
size (i.e. number of edges) of universal graphs for various families of sparse graphs on n vertices.
Babai, Chung, Erdős, Graham, and Spencer [5] proved that ifH is the family of all graphs withm
edges, then the size of a universal graph for H is in �

(
m2/ log2 m

)
and O

(
m2 log logm/ logm

)
.

Alon, Capalbo, Kohayakawa, Rödl, Rucinski, and Szemerédi [1, 2] constructed a universal graph
of optimal�(n2−2/k) size for n-vertex graphs with maximum degree k.

Significantly better bounds exist for minor-closed families. Esperet, Joret, and Morin [23]

proved recently that there exist a universal graph with n · 2O
(√

log n·log log n
)
edges and vertices

for n-vertex planar graphs, improving a longstanding previous record of O
(
n3/2

)
by Babai,
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Chung, Erdős, Graham, and Spencer [5]. For bounded-degree planar graphs, Capalbo [16] con-
structed universal graphs of linear size, improving an earlier bound by Bhatt, Chung, Leighton,
and Rosenberg [9], which extends to other families with bounded bisection width. Böttcher,
Pruessmann, Taraz, and Würfl [13, 14] proved that every n-vertex graph with minimum degree
�(n) is universal for n-vertex bounded-degree planar graphs. For n-vertex trees, Chung and
Graham [18, 19] constructed an n-vertex universal graph of size O(n log n), and showed that this
bound is asymptotically optimal apart from constant factors.

Rado [30] introduced universality also for induced subgraphs. A graph G is induced universal
for a classH of graphs if G contains every graph inH as an induced subgraph. Alon and Nenadov
[3] described a graph onO(n�/2) vertices that is induced universal for the class of n-vertex graphs
of maximum degree�. Recently, Esperet, Joret, andMorin [23] showed, improving earlier results
by Bonamy, Gavoille, and Pilipczuk [11] andDujmović, Esperet, Joret, Gavoille, Micek, andMorin

[22], that for every n ∈N, there exists a graphUn with n · 2O
(√

log n·log log n
)
edges and vertices that

contains every n-vertex planar graph as an induced subgraph.
In this paper, we extend the concept of universality to geometric graphs. A geometric graph

is a graph together with a straight-line drawing in the plane in which the vertices are distinct
points and the edges are straight-line segments not containing any vertex in their relative interiors.
A geometric graph is convex if its vertices are in convex position (that is, they form the vertex set
of a convex polygon in the plane).

A geometric graph is universal for a class H of planar graphs if it contains an embedding of
every graph in H. For an (abstract) graph G1 and a geometric graph G2, an embedding of G1
into G2 is an injective map ϕ :V(G1)→V(G2) such that (i) every edge uv ∈ E(G1) is mapped
to an edge ϕ(u)ϕ(v) ∈ E(G2) (that is, ϕ is a graph homomorphism); and (ii) every pair of edges
u1v1, u2v2 ∈ E(G1) is mapped to a pair of noncrossing line segments ϕ(u1)ϕ(v1) and ϕ(u2)ϕ(v2)
in the plane. When ϕ :V(G1)→V(G2) is bijective, we say that it is an embedding of G1 onto G2.

Previous research in the geometric setting was limited to finding the smallest complete geomet-
ric graph that is universal for the class of planar graphs on n vertices. The intersection pattern
of the edges in a geometric graph is determined by the location of its vertices; hence universal
complete geometric graphs are commonly referred to as n-universal point sets. De Fraysseix, Pach,
and Pollack [20] proved that the 2n× n section of the integer lattice is an n-universal point set.
Over the last 30 years, the upper bound on the size of an n-universal point set has been improved
from 2n2 to n2/4+O(n) [6]; the current best lower bound is (1.293− o(1))n [31] (based on
stacked triangulations, that is, maximal planar graphs of treewidth three; see also [17, 28]). It
is known that every set of n points in general position is universal for n-vertex outerplanar graphs
[12, 26]. AnO(n log n) upper bound is known for 2-outerplanar and simply nested graphs [4], and
an O(n3/2 log n) upper bound for n-vertex stacked triangulations [25].

Our results. The results on universal point sets yield an upper bound of O(n4) for the size of a
geometric graph that is universal for n-vertex planar graphs and O(n2) for n-vertex outerplanar
graphs, including trees. We improve the upper bound for n-vertex trees to an optimal O(n log n),
and show that the quadratic upper bound for outerplanar graphs is essentially tight for convex
geometric graphs. More precisely, we prove the following results:

• For every n ∈N, there exists a geometric graph G with n vertices and O(n log n) edges that
is universal for forests with n vertices (Theorem 1 in Section 2). The bound of O(n log n)
edges is asymptotically optimal, apart from constant factors, even in the abstract set-
ting, for caterpillars, and if the universal graph is allowed to have more than n vertices
[ [18], Theorem 1]. The proof of universality is constructive and yields a polynomial-time
algorithm that embeds any forest with n vertices onto G.

• For every h ∈N and n≥ 3h2, every n-vertex convex geometric graph that is universal for
the family of n-vertex cycles with h disjoint chords has �h(n2−1/h) edges (Theorem 9 in
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Figure 1. A schematic drawing of the universal graph for n= 15 vertices (left) and a geometric drawing of the universal graph
for n= 7 vertices. The edges of the tree B are shown black; the edges of the groups (E1), (E2), and (E3) are shown red, orange,
and blue, respectively. Edges that belong to several of these groups are shown in the colour of the first group they belong to.

Section 3); this almost matches the trivial O(n2) upper bound, which hence cannot be
improved by polynomial factors even for n-vertex outerplanar graphs of maximum degree
three. For n-vertex cycles with 2 disjoint chords, there exists an n-vertex convex geomet-
ric graph with O

(
n3/2

)
edges (Theorem 10 in Section 3), which matches the lower bound

above.
• For every n ∈N, there exists a convex geometric graph G with n vertices and O(n log n)
edges that is universal for n-vertex caterpillars (Theorem 12 in Section 3).

2. Universal geometric graphs for forests
In this section, we prove the following theorem.

Theorem 1. For every n ∈N, there exists a geometric graph G with n vertices and O(n log n) edges
that is universal for forests with n vertices.

2.1. Construction
We adapt a construction due to Chung and Graham [19], originally designed for abstract graphs,
to the geometric setting. For a given n ∈N, they construct a graphGwith n vertices andO(n log n)
edges such thatG contains every forest on n vertices as a subgraph. Let us sketch this construction.
For simplicity assume that n= 2h − 1, for some integer h≥ 2. Let B be a complete rooted ordered
binary tree on n vertices. A level is a set of vertices at the same distance from the root. The levels
are labelled 1, . . . , h, from the one containing the root to the one that contains the leaves of B.
A pre-order traversal of B (which consists first of the root, then recursively of the vertices in its
left subtree, and then recursively of the vertices in its right subtree) determines a total order on
the vertices, and it also induces a total order on the vertices in each level of B. In each level, we
call two consecutive elements in this order level-neighbours; in particular, any two siblings are
level-neighbours. For a vertex v of B, we denote by B(v) the subtree of B rooted at v. The graph G
contains B and three additional groups of edges defined as follows (see Figure 1 for an illustration).

(E1) Every vertex v is adjacent to all vertices in the subtree B(v);
(E2) for every vertex v and every left or right level-neighbour u of v in B, the vertex v is adjacent

to all vertices in the subtree B(u); and
(E3) every vertex v whose parent has a left level-neighbour p is adjacent to all vertices in the

subtree B(p).
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Figure 2. Illustration for the assignment of x- and y-coordinates to the vertices of G, and for the definition of interval (left).
Illustration for Observation 2(right).

The size of G. It is easily checked that G has O(n log n) edges. Indeed, the binary tree B has 2i−1

vertices on level i, for i= 1, . . . , h. A vertex v on level i has 2h−i+1 − 1 descendants (including
itself), and each of its level-neighbours have the same number of descendants. In addition, the left
level-neighbour of the parent of v (if present) has 2 · (2h−i+1 − 1) descendants (excluding itself).
Altogether v is adjacent to less than 5 · 2h−i+1 vertices at the same or at lower levels of B. Hence,
the number of edges in G is less than

5 ·
h∑

i=1
2i−1 · 2h−i+1 = 5 · 2h · h= 5(n+ 1) · log2(n+ 1) ∈O

(
n log n

)
.

Chung and Graham [19] showed that G is universal for forests, that is, G contains every forest
on n vertices as a subgraph.1

Geometric representation. We next describe how to embed the vertices of G into R
2; see

Figure 2 (left) for an illustration. First, the x-coordinates of the vertices are assigned in the order
determined by a pre-order traversal of B. For simplicity, let us take these x-coordinates to be
0, . . . , n− 1, so that the root of B is placed on the y-axis. The vertex of G with x-coordinate i is
denoted by vi.

The y-coordinates of the vertices are determined by a BFS traversal of B starting from the root,
in which at every vertex the right sibling is visited before the left sibling. Denote by σ the order
of vertices of G in this traversal. If a vertex u precedes a vertex v in σ , then u gets a larger y-
coordinate than v. The gap between two consecutive y-coordinates is chosen so that every vertex
is above all lines determined by any two vertices with smaller y-coordinates. This choice is feasible
because no line through two vertices of G is vertical, due to the x-coordinate assignment. Thus,
if the maximum difference between the y-coordinates of two vertices in a set X ⊆V(G) is some
value Y , then any line through two vertices in X has a slope whose absolute value is at most Y .
Hence, any point that is n · Y units higher than every vertex in X is above every line determined
by two vertices in X.

Note that this choice of coordinates fixes the rotation system of the vertex set, which is the col-
lection of circular sequences obtained as follows: For each vertex v consider a ray rv emanating
from v and record the sequence of other vertices as rv encounters them while rotating counter-
clockwise around v. The rotation system in turn determines for each pair of (straight-line) edges
whether they cross [ [29], Proposition 6].

1In fact, the construction by Chung and Graham uses fewer edges: in the edge groups (E2) and (E3) in the definition of G,
they only use siblings instead of left and right level-neighbours. But we were unable to verify their proof with the smaller edge
set. Specifically, we do not see why the graph G2 in [ [19], Fig. 7] is admissible. However, their proof works with the larger
edge set we define here.
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Our figures display the vertices of B in the correct x- and y-order, but – with the exception of
Figure 1 (right) – they are not to scale. The y-coordinates in our construction are rapidly increas-
ing (similarly to constructions in [15, 25]). For this reason, in our figures we draw the edges in B
as straight-line segments and all other edges as Jordan arcs.

The choice of y-coordinates of the vertices implies that, for any vertex v, all vertices with larger
y-coordinate than v see the vertices below v in the same circular order as v. Furthermore, the
vertices of G are in general position, that is, no three are collinear. In particular, we have the
following property (see Figure 2 (right) for an example).

Observation 2. If ab, cd ∈ E(G) are such that (1) a has larger y-coordinate than b, c, and d, and (2)
b has smaller or larger x-coordinate than both c and d, then ab and cd do not cross.

Proof. By (2) we can assume, without loss of generality up to a switch of the labels of c and d,
that d is below the line through b and c. By (1) and by construction, a is above the line through
b and c, hence ab and cd are separated by the line through b and c and thus do not cross. �

2.2. Intervals and embeddings
For every interval [i, j]⊆ [0, n− 1] we defineG[i, j] to be the subgraph ofG induced by the vertices
with x-coordinates in [i, j]. We call the graph G[i, j] an interval of G. The length of an interval
G[i, j] of G is defined as |G[i, j]| = j− i+ 1, which is the number of vertices in G[i, j]. If I is an
interval of integers, then we denote by G(I) the corresponding interval of G. For a subset U ⊆
V(G), we denote by G[U] the subgraph of G induced by U.

In Section 2.3, we present a recursive algorithm that can embed every tree on h vertices onto
every interval of length h of G. In some cases, we embed the root of a tree at some vertex of the
interval, and recurse on the subtrees. For this strategy, it is convenient to embed the root at the
centre of a spanning star. The following lemma shows that every interval contains spanning stars.

Lemma 3. Every interval G[i, j] of G on at least two vertices contains a noncrossing spanning star
centred at the highest vertex vk and a noncrossing spanning star centred at the second highest vertex
vs of G[i, j].

Proof. We first argue for the star centred at vk. By construction (pre-order traversal and increas-
ing y-coordinates along each level from left to right), all vertices in G[k, j] belong to B(vk). By
construction, G contains edges from vk to every vertex in B(vk); these edges are in E(B) and in the
edge group (E1). This completes the proof if k= i. Assume that k> i. Then vk has a parent vp;
further, we have p< i, because vk is the highest vertex of G[i, j] and every vertex is higher than its
descendants. Therefore, vk has a left sibling v� (which may or may not be in G[i, j]); all the vertices
in G[i, k− 1] are in B(v�) and hence are adjacent to vk, via edges in the edge group (E2).

We now argue about the second highest vertex vs of G[i, j]. We consider two cases.
If k= j, then vs is the highest vertex of G[i, j− 1]. Therefore, G[i, j− 1] contains a spanning

star centred at vs, as argued above if i< j− 1; if i= j− 1, then such a star trivially exists. The
remaining edge between vs and vk also exists, as it is part of the star centred at vk.

Hence, we may assume that k< j. We distinguish between two cases.
Assume first that k+ 1≤ s≤ j. Note that vs is a child of vk: Namely, since no vertex in G[i, j] is

higher than vk, it follows that neither the right level-neighbour of vk, if it exists, nor a vertex on a
level higher than vk are inG[i, j], hence vs is either the left or the right child of vk. We prove that vs
is adjacent to all the vertices of G[i, k− 1], to vk, and to all the vertices of G[k+ 1, j]. Concerning
the vertices of G[i, k− 1], we can assume that k> i, as otherwise G[i, k− 1] contains no vertex.
Recall that k> i implies that vk has a left sibling v�, which may or may not be in G[i, j]; regardless,
all the vertices in G[i, k− 1] are in B(v�) and are hence adjacent to vs, via edges in the edge group
(E3). Further, the edge between vs and vk exists, as it is part of the star centred at vk. Finally, each
vertex in G[k+ 1, j] is either in B(vs), hence it is adjacent to vs via an edge in E(B) or in the edge
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group (E1), or in B(vq), where vq is the child of vk different from vs, hence it is adjacent to vs via
an edge in the edge group (E2).

Assume next that i≤ s≤ k− 1. Then vs must be on a level higher than vk+1, which is the left
child of vk, and on a level lower than vp, which is the parent of vk. Hence, vs is the left sibling of
vk, which implies p= s− 1 and s= i. Therefore, vs is adjacent to all the vertices in G[i, k− 1] via
edges in E(B) or in the edge group (E1) as well as to all the vertices of G[k, j], via edges in the edge
group (E2); hence, vs is adjacent to all the vertices of G[i, j].

Finally, note that, as the vertices of G are laid out in general position, every star in G[i, j] is
noncrossing. �

The recursive algorithm (Section 2.3) occasionally embeds a subtree of T onto an induced sub-
graph of G that is ‘almost’ an interval, in the sense that it can be obtained from an interval of G by
deleting its highest vertex or by replacing its highest vertex with a vertex that does not belong to
the interval. Lemmas 5 and 6 below provide the tools to construct such embeddings.

We first prove that the ‘structure’ of an interval without its highest vertex is similar to that of an
interval; this is formalised by the following definition. Let U and W be two subsets of V(G) with
h= |U| = |W|. Let u1, . . . , uh and w1, . . . ,wh be the vertices of U and W, respectively, ordered
by increasing x-coordinates. We say that G[U] and G[W] are crossing-isomorphic if the following
conditions are satisfied:

(C1) For any two distinct integers p, q ∈ {1, . . . , h}, the edge upuq is an edge of G[U] if and only
if wpwq is an edge of G[W].

(C2) For any four distinct integers p, q, r, s ∈ {1, . . . , h} such that both upuq and urus are edges
of G[U], the edges upuq and urus cross if and only if the edges wpwq and wrws cross.

(C3) For any integer i ∈ {1, . . . , h}, ui is the highest vertex ofG[U] if and only if wi is the highest
vertex of G[W].

If G[U] and G[W] are crossing-isomorphic, the graph isomorphism given by λ(ui)=wi, for
all i= 1, . . . , h, is a crossing-isomorphism. Clearly, the inverse of a crossing-isomorphism is also a
crossing-isomorphism. We have the following.

Lemma 4. Let vk be the highest vertex in an interval G[i, j] with i< j, and assume that G[i, j] con-
tains neither the right child of vk, nor the left child of the left sibling of vk (if it exists), nor any
descendant of the left child of the left sibling of vk (if it exists). Then G[i, j]− vk is crossing-isomorphic
to some interval G(I) of G. Moreover, the interval G(I) can be computed in O(1) time.

Proof. If k= i or k= j, then G[i, j]− vk is the interval G[i+ 1, j] or G[i, j− 1], respectively, and
the conclusion is immediate. So assume that i< k< j and that the subtrees of B rooted at the
children of vk have height �. Thus, B(vk+1) has D := 2� − 1 vertices. Note that �≥ 1, that is, vk
has children, as otherwise vk+1 would be either the right sibling of vk or a vertex at a higher level
than vk, in both cases contradicting the assumption that vk is the highest vertex in G[i, j]. Let
I = [i−D, j−D− 1] and note that I can be computed in O(1) time. We prove that G[i, j]− vk is
crossing-isomorphic to G(I). Let u1, . . . , uh be the vertices of G[i, j]− vk, ordered by increasing
x-coordinates; further, let w1, . . . ,wh be the vertices of G(I), ordered by increasing x-coordinates.
Refer to Figure 3.

Since vk is the highest vertex in G[i, j] and i< k< j, it follows that vk is not the root of B and
vk−1 is not the parent of vk. Hence vk is the right child of its parent and has a left sibling vk−2D−1;
note that, since vk has children, its left sibling vk−2D−1 also has children. Since by assumption
G[i, j] contains neither the left child of vk−2D−1 nor any descendant of the left child of vk−2D−1,
it follows that G[i, k− 1] is a subgraph of G induced by vertices in the right subtree of the left
sibling of vk. Specifically, G[i, k− 1] is induced by the last k− i≤D vertices (in a pre-order
traversal) of the subtree B(vk−D) of height �, rooted at the right child vk−D of vk−2D−1. Further,
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Figure 3. The interval G[i, j]− vk is crossing-isomorphic to the interval G[i− D, j− D+ 1].

G[i−D, k−D− 1] consists of the last k− i vertices (in a pre-order traversal) of the sub-
tree B(vk−2D) of height �, rooted at the left child vk−2D of vk−2D−1. Hence, G[i, k− 1] is
crossing-isomorphic to G[i−D, k−D− 1].

Since vk+1 is the left child of vk and since the right child of vk is not a vertex of G[i, j] by
assumption, it follows that G[k+ 1, j] is the subgraph of G induced by the first j− k vertices (in a
pre-order traversal) of the subtree B(vk+1) of height �. Further, G[k−D, j−D− 1] consists of the
first j− k vertices (in a pre-order traversal) of the subtree B(vk−D) of height �. Hence, G[k+ 1, j]
is crossing-isomorphic to G[k−D, j−D− 1].

Condition (C1). In order to prove that Condition (C1) is satisfied (that is, G[i, j]− vk is isomor-
phic toG[I]), it remains to argue about the edges ofG[i, j]− vk betweenG[i, k− 1] andG[k+ 1, j]
(that is, between {u1, . . . , uk−i} and {uk−i+1, . . . , uh}), and about the edges of G(I) between
G[i−D, k−D− 1] and G[k−D, j−D− 1] (that is, between {w1, . . . ,wk−i} and
{wk−i+1, . . . ,wh}). We claim that, for any pair of integers p ∈ [1, k− i] and q ∈ [k− i+ 1, h],
upuq is an edge of G[i, j]− vk if and only if wpwq is an edge of G(I).

To prove the claim, recall that vertices vk−2D, vk−D, and vk+1 are at height � of G, and
the descendants of these vertices induce isomorphic subgraphs G[k− 2D, k−D− 1], G[k−D,
k− 1], and G[k+ 1, k+D], respectively. Since up and uq (resp., wp and wq) have different ances-
tors at height �, they are not in an ancestor-descendant relationship, and so they cannot be
connected by any edge in the edge group (E1). It remains to consider edges in the edge groups
(E2) and (E3). In any case, up and wp are on the same level, and similarly uq and wq are on the
same level.

Note that the intervals [k− 2D, k−D− 1] and [k−D, k− 1] are consecutive, but there is a
gap between [k−D, k− 1] and [k+ 1, k+D]. This means that for any pair of integers s ∈ [k−
2D, k−D− 1] and t ∈ [k−D, k− 1], the vertices vs and vt are level-neighbours if and only if
the vertices vs+D and vt+D+1 are level-neighbours (where s+D ∈ [k−D, k− 1] and t +D+ 1 ∈
[k+ 1, k+D]). Consequently, for any s ∈ [k− 2D, k−D− 1] and t ∈ [k−D, k− 1], vsvt is in the
edge group (E2) if and only if vs+Dvt+D+1 is in the edge group (E2). It follows that upuq is in the
edge group (E2) if and only if wpwq is in the edge group (E2). The same argument establishes that
upuq is in the edge group (E3) if and only if wpwq is in the edge group (E3), assuming that the
height of both up and uq is at most �− 1. Only the vertices vk−2D, vk−D, and vk+1 have height �
in G[k− 2D, k−D− 1], G[k−D, k− 1], and G[k+ 1, k+D]. All edges incident to these vertices
in G(I) and G[i, j]− vk are in the edge groups (E1) and (E2). (There are edges in the edge group
(E3) between vk+1 and all vertices in G[k− 2D, k−D], but G[i, j] does not contain any vertex in
G[k− 2D, k−D].)

Condition (C2). Recall that σ is the order of vertices in the BFS traversal of B that determines
their y-coordinates (that is, if a vertex u precedes another vertex v in σ , then u gets a larger y-
coordinate than v.)We claim that σ determines the same permutation on the vertices u1, . . . , uh of
G[i, j]− vk and the vertices w1, . . . ,wh of G(I), that is, a vertex up precedes a vertex uq in σ if and
only if the vertex wp precedes the vertex wq in σ . This property follows from the following facts:
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Figure 4. Illustration for the statement of Lemma 6.

1. The vertices u1, . . . , uk−i (resp., w1, . . . ,wk−i) are the last k− i vertices in a pre-order
traversal of the subtree B(vk−D) (resp., of the subtree B(vk−2D)) of B of height �;

2. the vertices uk−i+1, . . . , uh (resp., wk−i+1, . . . ,wh) are the first h− k+ i vertices in a pre-
order traversal of the subtree B(vk+1) (resp., of the subtree B(vk−D)) of B of height �; and

3. the vertices of B(vk−D) (resp., of B(vk−2D)) precede the vertices of B(vk+1) (resp., of
B(vk−D)) in a pre-order traversal of B.

Therefore, the rotation systems of G[i, j]− vk and G(I) are the same and so are the pairs of
edges that cross.

Condition (C3). Finally, note that vk+1 is the highest vertex of G[i, j]− vk and vk−D is the high-
est vertex of G[i−D, j−D− 1]. Since vk+1 = uk−i+1 and vk−D =wk−i+1, Condition (C3) is also
satisfied.

This concludes the proof that G[i, j]− vk and G(I) are crossing-isomorphic. �
We are now ready to present our tools for embedding trees onto ‘almost’ intervals. The first

one deals with subgraphs of G obtained by deleting the highest vertex from an interval.

Lemma 5. Let G[i, j] be an interval of G with h+ 1 vertices and let vk be its highest vertex. Assume
that there is a crossing-isomorphism λ from G[i, j]− vk to some interval G(I) of G with h vertices.
Further, assume that a tree T with h vertices admits an embedding ϕ onto G(I). Then ϕ′ = λ−1 ◦ ϕ
is an embedding of T onto G[i, j]− vk, and if a is the vertex of T such that ϕ(a) is the highest vertex
of G(I), then ϕ′(a) is the highest vertex of G[i, j]− vk.

Proof. Let u1, . . . , uh andw1, . . . ,wh be the vertices ofG(I) andG[i, j]− vk, respectively, ordered
by increasing x-coordinates. Let a1, . . . , ah be the vertices of T ordered so that ϕ(ai)= ui, for
i= 1, . . . , h. Note that ϕ′ = λ−1 ◦ ϕ yields ϕ′(ai)=wi for i= 1, . . . , h. We now prove that ϕ′ is an
embedding of T onto G[i, j]− vk with the properties stated in the lemma.

First, for every p, q ∈ {1, . . . , h} such that apaq is an edge inT, we have that ϕ′(ap)ϕ′(aq)=wpwq
is an edge in G[i, j]− vk. In particular, ϕ(ap)ϕ(aq)= upuq is an edge in G(I), given that ϕ is an
embedding of T onto G(I). By Condition (C1) for λ, the edge wpwq is an edge of G[i, j]− vk.

Second, for every p, q, r, s ∈ {1, . . . , h} such that apaq and aras are distinct edges of T, the edges
ϕ′(ap)ϕ′(aq)=wpwq and ϕ′(ar)ϕ′(as)=wrws do not cross each other. Namely, ϕ(ap)ϕ(aq)= upuq
and ϕ(ar)ϕ(as)= urus do not cross each other, given that ϕ is an embedding of T onto G(I). Then
Condition (C2) for λ implies that wpwq and wrws do not cross each other.

Finally, let at be the vertex of T such that ϕ(at)= ut is the highest vertex of G(I). Condition
(C3) for λ implies that wt is the highest vertex of G[i, j]− vk. By construction, ϕ′(at)=wt . This
concludes the proof of the lemma. �

The second tool deals with subgraphs of G obtained by replacing the highest vertex of an
interval with another ‘high’ vertex outside the interval; see Figure 4 for an illustration.
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Lemma 6. Let G[i, j] be an interval of G with h vertices and let vk be its highest vertex. Let vx be a
vertex of G that is higher than all vertices in G[i, j]− vk and that does not belong to G[i, j]. Assume
that a tree T with h vertices admits an embedding ϕ onto G[i, j]. Let a be the vertex of T such that
ϕ(a)= vk; further, let ϕ′(a)= vx and ϕ′(b)= ϕ(b) for every vertex b of T other than a. Then ϕ′ is
an embedding of T onto G[i, j]− vk + vx.

Proof. By construction, we have ϕ′(b)= ϕ(b) for every vertex b of T other than a. Since ϕ is an
embedding of T onto G[i, j], we only need to prove that none of the edges incident to a crosses
any other edge of T in ϕ′(T). Let ab and cd be two edges of T, and let vp := ϕ′(b), vq := ϕ′(c),
and vr := ϕ′(d), where p, q, r ∈ [i, j]. We prove that vxvp and vqvr do not cross. We may assume,
w.l.o.g., that q< r. Further, assume that x> j, as the case in which x< i can be handled by a
symmetric argument.

• If r< p, then vxvp and vqvr do not cross as they use disjoint x-intervals.
• If p< q, then vxvp and vqvr do not cross by Observation 2.
• Finally, assume that q< p< r. If vp precedes both vq and vr in the order σ that determines
the y-coordinates of the vertices of G, then the y-coordinate of vp is larger than that of vq
and vr , hence vxvp and vqvr do not cross as they use disjoint y-intervals. Assume now that
vp succeeds vq or vr (possibly both) in σ . Suppose, for the sake of contradiction, that vxvp
and vqvr cross. Then vp lies below the line through vq and vr . However, this implies that
vkvp and vqvr also cross, contradicting the assumption that ϕ is an embedding of T onto
G[i, j].

This concludes the proof of the lemma. �
The following lemma is a variant of the (unique) lemma in [19]. It finds a subtree of a certain

order in a rooted tree. For a vertex v of a rooted tree T, denote by T(v) the subtree of T rooted
at v.

Lemma 7. Given a rooted tree T on m≥ 2 vertices and an integer s, with 1≤ s≤m, there is a vertex
c of T such that |V(T(c))| ≥ s but |V(T(d))| ≤ s− 1, for all children d of c. Such a vertex c can be
computed in O(m) time.

Proof. We find vertex c by the following walk on T starting from the root. Initially, let c be the
root of T. While c has a child d such that |V(T(d))| ≥ s, then set c := d. At the end of the while
loop, |V(T(c))| ≥ s but |V(T(d))| ≤ s− 1, for all children d of c. After precomputing the order of
the subtree T(v) for every vertex v of T, the while loop runs in O(m) time. �

2.3. Proof of Theorem 1
Given a tree T on h vertices and an interval G[i, j] of length h, we describe an algorithm that
recursively constructs an embedding ϕ of T onto G[i, j]. For a subtree T′ of T, we denote by
ϕ(T′) the image of ϕ restricted to the vertices and edges of T′. A step of the algorithm explicitly
embeds some vertices; the remaining vertices form subtrees that are recursively embedded onto
pairwise disjoint subintervals of G[i, j]. In order to control the interaction between the recursively
embedded subtrees and the edges connecting vertices of such subtrees to explicitly embedded
vertices, we insist that in every subtree at most two vertices, called portals, are adjacent to external
vertices (i.e. vertices that are not part of the subtree). We also ensure that whenever a subtree is
embedded onto a subinterval, the external vertices that connect to the portals of that subtree are
embedded above the whole subinterval.

For a point p ∈R
2, we define two quarter-planes:

Q+(p)= {q ∈R
2 : x(p)< x(q) and y(p)< y(q)},

Q−(p)= {q ∈R
2 : x(q)< x(p) and y(p)< y(q)}.
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Figure 5. Illustration for Case 1.1: Tree T (left) and its embedding onto G[i, j] (right).

Observe that Q+(p) is set of points above and to the right of p, and similarly Q−(p) is the set
of points above and to the left of p. In Lemma 8 below, we require that these regions are empty
of vertices and edges of the embedded graph, so that they can be used to add edges incident to p,
when a portal is embedded onto it.

We inductively prove the following lemma, which immediately implies Theorem 1. Given an
n-vertex forest F, it suffices to define a tree T as an arbitrary n-vertex tree that contains F as a
subgraph, to set h= n and G[i, j]=G[0, n− 1], and to choose a portal a in T arbitrarily.

Lemma 8. We are given a tree T on h vertices, an interval G[i, j] of length h, and

1. either a single portal a in T or
2. two distinct portals a and b in T.

Then there exists an embedding ϕ of T onto G[i, j] with the following properties:

1. If only one portal a is given, then
(a) ϕ(a) is the highest vertex in G[i, j]; and
(b) if degT (a)= 1 and a′ is the unique neighbour of a in T, then Q−(ϕ(a′)) does not intersect

any vertex or edge of the embedding ϕ(T(a′)).
2. If two distinct portals a and b are given, then
(a) ϕ(a) is to the left of ϕ(b);
(b) Q−(ϕ(a)) does not intersect any edge or vertex of ϕ(T); and
(c) Q+(ϕ(b)) does not intersect any edge or vertex of ϕ(T).

Moreover, the embedding ϕ can be found in O(h2) time.

Proof. We proceed by induction on the number of vertices of T. In the base case, T has one vertex,
which must be the portal a, and the map ϕ(a)= vi maps a to the highest vertex of G[i, i]. For the
induction step we assume that h≥ 2 and that the claim holds for all smaller trees.

Case 1: There is only one portal a. Let vk denote the highest vertex in G[i, j]. We need to find an
embedding of T onto G[i, j] where ϕ(a)= vk. Consider T to be rooted at a. We distinguish two
cases depending on the degree of a in T.

Case 1.1: degT (a)≥ 2. Assume that a has t children a1, . . . , at . Refer to Figure 5. Partition the
set of integers [i, j] \ {k} into t contiguous subsets I1, . . . , It such that |Ix| = |V(T(ax))|, for x=
1, . . . , t. Let q ∈ {1, . . . , t} be such that Iq contains k− 1 or k+ 1, and so Iq ∪ {k} is an interval of
integers.

By induction, there is an embedding ϕx of T(ax) onto G(Ix) such that ax is mapped to the
highest vertex of G(Ix), for all x = q. Similarly, there is an embedding ϕq of T − ⋃

x =q T(ax) onto
G(Iq ∪ {k}) such that a is mapped to the highest vertex of G(Iq ∪ {k}), which is vk. Note that these
embeddings are pairwise noncrossing since they use pairwise disjoint intervals. Let ϕ :V(T)→
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Figure 6. Illustration for Case 1.2.4, if c′ = a. Tree T (left) and its embedding onto G[i, j] (right).

Figure 7. Illustration for Case 1.2.4, if c′ = a′. Tree T (left) and its embedding onto G[i, j] (right).

V(G[i, j]) be the combination of these embeddings. Clearly, both Properties 1(a) and 1(b) (the
latter vacuously) are satisfied by ϕ.

The only edges of T between distinct subtrees among T(a1), . . . , T(aq−1), T(aq+1), . . . , T(at),
and T − ⋃

x =q T(ax) are of the form aax, for x = q. The edges ϕ(a)ϕ(ax) are in G[i, j] and are
pairwise noncrossing by Lemma 3. Moreover, ϕ(a)ϕ(ax) does not cross ϕ(T(ax)), as ϕ(ax) is
the highest vertex of ϕ(T(ax)) and ϕ(a) is higher than ϕ(ax); further, ϕ(a)ϕ(ax) does not cross
ϕ(T(ay)), where y = x, by Observation 2. Therefore, ϕ is an embedding of T onto G[i, j], as
required. �
Case 1.2: degT (a)= 1. Let a′ be the unique neighbour of a in T and let T′ = T(a′). We need to
construct an embedding ϕ of T onto G[i, j] such that ϕ(a)= vk and ϕ(T′)=G[i, j]− vk.

Case 1.2.1: k= j. Set ϕ(a)= vk and recursively embed T′ onto G[i, k− 1] with a single portal
a′, which is mapped to the highest vertex in G[i, k− 1] (i.e. the second highest vertex in G[i, j]).
Clearly, both Properties 1(a) and 1(b) are satisfied. Further, ϕ is an embedding of T onto G[i, j],
since ϕ(a′) is the highest vertex of ϕ(T′) and ϕ(a) is higher than ϕ(a′), hence the edge ϕ(a)ϕ(a′),
which exists by Lemma 3, does not cross ϕ(T′). �
Case 1.2.2: k= i. The discussion for this case is symmetric to the one for Case 1.2.1. �
Case 1.2.3: i< k< j and the left sibling v� of vk exists and is in G[i, j]. It follows that �= i, as
if � > i, then v�−1, which is the parent of v� and vk, would be a vertex in G[i, j] higher than vk.
By construction, vi is the second highest vertex inG[i, j]. Recursively construct an embeddingψ of
T′ ontoG[i+ 1, j] with a single portal a′. By Property 1(a), we haveψ(a′)= vk. By Lemma 6, there
exists an embedding ϕ of T′ onto G[i+ 1, j]− vk + vi =G[i, j]− vk in which ϕ(a′)= vi (hence ϕ
satisfies Property 1(b)). Finally, set ϕ(a)= vk (hence ϕ satisfies Property 1(a)). As in Case 1.2.1, the
edge ϕ(a)ϕ(a′)= vkvi, which exists by Lemma 3, does not cross ϕ(T′), hence ϕ is an embedding
of T onto G[i, j]. �
Case 1.2.4: i< k< j, the left sibling of vk does not exist or is not in G[i, j], and the right child of vk
is not in G[i, j]. Refer to Figures 6–8. By construction, the left child of vk is vk+1, which is in G[i, j].
Since the left sibling of vk does not exist or is not in G[i, j], and since the right child of vk is not in
G[i, j], it follows that vk+1 is the second highest vertex in G[i, j].
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Figure 8. Illustration for Case 1.2.4, if c′ = a and c′ = a′. Tree T (left) and its embedding onto G[i, j] (right).

Set s= j− k+ 1, that is, s is the number of vertices in the interval [k, j]. Note that s< h, given
that k> i. Lemma 7 then yields a vertex c in T′ such that |V(T′(c))| ≥ s but |V(T′(d))| ≤ s− 1 for
all children d of c, where c = a as a /∈V(T′).

Label the children of c as c1, . . . , ct in an arbitrary order and let � ∈ [1, t] be the smallest index
such that 1+ ∑�

x=1 |V(T(cx))| ≥ s. Since |V(T(c�))| ≤ s− 1, we have s≤ 1+ ∑�
x=1 |V(T(cx))| ≤

2s− 2.
Let c′ be the parent of c in T. Note that it might be the case that c′ = a or c′ = a′. Let H denote

the subtree of T induced by c and the union of V(T(c1)), . . . ,V(T(c�)), and let m= |V(H)|. The
above inequalities imply s≤m≤ 2s− 2. On the one hand, j− k+ 1≤m implies that the subin-
terval G[j−m, j] contains vk, and so vk is the highest vertex in G[j−m, j]. On the other hand,
the interval G[j−m, k− 1] contains k− 1− j+m+ 1=m− s+ 1≤ s− 1 vertices, given that
m≤ 2s− 2; however, since the right child of vk is not inG[i, j], we know that the order of a subtree
of B rooted at any vertex at the level below vk is at least s− 1. It follows that G[j−m, j] contains
neither the left child of the left sibling of vk (if it exists) nor any descendants of the left child of the
left sibling of vk (if it exists). By Lemma 4, G[j−m, j]− vk is crossing-isomorphic to an interval
G(I) of sizem.

Recursively embed H onto G(I) with one portal c, which is mapped to the highest vertex of
G(I). By Lemma 5, there exists an embedding ϕ of H onto G[j−m, j]− vk such that ϕ(c)= vk+1.
We complete ϕ into an embedding of T onto G[i, j] as follows. Set ϕ(a)= vk (hence ϕ satisfies
Property 1(a)). If c has more than � children, then embed the subtrees T(c�+1), . . . , T(ct) on con-
secutive subintervals to the left ofG[j−m, j], with single portals c�+1, . . . , ct , respectively. Finally,
we distinguish three cases, based on whether c′ = a, or c′ = a′, or c′ /∈ {a, a′}.

• If c′ = a, as in Figure 6, then the embedding ϕ defined so far embeds the entire tree T onto
G[i, j]. Note that ϕ satisfies Property 1(b), given that ϕ(a′)= ϕ(c)= vk+1.

• If c′ = a′, as in Figure 7, then by induction, we can embed T′ − T(c) onto the remaining
subinterval of G[i, j] with one portal c′ = a′ (hence ϕ satisfies Property 1(b), given that the
embedding of T′ − T(c) satisfies Property 1(a)).

• If c′ = a and c′ = a′, as in Figure 8, then by induction, we can embed T′ − T(c) onto the
remaining subinterval of G[i, j] with two portals a′ and c′ (hence ϕ satisfies Property 1(b),
given that the embedding of T′ − T(c) satisfies Property 2(b)).

The embeddings ϕ(H), ϕ(T(c�+1)), . . . , ϕ(T(ct)), ϕ(T′ − T(c)) are pairwise noncrossing since
they use pairwise disjoint intervals. Further, the edges ϕ(c)ϕ(c�+1), . . . , ϕ(c)ϕ(ct) belong to G[i, j]
and do not cross by Lemma 3, given that ϕ(c)= vk+1 is the second highest vertex of G[i, j];
further, these edges do not cross ϕ(H), ϕ(T(c�+1)), . . . , ϕ(T(ct)) by Observation 2 and do not
cross ϕ(T′ − T(c)) since they use intervals disjoint from the one used by ϕ(T′ − T(c)). By anal-
ogous arguments, we can conclude that the edge ϕ(a)ϕ(a′) belongs to G[i, j] and does not
cross ϕ(H), ϕ(T(c�+1)), . . . , ϕ(T(ct)), ϕ(T′ − T(c)), and that the edge ϕ(c)ϕ(c′) belongs to G[i, j]
and does not cross ϕ(H), ϕ(T(c�+1)), . . . , ϕ(T(ct)). Further, the edge ϕ(c)ϕ(c′) does not cross
ϕ(T′ − T(c)); this comes from the fact that ϕ(c′) is the highest vertex of ϕ(T′ − T(c)) if c′ = a′,
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Figure 9. Illustration for Case 1.2.5.1, if c′ = a′. Tree T (left) and its embedding onto G[i, j] (right).

Figure 10. Illustration for Case 1.2.5.1, if c′ = a′. Tree T (left) and its embedding onto G[i, j] (right).

and from the fact that ϕ(T′ − T(c)) satisfies Property 2(c) if c′ = a′ and c′ = a (in fact, ϕ(c) is in
Q+(ϕ(c′))). It follows that ϕ is an embedding of T onto G[i, j]. �
Case 1.2.5: i< k< j, the left sibling of vk does not exist or is not in G[i, j], and the right child vr
of vk is in G[i, j]. By assumption, we have k+ 1< r ≤ j; further, the second highest vertex in G[i, j]
is vr .

Set s= j− r + 1, that is, s is the number of vertices in the interval [r, j]. Note that s< h, given
that k> i (indeed, s≤ h− 3, since vi, vk, and vk+1 do not belong to G[r, j]). Lemma 7 then yields
a vertex c in T′ such that |V(T(c))| ≥ s but |V(T(d))| ≤ s− 1 for all children d of c, where c = a as
a /∈V(T′). Set m= |V(T(c))|, and label the children of c by c1, . . . , ct in an arbitrary order. Let c′
be the parent of c and denote by Tc(c′) the subtree of T induced by c′ and V(T(c)).

Case 1.2.5.1: m≤ j− k− 1. Then the interval [j−m, j] contains r but does not contain k, hence
vr is the highest vertex in G[j−m, j]. Note that m≤ j− k− 1 implies that m≤ h− 3, given that
k≥ i+ 1 and that h= j− i+ 1. This implies that c = a′ and c′ = a, as otherwise m= |V(T(c))| =
h− 1. We construct an embedding ϕ of T onto G[i, j] as follows. Refer to Figures 9 and 10. First,
set ϕ(a)= vk (hence ϕ satisfies Property 1(a)).

By induction, there is an embedding ψ1 of Tc(c′) onto G[j−m, j] with a single portal c′. By
Property 1(a) of ψ1, we have ψ1(c′)= vr ; further, by Property 1(b) of ψ1, we have that Q−(ψ1(c))
does not intersect any vertex or edge of ψ1(T(c)). Let ϕ(T(c))=ψ1(T(c)). Note that this does not
yet define the vertex of G[i, j] vertex c′ is embedded onto.

In order to complete the definition of ϕ, we distinguish two cases, based on whether c′ = a′
or c′ = a′. In the first case, shown in Figure 9, by induction, there is an embedding ψ2 of T′ −
T(c) onto G[i, j−m− 1] with a single portal c′ = a′. In the second case, shown in Figure 10, by
induction, there is an embedding ψ2 of T′ − T(c) onto G[i, j−m− 1] with two portals a′ and c′.
In both cases, by Lemma 6, there is an embedding ϕ of T′ − T(c) onto G[i, j−m− 1]− vk + vr
(this is part of the embedding ϕ of T onto G[i, j]), where the vertex of T that is mapped to vk
by ψ2 is mapped to vr by ϕ, and every other vertex of T is mapped to the same vertex of G[i, j]
by ψ2 and by ϕ. If ψ2(a′) = vk, then ϕ satisfies Property 1(b), given that ψ2 satisfies the same
property (if c′ = a′) or given thatψ2 satisfies Property 2(b) (if c′ = a′). Further, ifψ2(a′)= vk, then
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ϕ(a′)= vr and the only vertex of G[i, j] in the interior of Q−(ϕ(a′)) is ϕ(a)= vk (hence ϕ satisfies
Property 1(b)). This completes the definition of ϕ.

We argue that the edge ϕ(c)ϕ(c′) is present inG[i, j]. To simplify the notation, let vp = ϕ(c′) and
vq = ϕ(c), and note that p< q or p= r.We first discuss the case p= r. Notice that this case happens
if ψ2(c′)= vk, which holds always true if ψ2 embeds T′ − T(c) onto G[i, j−m− 1] with a single
portal c′ = a′. Then the edge ϕ(c)ϕ(c′) is present inG[i, j], asψ1(c′)= vr and the edge cc′ belongs to
Tc(c′). Assume next that p< q, which implies that ψ2 embeds T′ − T(c) onto G[i, j−m− 1] with
two portals a′ and c′. On the one hand, by Property 2(c) of ψ2, we have that Q+(ψ2(c′)) does not
contain any vertex or edge of ψ2(T′ − T(c)), hence k< p, as otherwise vk would be in Q+(ψ2(c′)).
It follows that vp is the highest vertex in G[p, j−m− 1]. On the other hand, by Property 1(b)
of ψ1, we have that Q−(ψ1(c)) does not contain any vertex or edge of ψ1(T(c)). It follows that
vq is either the highest or the second highest vertex in G[j−m, q] (as vr might belong to such
an interval). Overall, one of vp or vq is the highest or the second highest vertex in G[p, q]. By
Lemma 3, G[p, q] contains a star centred at vp or vq, and so it contains the edge vpvq = ϕ(c′)ϕ(c),
as required.

We now prove that ϕ(T) is crossing-free. The embeddings ϕ(T(c)) and ϕ(T′ − T(c)) are pair-
wise noncrossing, since they use disjoint intervals, with the exception of the edges of ϕ(T′ − T(c))
incident to vr , which however do not cross ϕ(T(c)) by Observation 2. It remains to deal with the
edges ϕ(c′)ϕ(c) and ϕ(a)ϕ(a′). Consider first the edge ϕ(c′)ϕ(c).

• If ϕ(c′)= vr , then the edge ϕ(c′)ϕ(c) does not cross ϕ(T(c)) as ψ1(c′)= vr and ψ1 defines
an embedding of Tc(c′) onto G[j−m, j]. The edge ϕ(c′)ϕ(c) does not cross any edge of
ϕ(T′ − T(c)) incident to vr by Lemma 3, and it does not cross any edge of ϕ(T′ − T(c)) not
incident to vr as they use disjoint intervals.

• If ϕ(c′)= vp with p = r, then the edge ϕ(c′)ϕ(c) does not cross ϕ(T(c)) by Observation 2
and since Q−(ϕ(c)) does not intersect ϕ(T(c)); it does not cross any edge of ϕ(T′ − T(c))
not incident to vr by Observation 2 and since Q+(ϕ(c′)) does not intersect ϕ(T′ − T(c)),
except at vr and its incident edges; and we claim that it does not cross any edge of ϕ(T′ −
T(c)) incident to vr , either. The latter can be proved as follows. Let again ϕ(c)= vq, and
consider any edge vrvs in ϕ(T′ − T(c)). Then we have max{p, s}<min{r, q}. Since vr is
higher than vp, vq, and vs, by Observation 2 the edges vpvq and vrvs do not cross if s< p,
hence we can assume that p< s. The last inequality implies that the edge vkvs of ψ2(T′ −
T(c)) crosses Q+(ϕ(c′)), which however is not possible by Property 2(c) of ψ2(T′ − T(c)).

Finally, the edge ϕ(a)ϕ(a′) does not cross ϕ(T(c)), since they use disjoint intervals, and it does
not cross ϕ(c′)ϕ(c) or any edge of ϕ(T′ − T(c)), by Observation 2 and since Q−(ϕ(a′)) does not
intersect any edge or vertex of ϕ(T′ − T(c)), by Property 2(b) of ψ2(T′ − T(c)). �
Case 1.2.5.2: j− k− 1<m. In this case, the interval [j−m, j] contains both k and r; further, we
might have c′ = a′ or c′ = a. Refer to Figure 11. Partition the set of integers [j−m, j] \ {k, r} into t
contiguous subsets I1, . . . , It such that |Ix| = |V(T(cx))|, for x= 1, . . . , t. Let q ∈ {1, . . . , t} be such
that Iq contains r − 1 or r + 1. Note that the sets I1, . . . , It are not necessarily intervals, since the
set of integers [j−m, j] \ {k, r} they partition is not an interval, either.

Let I(c) be the collection of t sets: Iq ∪ {r} and Ix, for x ∈ [1, t] \ {q}. The sets in I(c) are con-
tiguous subsets of [j−m, j] \ {k}. Consequently, at least t − 1 of them are intervals, and at most
one of them, say Ip, is an interval minus the element k. Since s= j− r + 1 and since all the ver-
tices of G[r, j] belong to B(vr), as otherwise vk would not be the highest vertex in G[i, j], it follows
that the size of B(vr) is larger than or equal to s. Consequently, also the size of the subtrees of B
rooted at the left child of vk and at the right child of the left level-neighbour of vk are larger than or
equal to s. This, together with the fact that every tree T(ci) has at most s− 1 vertices, implies that
G(Ip) contains neither the right child of vk, nor the left sibling of vk, nor any descendant of the
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Figure 11. Illustration for Case 1.2.5.2. Tree T (left) and its embedding onto G[i, j] (right). In this example we have p= 1 and
q= 2.

Figure 12. Illustration for Case 2. Tree T (left) and its embedding onto G[i, j] (right).

left sibling of vk. By Lemma 4, the graph G(Ip) is crossing-isomorphic to an interval. Therefore,
by Lemma 5, we can embed T(cp) onto G(Ip). We also recursively embed T(cx) onto G[Ix] for all
x ∈ [1, t] \ {p, q} and we recursively embed T(c)− ⋃

x =q T(cx), that is, the subtree of T induced
by c and by V(T(cq)), onto G(Iq ∪ {r}).

Embed a at vk. If c′ = a (and c= a′), then T′ coincides with T(c) and hence ϕ is the combination
of the described embeddings. Otherwise, ϕ also includes an embedding of T′ − T(c) onto G[i, j−
m− 1]. This embedding is constructed recursively with a single portal c′ (if c′ = a′) or with two
portals a′ and c′ (if c′ = a′). The proof that ϕ is an embedding of T ontoG[i, j] satisfying Properties
1(a) and 1(b) is similar to the other cases. In particular, ϕ(c)= vr is the second highest vertex of
G[i, j], hence the edge ϕ(c)ϕ(c′) exists by Lemma 3. �
Case 2: Two portals. We are given two portals a and b; refer to Figure 12. Let P = (a= c1, . . . ,
ct = b) be the path between a and b in T, where t ≥ 2. The deletion of the edges in P splits T into
t trees rooted at c1, . . . , ct . Partition [i, j] into t subintervals I1, . . . , It such that |Ix| = |V(T(cx))|,
for x= 1, . . . , t.

For x= 1, . . . , t, recursively construct an embedding ϕx of T(cx) onto G(Ix) with one portal cx,
in which ϕx(cx) is the highest vertex in G(Ix). Let ϕ be the combination of these embeddings.

For any distinct x and y in {1, . . . , t}, we have that ϕ(T(cx)) and ϕ(T(cy)) do not cross, since
they use disjoint intervals. Only the edges in P connect vertices from distinct intervals. For x=
1, . . . , t − 1, let ex be the edge ϕ(cx)ϕ(cx+1). Note that ex is incident to the highest vertex inG(Ix ∪
Ix+1) and hence belongs to G(Ix ∪ Ix+1) by Lemma 3. Further, ex does not cross ϕ(T(cy)), with
y< x or y> x+ 1, as the intervals spanned by ex and ϕ(T(cy)) are disjoint. Analogously, ex does
not cross any edge ey, with y = x. Assume that ϕ(cx+1) is higher than ϕ(cx), the other case is
symmetric. Then ex does not cross ϕ(T(cx)), as ϕ(cx) is the highest vertex of ϕ(T(cx)) and ϕ(cx+1)
is higher than ϕ(cx); finally, ex does not cross ϕ(T(cx+1)), by Observation 2. Therefore, ϕ is an
embedding of T onto G[i, j]. It is easily checked that this embedding satisfies Properties 2(a), 2(b),
and 2(c), as required.

Running time analysis.We conclude by inductively proving that the time complexity of the above
described algorithm is at most c · h2, for some suitably large constant c.

The statement is obviously true in the base case.
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In Case 1 of the induction step, we recursively embed some vertex-disjoint subtrees of T with
a total of at most h− 1 vertices. By induction, this takes at most

∑
S (c · |V(S)|2)≤ c · (h− 1)2

time, where the sum is over all subtrees S of T which are recursively embedded. Apart from these
recursive embedding constructions, in Case 1 we explicitly embed in constant time (denoted as
k1) some vertices of T at vertices of G[i, j], we find in constant time (denoted as k2) a subtree with
suitable order by means of Lemma 7, we modify in constant time (denoted as k3) a recursively
constructed embedding by means of Lemma 6, we modify in linear time (denoted as k4 · h) a
recursively constructed embedding by means of Lemma 5, or we find in linear time (denoted as
k5 · h) some subintervals of G[i, j] of the proper size. Thus, it suffices to choose a sufficiently large
constant c so that (−2c+ k4 + k5) · h+ (c+ k1 + k2 + k3)< 0, in order to verify that the time
complexity of the algorithm is at most c · h2.

In Case 2 of the induction step, we recursively embed some subtrees of T with a total of h
vertices and we find in linear time (denoted as k · h) some subintervals of G[i, j] of the proper size.
By induction, this takes at most

∑
S (c · |V(S)|2)+ k · h time. Since in Case 2 there are at least two

recursively embedded subtrees,
∑

S (c · |V(S)|2) is maximised when there is one subtree of order
h− 1 and one subtree of order 1, which leads to

∑
S (c · |V(S)|2)+ k · h≤ c · (h− 1)2 + c+ k · h,

which is smaller than c · h2 time, as long as (−2c+ k) · h+ 2c< 0, which is true for a sufficiently
large c, given that h≥ 2.

3. Convex geometric graphs
Every graph embedded into a convex geometric graph is outerplanar. Clearly, a complete convex
geometric graph on n vertices hasO(n2) edges and is universal for n-vertex outerplanar graphs. In
the next theorem we show that this trivial upper bound is almost tight. For h≥ 0 and n≥ 2h+ 2,
letOPh(n) be the family of all outerplanar graphs on n vertices that consist of a spanning cycle plus
h pairwise vertex-disjoint chords. In the following, we write f (n) ∈�h(n) to represent f (n)≥ chn,
where ch is a constant depending on h only.

Theorem 9. For every positive integer h and n≥ 3h2, every convex geometric graph on n vertices
that is universal forOPh(n) has�h(n2−1/h) edges.

Proof. The claim trivially holds for h= 1; we may assume h≥ 2 in the remainder of the proof. Let
C be a convex geometric graph on n vertices that is universal for OPh(n), and denote by ∂C its
outer (spanning) cycle. The length of a chord uv of ∂C is the length of a shortest path between u and
v along ∂C. For k≥ 2, denote by Ek the set of length-k chords in C, and let m ∈ {2, . . . , �n/(3h)�}
be an integer such that |Em| =min{|E2|, . . . , |E�n/(3h)�|}.

Let L be the set of vertex-labeled outerplanar graphs on n vertices that consist of a spanning
cycle (v0, . . . , vn−1) plus h pairwise vertex-disjoint chords of lengthm such that one chord is v0vm
and all h chords have both vertices on the path P = (v0, . . . , v�n/3�+hm−1).

Every graph G ∈L has a unique spanning cycle H. If an edge e of H were embedded onto a
chord of ∂C, then the path of H − e would cross e, given that C is a convex geometric graph. It
follows that H is embedded onto ∂C. The four endpoints of any two chords of H are noninter-
leaving along H, otherwise G would not be an outerplanar graph. Since they all have the same
length, the h chords of H have a well-defined cyclic order along H. A gap of G is a path between
two consecutive chords along H (in cyclic order). Note that G has h gaps.

The length of the path P is �n/3� + hm− 1≤ �n/3� + h · �n/(3h)� − 1< 2�n/3�.
Consequently, the length of the gap between the last and the first chord of P is greater
than n− 2�n/3� = �n/3�. This is the longest gap, as the sum of the lengths of the remaining h− 1
gaps is at most �n/3�.

Let U denote the subset of unlabelled graphs inOPh(n) that correspond to some labelled graph
in L. We give lower bounds for |L| and |U |. Each graph in L is determined by the h− 1 gaps
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between consecutive chords along P. The sum of these distances is an integer between h− 1 and
(�n/3� + hm− 1)− hm< �n/3�. The number of compositions of �n/3� into h positive integers
(i.e. h− 1 distances and a remainder) is

(�n/3�
h−1

) ∈�h
(
nh−1). Each unlabelled graph in U corre-

sponds to at most two labeled graphs inL, since any graph automorphism setwise fixes the unique
spanning cycle as well as the longest gap. Hence, |U | ∈�(|L|)⊆�h

(
nh−1).

Since C is universal for OPh(n) and U ⊂OPh(n), every graph G in U embeds onto C. Since
every embedding of G maps the spanning cycle of G onto the outer cycle ∂C and the h chords of
G into a subset of Em, we have that C contains at most

(|Em|
h

) ≤ |Em|h graphs from U . The combi-
nation of the lower and upper bounds for |U | yields |Em|h ∈�h

(
nh−1), hence |Em| ∈�h

(
n1−1/h).

Overall, the number of edges in C is at least
∑�n/(3h)�

i=1 |Ei| ≥ �n/(3h)� · |Em| ∈�h
(
n2−1/h). �

For the case h= 2, the lower bound of Theorem 9 is the best possible, as shown in the following
theorem.

Theorem 10. For every n ∈N, there exists a convex geometric graph with n vertices and O
(
n3/2

)
edges that is universal forOP2(n).

Proof. We construct a convex geometric graph C and then show that it is universal for OP2(n).
The vertices v0, . . . , vn−1 of C form a regular convex n-gon, and the edges of this spanning cycle
are in C. Denote

S= {
0, . . . ,

⌊√
n
⌋ − 1

} ∪ {
i
⌊√

n
⌋
: 1≤ i≤ �√n�}

and add (the edges of) a star centred at vs, for every s ∈ S, to C. Clearly, C contains O
(
n3/2

)
edges.

Moreover, for every d ∈ {1, . . . , �n/2�} there exist a, b ∈ S so that b− a= d. For any G ∈OP2(n),
let a, b ∈ S so that the distance along the outer cycle between the two closest vertices of the
two chords of G is b− a. As C contains stars centred at both va and vb, the graph G embeds
onto C. �

While we can prove a near-quadratic lower bound for the number of edges of an n-vertex
convex geometric graph that is universal for n-vertex outerplanar graphs, for n-vertex trees we
only have an �

(
n log n

)
lower bound. This lower bound is valid even in the abstract setting and

for caterpillars [ [18], Theorem 1], where a caterpillar is a tree such that the removal of its leaves
results in a path, called spine.

We next prove that for caterpillars the above lower bound is tight. Namely, we construct a con-
vex geometric graph C with n vertices and O

(
n log n

)
edges that is universal for caterpillars with

n vertices. Our construction of C relies on a simple recursive construction of integer sequences.
Specifically, we define a sequence πn of n integers. Let π1 be a one-term sequence π1 = (1). For
every integer m of the form m= 2h − 1, where h≥ 2, let πm = π(m−1)/2(m)π(m−1)/2. For exam-
ple, π15 = (1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1). Now for any n ∈N, the sequence πn consists of
the first n integers in πm, where m≥ n and m= 2h − 1, for some integer h≥ 1. For example,
π10 = (1, 3, 1, 7, 1, 3, 1, 15, 1, 3). For i= 1, . . . , n, let πn(i) be the ith term of πn.

Property 11 ([24]). For every n ∈N, πn is a sequence of positive integers such that for every x with
1≤ x≤ n, the maximum of any x consecutive elements in πn is at least x.

The graph C has vertices v1, . . . , vn, placed in clockwise order along a circle c. Further, for
i= 1, . . . , n, we have that C contains edges connecting vi to the πn(i) vertices preceding vi and to
the πn(i) vertices following vi along c. We are now ready to prove the following.

Theorem12. For every n ∈N, there exists a convex geometric graph C with n vertices andO(n log n)
edges that is universal for n-vertex caterpillars.
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Proof. First, the number of edges of C is at most twice the sum of the integers in πn; the latter is
less than or equal to the sum of the integers in πm, wherem< 2n andm= 2h − 1, for some integer
h≥ 1. Further, πm is easily shown to be equal to (h− 1) · 2h + 1 ∈O

(
n log n

)
.

Let T be a caterpillar with n vertices and let (u1, u2, . . . , us) be the spine of T, for some s≥ 1.
For i= 1, . . . , s, let Si be the star composed of ui and its adjacent leaves; let ni be the number of
vertices of Si. Letm1 = 0 and, for i= 2, . . . , s, letmi = ∑i−1

j=1 nj. For i= 1, . . . , s, we embed Si onto
the subgraph Ci of C induced by the vertices vmi+1, vmi+2, . . . , vmi+ni : This is done by embedding
ui at the vertex vxi of Ci whose degree (in C) is maximum, and by embedding the leaves of Si at
the remaining vertices of Ci.

By Property 11, we have that vxi is adjacent inC to the ni vertices preceding it and the ni vertices
following it along c (and possibly to more vertices). Hence, vxi is adjacent to all other vertices of Ci,
which proves that the above embedding of Si onto Ci is valid. We now prove that the edge vxivxi+1
belongs to C for all i= 1, . . . , s− 1. Again by Property 11, the vertex between vxi and vxi+1 with
the highest degree is adjacent to the ni + ni+1 vertices preceding and ni + ni+1 vertices following
it along c (and possibly to more vertices). Hence, the vertex between vxi and vxi+1 with the highest
degree is adjacent to all other vertices in {vmi+1, vmi+2, . . . , vmi+1+ni+1}, and in particular to the
vertex between vxi and vxi+1 with the lowest degree. The proof is concluded by observing that
the edges of the spine (u1, u2, . . . , us) do not cross, since the vertices u1, u2, . . . , us appear in this
clockwise order along c. �

4. Conclusions and open problems
In this paper we introduced and studied the problem of constructing geometric graphs with few
vertices and edges that are universal for families of planar graphs. Our research raises several
challenging problems.

Universal geometric graphs. First, what is the minimum number of edges in an n-vertex convex
geometric graph that is universal for n-vertex trees? We proved that the answer is in O

(
n log n

)
if the convexity requirement is dropped, or if caterpillars, rather than trees, are considered, while
the answer is close to�(n2) if outerplanar graphs, rather than trees, are considered.

Second, what is the minimum number of edges in a geometric graph that is universal for all
n-vertex planar graphs? For abstract graphs, Babai, Chung, Erdős, Graham, and Spencer [5] con-
structed a universal graph with O

(
n3/2

)
edges based on separators; and Esperet, Joret, and Morin

[23] improved the bound to n · 2O
(√

log n·log log n
)
using strong products of a path with a graph

of treewidth at most eight. Can either of these methods be adapted to a geometric setting? The
current best lower bound is �(n log n), the same as for trees [19], while the best upper bound is
only O(n4).

Third, for a constant � ∈N, what is the minimum number of edges in a geometric graph that
is universal for all n-vertex planar graphs of maximum degree�?

Plane graphs. The notion of universality can be further extended to plane graphs, that is, planar
graphs with given rotation systems. The rotation system of a graph embedded in the plane consists
of the counterclockwise orders of the incident edges at all vertices. (A further generalisation to
embedded graphs replaces the plane by an arbitrary orientable surface.) For a class H of plane
graphs, a geometric graph is universal for H if it contains an embedding of every graph inH with
the given rotation system. Our upper bounds do not extend to this setting. In particular, we do
not know what is the minimum number of edges (i) in a geometric graph that is universal for all
n-vertex plane trees, and (ii) in a convex geometric graph that is universal for all n-vertex plane
caterpillars.
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Topological (multi-)graphs. Finally, the problems considered in this paper can be posed for
topological (multi-)graphs, as well, in which edges are represented by Jordan arcs. Within this
setting we observe a sub-quartic upper bound for the number of edges of a topological multigraph
that is universal for all n-vertex planar graphs.

Theorem 13. For every n ∈N, there exists a topological multigraph with n vertices and O(n3) edges
that contains a planar drawing of every n-vertex planar graph.

Proof. Every planar graph admits a 2-page monotone topological book embedding [21]. In such
a drawing, every edge is either drawn on one page only, or it is drawn so that it crosses the spine
exactly once. As there are

(n
2
)
possible pairs of endpoints, two choices for the page incident to the

left endpoint, and less than n possible segments of the spine to cross, we have less than n2(n− 1) ∈
�(n3) edges to draw. A drawing that encompasses all those edges is universal for planar graphs
on n vertices. �

A planar graph is subhamiltonian if it is a subgraph of a Hamiltonian planar graph. In partic-
ular, planar graphs of degree at most four [7], triconnected planar graphs of degree at most five
[27], and planar graphs that do not contain a separating triangle [10, 32] are subhamiltonian.

Theorem 14. For every n ∈N, there exists a topological multigraph with n vertices and O(n2) edges
that contains a planar drawing of every n-vertex subhamiltonian planar graph.

Proof. Every subhamiltonian planar graph admits a 2-page book embedding [8]. On each page,
draw the complete graph using

(n
2
)
circular arcs, and letD denote the union of these two drawings.

Clearly, G contains n(n− 1)=�(n2) edges and is universal for subhamiltonian planar graphs on
n vertices. �
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[5] Babai, L., Chung, F. R. K., Erdős, P., Graham, R. L. and Spencer, J. H. (1982) On graphs which contain all sparse graphs.

Ann. Discrete Math. 12 21–26.
[6] Bannister, M. J., Cheng, Z., Devanny, W. E. and Eppstein, D. (2014) Superpatterns and universal point sets. J. Graph

Algorithms Appl. 18(2) 177–209.
[7] Bekos, M. A., Gronemann, M. and Raftopoulou, C. N. (2016) Two-page book embeddings of 4-planar graphs.

Algorithmica 75(1) 158–185.
[8] Bernhart, F. and Kainen, P. C. (1979) The book thickness of a graph. J. Combin. Theory Ser. B 27(3) 320–331.
[9] Bhatt, S. N., Chung, F. R. K., Leighton, F. T. and Rosenberg, A. L. (1989) Universal graphs for bounded-degree trees and

planar graphs. SIAM J. Discrete Math. 2(2) 145–155.
[10] Biedl, T. C., Kant, G. and Kaufmann, M. (1997) On triangulating planar graphs under the four-connectivity constraint.

Algorithmica 19(4) 427–446.
[11] Bonamy, M., Gavoille, C. and Pilipczuk, M. (2020) Shorter labeling schemes for planar graphs. In Proceedings of the 31st

ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM, Philadelphia, PA, pp. 446–462.
[12] Bose, P. (2002) On embedding an outer-planar graph in a point set. Comput. Geom. 23(3) 303–312.

https://doi.org/10.1017/S0963548323000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000135


Combinatorics, Probability and Computing 761

[13] Böttcher, J., Pruessmann, K. P., Taraz, A. and Würfl, A. (2010) Bandwidth, expansion, treewidth, separators and
universality for bounded-degree graphs. Eur. J. Combin. 31(5) 1217–1227.

[14] Böttcher, J., Schacht, M. and Taraz, A. (2009) Proof of the bandwidth conjecture of Bollobás and Komlós. Math. Ann.
343(1) 175–205.

[15] Bukh, B., Matoušek, J. D. and Nivasch, G. (2011) Lower bounds for weak epsilon-nets and stair-convexity. Isr. J. Math.
182(1) 199–228.

[16] Capalbo, M. R. (2002) Small universal graphs for bounded-degree planar graph. Combinatorica 22(3) 345–359.
[17] Cardinal, J., Hoffmann, M. and Kusters, V. (2015) On universal point sets for planar graphs. J. Graph Algorithms Appl.

19(1) 529–547.
[18] Chung, F. R. K. and Graham, R. L. (1978) On graphs which contain all small trees. J. Combin. Theory Ser. B 24(1) 14–23.
[19] Chung, F. R. K. and Graham, R. L. (1983) On universal graphs for spanning trees. J. London Math. Soc. 27(2) 203–211.
[20] de Fraysseix, H., Pach, J. and Pollack, R. (1990) How to draw a planar graph on a grid. Combinatorica 10(1) 41–51.
[21] Di Giacomo, E., Didimo, W., Liotta, G. and Wismath, S. K. (2005) Curve-constrained drawings of planar graphs.

Comput. Geom. 30(1) 1–23.
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