We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
It is often difficult to differentiate a recurrent glioma from the effects of post-operative radiotherapy by means of conventional neurodiagnostic imaging. Proton magnetic resonance spectroscopic imaging (1H-MRSI), that allows in vivo measurements of the concentration of brain metabolites such as choline-containing phospholipids (Cho), may provide in vivo biochemical information helpful in distinguishing areas of tumor recurrence from areas of radiation effect.
Patients and Methods:
Two patients who had undergone resection and post-operative radiotherapy for a cerebral glioma became newly symptomatic. Computed tomographic (CT) and magnetic resonance imaging (MRI) performed after the intravenous infusion of contrast material, and in one case, [18F] fluorodeoxyglucose positron emission tomography (PET), could not differentiate between the possibilities of recurrent glioma and radiation effect. The patients underwent 1H-MRSI prior to reoperation and the 1H-MRSI results were compared to histological findings originating from the same locations.
Results:
A high Cho signal measured by 1H-MRSI was seen in areas of histologicallyproven dense tumor recurrence, while low Cho signal was present where radiation changes predominated.
Conclusions:
The differentiation between the recurrence of a cerebral glioma and the effects of post-operative irradiation was achieved using 1H-MRSI in these two patients whose conventional neurodiagnostic imaging was equivocal for such a distinction. Where these two conditions are present, metabolite images from 1H-MRSI, such as that based on Cho, can be co-registered with other imaging modalities such as MRI and may also be integrated with functional MRI or functional PET within a multimodal imaging-guided surgical navigation system to assure maximal resection of recurrent tumor while minimizing the risk of added neurological damage.
Assessing the impact of glioma location on prognosis remains elusive. We approached the problem using multivoxel proton magnetic resonance spectroscopic imaging (1H-MRSI) to define a tumor “metabolic epicenter”, and examined the relationship of metabolic epicenter location to survival and histopathological grade.
Methods:
We studied 54 consecutive patients with a supratentorial glioma (astrocytoma or oligodendroglioma, WHO grades II-IV). The metabolic epicenter in each tumor was defined as the 1H-MRSI voxel containing maximum intra-tumoral choline on preoperative imaging. Tumor location was considered the X-Y-Z coordinate position, in a standardized stereotactic space, of the metabolic epicenter. Correlation between epicenter location and survival or grade was assessed.
Results:
Metabolic epicenter location correlated significantly with patient survival for all tumors (r2 = 0.30, p = 0.0002) and astrocytomas alone (r2 = 0.32, p = 0.005). A predictive model based on both metabolic epicenter location and histopathological grade accounted for 70% of the variability in survival, substantially improving on histology alone to predict survival. Location also correlated significantly with grade (r2 = 0.25, p = 0.001): higher grade tumors had a metabolic epicenter closer to the midpoint of the brain.
Conclusions:
The concept of the metabolic epicenter eliminates several problems related to existing methods of classifying glioma location. The location of the metabolic epicenter is strongly correlated with overall survival and histopathological grade, suggesting that it reflects biological factors underlying glioma growth and malignant dedifferentiation. These findings may be clinically relevant to predicting patterns of local glioma recurrence, and in planning resective surgery or radiotherapy.
The Expanded Disability Status Scale (EDSS) represents the most widely accepted measure of disease progression in multiple sclerosis (MS), and is used in many natural history studies. This chapter discusses natural history of relapsing onset MS, primary progressive MS, changes in natural history and impact on clinical trial design, traditional prognostic factors, and other factors which may influence prognosis such as race, comorbid diseases, and health behaviors. Pharmacoepidemiological studies using real world data derived from clinical practice represent a cost-effective means of evaluating the long-term effectiveness of immunomodulatory drug treatments for MS. Along with evidence from the basic sciences, epidemiological studies can provide insights into potentially novel treatments, as well as the rationale and hypotheses for testing these treatments in clinical trials. For example, vitamin D and estrogen are being evaluated in clinical trials based partly on epidemiological observations. Heterogeneity remains the hallmark of MS.