We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Growing winter cereal rye (Secale cereale) (WCR) has been identified as an effective in-field practice to reduce nitrate-N and phosphorus (P) losses to Upper Mississippi River Basin, USA. In the Midwestern USA, growers are reluctant to plant WCR especially prior to corn (Zea mays L.) due to N immobilization and establishment issues. Precision planting of WCR or ‘skipping the corn row’ (STCR) can minimize some issues associated with WCR ahead of corn while reducing cover crop seed costs. The objective of this study was to compare the effectiveness of ‘STCR’ vs normal planting of WCR at full seeding rate (NP) on WCR biomass, nutrient uptake and composition in three site-yrs (ARC2019, ARC2020, BRC2020). Our results indicated no differences in cover crop dry matter biomass production between the STCR (2.40 Mg ha−1) and NP (2.41 Mg ha−1) supported by similar normalized difference vegetative index and plant height for both treatments. Phosphorus, potassium (K), calcium (Ca) and magnesium (Mg) accumulation in aboveground biomass was only influenced by site-yr and both STCR and NP removed similar amount of P, K, Ca and Mg indicating STCR could be as effective as NP in accumulating nutrients. Aboveground carbon (C) content (1086.26 kg h−1 average over the two treatments) was similar between the two treatments and only influenced by site-yr differences. Lignin, lignin:N and C:N ratios were higher in STCR than NP in one out of three site-yrs (ARC2019) indicating greater chance of N immobilization when WCR was planted later than usual. Implementing STCR saved $8.4 ha−1 for growers and could incentivize growers to adopt this practice. Future research should evaluate corn response to STCR compared with NP and assess if soil quality declines by STCR practice over time.
Health behavior was conducive to control the COVID-19 epidemic. This study aimed to determine the differences in health behaviors and related factors among rural-urban residents in China.
Methods:
From February 14 to 22, 2020, the peak of COVID-19 epidemic in China, a total of 2449 participants(urban residents,1783(72.81%) and rural residents, 666 (27.19%)) were recruited by snowball sampling on WeChat and Tencent QQ social platforms. Data were collected through the Web-questionnaire guided by an information–motivation–behavioral skills model. Multiple-group structural equation model was applied to analyze the factors.
Results:
Rural residents had lower health behavior scores than urban residents, even after adjusting demographic characteristics (33.86 vs. 34.29, P=0.042, total score was 40). In urban and rural residents, motivation, behavioral skills and health risk stress had significant direct positive and negative influences effects on health behaviors, respectively. Information and positive perception of interventions had direct effects on health behaviors in rural residents, but not in urban residents. All the factors were mediated by behavioral skills in rural and urban residents.
Conclusions:
This study suggest that the government should pay attention to substantial rural-urban disparities and implement different COVID-19 prevention and intervention policies for health behaviors targeting rural and urban residents.
Renal fibrosis is common especially in the elderly population. Recently, we found that vitamin D deficiency caused prostatic hyperplasia. This study aimed to investigate whether vitamin D deficiency promotes renal fibrosis and functional impairment. All mice except controls were fed with vitamin D-deficient (VDD) diets, beginning from their early life. The absolute and relative kidney weights on postnatal week 20 were decreased in VDD diet-fed male pups but not in female pups. A mild pathological damage was observed in VDD diet-fed male pups but not in females. Further analysis showed that VDD-induced pathological damage was aggravated, accompanied by renal dysfunction in 40-week-old male pups. An obvious collagen deposition was observed in VDD diet-fed 40-week-old male pups. Moreover, renal α-smooth muscle actin (α-SMA), a marker of epithelial–mesenchymal transition (EMT), and Tgf-β mRNA were up-regulated. The in vitro experiment showed that 1,25-dihydroxyvitamin D3 alleviated transforming growth factor-β1 (TGF-β1)-mediated down-regulation of E-cadherin and inhibited TGF-β1-evoked up-regulation of N-cadherin, vimentin and α-SMA in renal epithelial HK-2 cells. Moreover, 1,25-dihydroxyvitamin D3 suppressed TGF-β1-evoked Smad2/3 phosphorylation in HK-2 cells. These results provide experimental evidence that long-term vitamin D deficiency promotes renal fibrosis and functional impairment, at least partially, through aggravating TGF-β/Smad2/3-mediated EMT in middle-aged male mice.
The aim of the present study was to investigate the effects of dietary Zn level on growth performance, Zn bioaccumulation, antioxidant capacity and innate immunity in juvenile mud crabs (Scylla paramamosain). Six semi-purified diets were formulated to contain dietary Zn levels of 44·5, 56·9, 68·5, 97·3, 155·6 or 254·7 mg/kg. Dietary Zn level significantly influenced percentage weight gain (PWG), with the highest observed in crabs fed the diet containing 97·3 mg/kg Zn. Tissue Zn concentrations significantly increased as dietary Zn levels increased from 44·5 to 254·7 mg/kg. Retention of Zn in hepatopancreas increased with dietary Zn levels up to 68·5 mg/kg and then significantly decreased. Moreover, inadequate dietary Zn (44·5 and 56·9 mg/kg) reduced antioxidation markers including total superoxide dismutase (SOD) and Cu/Zn SOD activities and total antioxidant level. Crabs fed the diet with 44·5 mg/kg Zn also showed significantly lower expression of genes involved in antioxidant status, such as Cu/Zn SOD, glutathione peroxidase, catalase and thioredoxin than those fed diets containing 68·5 and 97·3 mg/kg Zn. The highest activities of phenoloxidase and alkaline phosphatase were recorded in crabs fed the diets containing 68·5 and 97·3 mg/kg Zn. Expression levels of prophenoloxidase and toll-like receptor 2 were higher in crabs fed the 97·3 mg/kg Zn diet compared with crabs fed the other diets. Based on PWG alone, the optimal dietary Zn level was estimated to be 82·9 mg/kg, with 68·5 to 97·3 mg/kg recommended for maintaining optimal Zn bioaccumulation, oxidation resistance and innate immune response of juvenile mud crabs.
Studies have indicated that psychological stress impairs human fertility and that various stressors can induce apoptosis of testicular cells. However, the mechanisms by which psychological stress on males reduces semen quality and stressors induce apoptosis in testicular cells are largely unclear. Using a psychological (restraint) stress mouse model, we tested whether male psychological stress triggers apoptosis of spermatozoa and spermatogenic cells through activating tumour necrosis factor (TNF)-α signalling. Wild-type or TNF-α−/− male mice were restrained for 48 h before examination for apoptosis and expression of TNF-α and TNF receptor 1 (TNFR1) in spermatozoa, epididymis, seminiferous tubules and spermatogenic cells. The results showed that male restraint significantly decreased fertilization rate and mitochondrial membrane potential, while increasing levels of malondialdehyde, active caspase-3, TNF-α and TNFR1 in spermatozoa. Male restraint also increased apoptosis and expression of TNF-α and TNFR1 in caudae epididymides, seminiferous tubules and spermatogenic cells. Sperm quality was also significantly impaired when spermatozoa were recovered 35 days after male restraint. The restraint-induced damage to spermatozoa, epididymis and seminiferous tubules was significantly ameliorated in TNF-α−/− mice. Furthermore, incubation with soluble TNF-α significantly reduced sperm motility and fertilizing potential. Taken together, the results demonstrated that male psychological stress induces apoptosis in spermatozoa and spermatogenic cells through activating the TNF-α system and that the stress-induced apoptosis in spermatogenic cells can be translated into impaired quality in future spermatozoa.
Dongxiang common wild rice (Oryza rufipogon Griff., DXWR) is an important genetic resource for the improvement of cultivated rice. For the past three decades, great achievements have been made in the field of molecular marker development. Although structural variations (SVs) had been studied between DXWR and Nipponbare (Oryza sativa L. ssp. japonica), the development and application of SV markers in DXWR has not been reported. In this study, based on the genome-wide SV loci, we developed and synthesized a total of 195 SV markers that were evenly distributed across the 12 rice chromosomes. Then, these markers were tested for their stabilities and polymorphisms. Of these 195 markers, 147 (75.4%) were successfully amplified and displayed abundant polymorphisms between DXWR and Nipponbare. Meanwhile, through the genotyping of 20 rice varieties from 13 countries and areas, we concluded that these SV markers have a wide application prospect in the analysis of cultivated rice. Therefore, these molecular markers greatly enrich the number of markers available for DXWR, which will facilitate genomic research and molecular breeding for this important and endangered germplasm resource.
Chickenpox is a common acute and highly contagious disease in childhood; moreover, there is currently no targeted treatment. Carrying out an early warning on chickenpox plays an important role in taking targeted measures in advance as well as preventing the outbreak of the disease. In recent years, the infectious disease dynamic model has been widely used in the research of various infectious diseases. The logistic differential equation model can well demonstrate the epidemic characteristics of epidemic outbreaks, gives the point at which the early epidemic rate changes from slow to fast. Therefore, our study aims to use the logistic differential equation model to explore the epidemic characteristics and early-warning time of varicella. Meanwhile, the data of varicella cases were collected from first week of 2008 to 52nd week of 2017 in Changsha. Finally, our study found that the logistic model can be well fitted with varicella data, besides the model illustrated that there are two peaks of varicella at each year in Changsha City. One is the peak in summer–autumn corresponding to the 8th–38th week; the other is in winter–spring corresponding to the time from the 38th to the seventh week next year. The ‘epidemic acceleration week’ average value of summer–autumn and winter–spring are about the 16th week (ranging from the 15th to 17th week) and 45th week (ranging from the 44th to 47th week), respectively. What is more, taking warning measures during the acceleration week, the preventive effect will be delayed; thus, we recommend intervene during recommended warning weeks which are the 15th and 44th weeks instead.
This paper presents new LA-ICP-MS zircon U–Pb chronology, whole-rock geochemical and zircon Hf isotopic data for the felsic lavas of the Huili Group from the southwestern Yangtze Block. LA-ICP-MS zircon U–Pb dating shows that these rocks were emplaced in Late Mesoproterozoic time (∼1028 to 1019 Ma). Relative to typical I-type and S-type granitoids, all the samples are characterized by low Sr and Eu, and high high-field-strength element contents, high TFeO/MgO, enriched rare earth element compositions and negative Eu anomalies, indicating that they share the geochemical signatures of A-type granitoid. They can be further divided into two groups: Group I and Group II. Group I are A1-type felsic rocks and were produced by fractional crystallization of alkaline basaltic magmas. The Group II felsic lavas belong to the A2-type and were derived by partial melting of a crustal source with mixing of mantle-derived magmas. Both Group I and Group II felsic lavas may erupt in a continental back-arc setting. The coexistence of A1- and A2-type rocks in the southwestern Yangtze Block suggests that they can occur in the same tectonic setting.
Mental impasse has long been recognized as a hallmark of creative insight, but its precise role has been unexplored. The aim of the present work, consisting of two studies, was to experimentally probe mental impasse perspective from insight experience, namely impasse-related experience during insight. In Study 1, participants were requested to complete a compound remote association task and a forced-choice subjective experience depiction task that could provide data on impasse-related experience. The results showed that reports of negative experience, such as feelings of loss (t = –5.51, p < .001, Cohen d = 1.07) and personal experience (mirrored by ‘other’ response; t = –2.62, p < .05, Cohen d = 0.48), were more common in the impasse condition than in the no-impasse condition; correspondingly positive affect and positive cognitive experiences such as happiness (t = 4.20, p < .001, Cohen d = 0.77), ease (t = 5.90, p < .001, Cohen d = 1.20), certainty (t = 7.46, p < .001, Cohen d = 1.36) and calmness (t = 4.42, p < .001, Cohen d = 0.81) were experienced more frequently in the no-impasse condition. These findings were replicated in Study 2, in which participants were invited to solve a set of classic insight problems and to freely report any feelings of being at an impasse. Across two studies, this work suggests that impasse-related experience during insight problem solving is multi-faceted and consists of negative affective and cognitive components. The implications of these findings are discussed.
The aim of this study was to investigate the in vivo degradation mechanism and the mechanical properties of poly(lactide-co-glycolide)/beta-tricalcium phosphate (PLGA/β-TCP) composite anchors. Anchors composed of PLGA and β-TCP were implanted in the dorsal subcutaneous tissue of beagle dogs for 6, 12, 16, and 26 weeks. The degradation of the materials was evaluated by measuring the changes in thermal behavior, crystallinity, and mechanical properties. Scanning electron microscope (SEM) was used to observe the surface and longitudinal section of the material. The evaluation of mechanical strength retention and degradation properties suggest that the addition of β-TCP particles efficiently enhances their mechanical properties and thermal characteristics and delays their degradation rate. By analyzing the results of SEM, X-ray diffraction, and differential scanning calorimetry, we can infer that after 12 weeks, the connection between β-TCP and PLGA becomes less compact, which accelerates the decline of mechanical strength.
We study numerically the dynamics of an insoluble surfactant-laden droplet in a simple shear flow taking surface viscosity into account. The rheology of drop surface is modelled via a Boussinesq–Scriven constitutive law with both surface tension and surface viscosity depending strongly on the surface concentration of the surfactant. Our results show that the surface viscosity exhibits non-trivial effects on the surfactant transport on the deforming drop surface. Specifically, both dilatational and shear surface viscosity tend to eliminate the non-uniformity of surfactant concentration over the drop surface. However, their underlying mechanisms are entirely different; that is, the shear surface viscosity inhibits local convection due to its suppression on drop surface motion, while the dilatational surface viscosity inhibits local dilution due to its suppression on local surface dilatation. By comparing with previous studies of droplets with surface viscosity but with no surfactant transport, we find that the coupling between surface viscosity and surfactant transport induces non-negligible deviations in the dynamics of the whole droplet. More particularly, we demonstrate that the dependence of surface viscosity on local surfactant concentration has remarkable influences on the drop deformation. Besides, we analyse the full three-dimensional shape of surfactant-laden droplets in simple shear flow and observe that the drop shape can be approximated as an ellipsoid. More importantly, this ellipsoidal shape can be described by a standard ellipsoidal equation with only one unknown owing to the finding of an unexpected relationship among the drop’s three principal axes. Moreover, this relationship remains the same for both clean and surfactant-laden droplets with or without surface viscosity.
Previous studies on capsule dynamics in shear flow have dealt with Newtonian fluids, while the effect of fluid viscoelasticity remains an unresolved fundamental question. In this paper, we report a numerical investigation of the dynamics of capsules enclosing a viscoelastic fluid and which are freely suspended in a Newtonian fluid under simple shear. Systematic simulations are performed at small but non-zero Reynolds numbers (i.e.
$Re=0.1$
) using a three-dimensional front-tracking finite-difference model, in which the fluid viscoelasticity is introduced via the Oldroyd-B constitutive equation. We demonstrate that the internal fluid viscoelasticity presents significant effects on the deformation behaviour of initially spherical capsules, including transient evolution and equilibrium values of their deformation and orientation. Particularly, the capsule deformation decreases slightly with the Deborah number De increasing from 0 to
$O(1)$
. In contrast, with De increasing within high levels, i.e.
$O(1{-}100)$
, the capsule deformation increases continuously and eventually approaches the Newtonian limit having a viscosity the same as the Newtonian part of the viscoelastic capsule. By analysing the viscous stress, pressure and viscoelastic stress acting on the capsule membrane, we reveal that the mechanism underlying the effects of the internal fluid viscoelasticity on the capsule deformation is the alterations in the distribution of the viscoelastic stress at low De and its magnitude at high De, respectively. Furthermore, we find some new features in the dynamics of initially non-spherical capsules induced by the internal fluid viscoelasticity. Particularly, the transition from tumbling to swinging of oblate capsules can be triggered at very high viscosity ratios by increasing De alone. Besides, the critical viscosity ratio for the tumbling-to-swinging transition is remarkably enlarged with De increasing at relatively high levels, i.e.
$O(1{-}100)$
, while it shows little change at low De, i.e. below
$O(1)$
.
Graphitic carbon nitride (g-C3N4) is considered as a promising heterogeneous catalyst for photocatalytic H2 evolution from water under visible light illustration, and its photocatalytic performance could be controlled through its texture and optical/electronic properties. Herein, we present a facile one-step heating method for the synthesis of B/P/F doped g-C3N4 photocatalysts (BCN, PCN, and FCN). The prepared photocatalysts were characterized by XRD, SEM, UV-vis absorption, FTIR, BET, XPS, PL, and photocurrent measurement. The results show that the B/P/F doping increased the interplanar stacking distance of g-C3N4, enlarged the optical absorption range, and improved the photocatalytic activity of H2 evolution. FCN exhibits the highest photocatalytic activity, followed by BCN, and PCN that has the lowest performance. This work studies the doping effects of the nonmetal elements on the photocatalytic activities, the electronic structures as well as the band gaps of g-C3N4, to provide a feasible modification pathway to design and synthesize highly efficient photocatalysts.
Human cystic echinococcosis is a widespread, chronic, endemic, helminthic zoonosis caused by larval tapeworms of the species Echinococcus granulosus. At present, there is no rational and effective therapy for patients with echinococcosis. The present study evaluated whether the combination of alkaloids from Sophora moorcroftiana seeds (SMSa2) and Bacillus Calmette–Guérin (BCG) was effective in the treatment of experimental echinococcosis. After 20 weeks of secondary infection with protoscoleces, mice were randomly allocated to five groups and treated for 6 weeks by daily intragastric administration of albendazole (ABZ, 100 mg/kg), SMSa2 (100 mg/kg), BCG (abdominal subcutaneous injection at 5 × 106 CFU), SMSa2 + BCG (100 mg/kg SMSa2 and 5 × 106 CFU BCG) or normal saline (untreated group), respectively. The results indicated a significant reduction in the weight of hydatid cysts in the SMSa2 + BCG group compared with the untreated, SMSa2 and BCG groups. The rate of inhibition of hydatid cyst growth in the SMSa2 + BCG group (76.1%) was obviously increased compared with that in the SMSa2 (25.7%) and BCG (26.6%) groups, respectively. Compared with the untreated control, the SMSa2 + BCG group showed a non-significant increase in serum interleukin-4 (IL-4). Furthermore, the serum levels of interferon-γ (IFN-γ) between the untreated and SMSa2 + BCG groups were not statistically different. Therefore, the combination of alkaloids from S. moorcroftiana seeds and BCG can reduce cyst burden and is an effective therapeutic regimen against echinococcosis.
Interleukin (IL)-13-associated signal pathway plays an important role in schistosomiasis hepatic fibrosis. In this study we tried to investigate the effects of corilagin to ameliorate schistosomiasis hepatic fibrosis through regulating IL-13-associated signal pathway in vitro and in vivo. Cellular model was set up with hepatic stellate cells-T6 cells stimulated by rIL-13 and male Balb/c mice were infected with Schistosoma japonicum cercariaeas as animal model. Liver histological changes were observed with haematoxylin and eosin staining. Masson staining was employed to observe the change of egg granulomas. Expression of Col (collagen) and Col III were examined with Immunohistochemistry. Western bolt was employed to detect the JAK-1 and IL13Rα1 proteins. The mRNA expression of Col I, Col III, IL-13, JAK-1 and IL13Rα1 were tested by quantitative polymerase chain reaction. As a result, less inflammatory changes were found in all corilagin groups compared with model group and praziquantel group. The mRNA levels of Col I, Col III, IL-13, JAK-1 and IL13Rα1 were significantly decreased after corilagin intervention (P < 0·01). JAK-1 and IL-13Rα1 protein levels were also greatly decreased in the corilagin groups (P < 0·01). In conclusion, corilagin could ameliorate schistosomiasis hepatic fibrosis by down-regulating the expression of IL-13 and signal molecules in IL-13 pathway.
In recent decades, in silico absorption, distribution, metabolism, excretion (ADME), and toxicity (T) modelling as a tool for rational drug design has received considerable attention from pharmaceutical scientists, and various ADME/T-related prediction models have been reported. The high-throughput and low-cost nature of these models permits a more streamlined drug development process in which the identification of hits or their structural optimization can be guided based on a parallel investigation of bioavailability and safety, along with activity. However, the effectiveness of these tools is highly dependent on their capacity to cope with needs at different stages, e.g. their use in candidate selection has been limited due to their lack of the required predictability. For some events or endpoints involving more complex mechanisms, the current in silico approaches still need further improvement. In this review, we will briefly introduce the development of in silico models for some physicochemical parameters, ADME properties and toxicity evaluation, with an emphasis on the modelling approaches thereof, their application in drug discovery, and the potential merits or deficiencies of these models. Finally, the outlook for future ADME/T modelling based on big data analysis and systems sciences will be discussed.
The development of high performance Al–Cu based alloys generally depends on the strict control of the Fe content. However, with the increasing use of recycled aluminum alloys, it is necessary to increase the tolerance for the Fe content in Al–Cu cast alloys for the purpose of low cost, energy saving, and environment protection. In this study, the formation of Fe-rich intermetallics and their effect on the tensile properties of squeeze-cast Al–5.0 wt% Cu–0.6 wt% Mn alloys with an Fe content of up to 1.5 wt% have been investigated. The full formation sequence of squeeze-cast Al–5.0 wt% Cu–0.6 wt% Mn alloys with different Fe contents has been established. The results were also compared with the corresponding results obtained for Al–5.0Cu–0.6Mn alloys prepared by gravity die casting. It is found that the Fe-rich intermetallic compounds mainly consist of α-Fe and β-Fe in alloys with a low Fe content, changing into Al6(FeMn) and Al3(FeMn) for alloys with a high Fe content. The applied pressure promotes the formation of the Fe-rich intermetallics α-Fe/Al6(FeMn) and prevents the precipitation of needle-like β-Fe/Al3(FeMn). The elongation of the alloys gradually decreases with the Fe content, and a maximum value for both the ultimate mechanical strength and the yield strength was found for the alloys with 0.5 wt% Fe. The tensile properties of alloys with a different Fe content significantly increased as the applied pressure was increased from 0 to 75 MPa, especially the elongation.
We derive zphot for sources in the entire (~0.4 deg2) H-HDF-N field with the EAzY code, based on PSF-matched broad-band (U band to IRAC 4.5 μm) photometry. Our catalog consists of a total of 131,678 sources. We find σNMAD = 0.029 for non-X-ray sources. We also classify each object as a star or galaxy through SED fitting. Furthermore, we match our catalog with the 2 Ms CDF-N main X-ray catalog. For the 462 matched non-stellar X-ray sources, we improve their zphot quality (σNMAD = 0.035) by adding three additional AGN templates. We make our photometry and zphot catalog publicly available.
The deformation of a compound capsule (an elastic capsule with a smaller capsule inside) in simple shear flow is studied by using three-dimensional numerical simulations based on a front tracking method. The inner and outer capsules are concentric and initially spherical. Skalak et al.’s constitutive law is employed for the mechanics of both the inner and outer membranes. Our results concerning the deformation of homogeneous capsules (i.e. capsules without the inner capsules) are quantitatively in agreement with the predictions of previous numerical simulations and perturbation theories. Compared to homogeneous capsules, compound capsules exhibit smaller deformation. The deformations of both the inner and outer capsules are significantly affected by the capillary numbers of the inner and outer membranes and the volume ratio of the inner to the outer capsule. When the inner capsule is small, it presents smaller deformation than the outer capsule. However, when the inner capsule is sufficiently large, it can present larger deformation than the outer capsule, even if the inner membrane has much lower capillary number than the outer membrane. The underlying mechanisms are discussed: (i) the inner capsule is deformed by rotational flow with lower rate of strain rather than by simple shear flow that deforms the outer capsule, and thus the inner capsule exhibits smaller deformation; and (ii) when the inner and outer membranes are sufficiently close (i.e. the inner capsule is sufficiently large), the hydrodynamic interaction between the two membranes becomes significant, which is found to inhibit the deformation of the outer capsule but to promote the deformation of the inner capsule.
The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) project performed its five year formal survey since Sep. 2012, already fulfilled the pilot survey and the 1st two years general survey with an output - spectroscopic data archive containing more than 4.1 million observations. One of the scientific objectives of the project is for better understanding the structure and evolution of the Milky Way. Thus, credible derivation of the physical properties of the stars plays a key role for the exploration. We developed and implemented the LAMOST stellar parameter pipeline (LASP) which can automatically determine the fundamental stellar atmospheric parameters (effective temperature Teff, surface gravity log g, metallicity [Fe/H], radial velocity Vr) for late A, FGK type stars observed during the survey. An overview of the LASP, including the strategy, the algorithm and the process is presented in this work.