We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Mounting evidence suggests that the first few months of life are critical for the development of obesity. The relationships between the timing of solid food introduction and the risk of childhood obesity have been examined previously; however, evidence for the association of timing of infant formula introduction remains scarce. This study aimed to examine whether the timing of infant formula introduction is associated with growth z-scores and overweight at ages 1 and 3 years. This study included 5733 full-term (≥ 37 gestational weeks) and normal birth weight (≥ 2500 and < 4000 g) children in the Born in Guangzhou Cohort Study, a prospective cohort study with data collected at 6 weeks, 6, 12 and 36 months. Compared with infant formula introduction at 0–3 months, introduction at 4–6 months was associated with the lower BMI, weight-for-age and weight-for-length z-scores at 1 and 3 years old. Also, introduction at 4–6 months was associated with the lower odds of at-risk of overweight at age 1 (adjusted OR 0·72, 95 % CI 0·55, 0·94) and 3 years (adjusted OR 0·50, 95 % CI 0·30, 0·85). Introduction at 4–6 months also decreased the odds of overweight at age 1 year (adjusted OR 0·42, 95 % CI 0·21, 0·84) but not at age 3 years. Based on our findings, compared with introduction within the first 3 months, introduction at 4–6 months has a reduction on later high BMI risk and at-risk of overweight. However, these results need to be replicated in other well-designed studies before more firm recommendations can be made.
Evidence of couples’ BMI and its influence on birth weight is limited and contradictory. Therefore, this study aims to assess the association between couple’s preconception BMI and the risk of small for gestational age (SGA)/large for gestational age (LGA) infant, among over 4·7 million couples in a retrospective cohort study based on the National Free Pre-pregnancy Checkups Project (NFPCP) between December 1, 2013 and November 30, 2016 in China. Among the live births, 256,718 (5·44%) SGA events and 506,495 (10·73%) LGA events were documented, respectively. After adjusting for confounders, underweight men had significantly higher risk [OR 1·17 95%CI (1·15-1·19)] of SGA infants compared with men with normal BMI, while a significant and increased risk of LGA infants was obtained for overweight and obese men [OR 1·08 (95% CI: 1·06-1·09); OR 1·19 (95%CI 1·17-1·20)] respectively. The restricted cubic spline (RCS) result revealed a non-linearly decreasing dose-response relationship of paternal BMI (less than 22·64) with SGA. Meanwhile, a non-linearly increasing dose-response relationship of paternal BMI (more than 22·92) with LGA infants was observed. Moreover, similar results about the association between maternal preconception BMI and SGA/LGA infants were obtained. Abnormal preconception BMIs in either women or men were associated with increased risk of SGA/LGA infants, respectively. Overall, couple’s abnormal weight before pregnancy may be an important preventable risk factor for SGA/LGA infants.
Understanding factors associated with post-discharge sleep quality among COVID-19 survivors is important for intervention development.
Aims
This study investigated sleep quality and its correlates among COVID-19 patients 6 months after their most recent hospital discharge.
Method
Healthcare providers at hospitals located in five different Chinese cities contacted adult COVID-19 patients discharged between 1 February and 30 March 2020. A total of 199 eligible patients provided verbal informed consent and completed the interview. Using score on the single-item Sleep Quality Scale as the dependent variable, multiple linear regression models were fitted.
Results
Among all participants, 10.1% reported terrible or poor sleep quality, and 26.6% reported fair sleep quality, 26.1% reported worse sleep quality when comparing their current status with the time before COVID-19, and 33.7% were bothered by a sleeping disorder in the past 2 weeks. After adjusting for significant background characteristics, factors associated with sleep quality included witnessing the suffering (adjusted B = −1.15, 95% CI = −1.70, −0.33) or death (adjusted B = −1.55, 95% CI = −2.62, −0.49) of other COVID-19 patients during hospital stay, depressive symptoms (adjusted B = −0.26, 95% CI = −0.31, −0.20), anxiety symptoms (adjusted B = −0.25, 95% CI = −0.33, −0.17), post-traumatic stress disorders (adjusted B = −0.16, 95% CI = −0.22, −0.10) and social support (adjusted B = 0.07, 95% CI = 0.04, 0.10).
Conclusions
COVID-19 survivors reported poor sleep quality. Interventions and support services to improve sleep quality should be provided to COVID-19 survivors during their hospital stay and after hospital discharge.
In this paper, we developed a new navigation system, called ATCM, which detects obstacles in a sliding window with an adaptive threshold clustering algorithm, classifies the detected obstacles with a decision tree, heuristically predicts potential collision and finds optimal path with a simplified Morphin algorithm. This system has the merits of optimal free-collision path, small memory size and less computing complexity, compared with the state of the arts in robot navigation. The modular design of 6-steps navigation provides a holistic methodology to implement and verify the performance of a robot’s navigation system. The experiments on simulation and a physical robot for the eight scenarios demonstrate that the robot can effectively and efficiently avoid potential collisions with any static or dynamic obstacles in its surrounding environment. Compared with the particle swarm optimisation, the dynamic window approach and the traditional Morphin algorithm for the autonomous navigation of a mobile robot in a static environment, ATCM achieved the shortest path with higher efficiency.
A southern population (S) from Xiushui County (29°1′N, 114°4′E) and a northern population (N) from Shenyang city (41°48′N, 123°23′E) of the cabbage beetle, Colaphellus bowringi vary greatly in their life-history traits, and may serve as an excellent model with which to study the inheritance of life-history traits. In the present study, we performed intraspecific hybridization using the two populations, comparing the key life-history traits (fecundity, development time, body weight, growth rate, and sexual size dimorphism (SDD)) between the two populations (S♀ × S♂ and N♀ × N♂) and their two hybrid populations (S♀ × N♂ and N♀ × S♂ populations) at 19, 22, 25, and 28°C. Our results showed that there were significant differences in life-history traits between the two parental populations, with the S population having a significantly higher fecundity, shorter larval development time, larger body weight, higher growth rate, and greater weight loss during metamorphosis than the N population at almost all temperatures. However, these life-history traits in the two hybrid populations were intermediate between those of their parents. The life-history traits in the S × N and N × S populations more closely resembled those of the maternal S population and N population, respectively, showing maternal effects. Weight loss for both sexes was highest in the S population, followed by the S × N, N × S, and N populations at all temperatures, suggesting that larger pupae lost more weight during metamorphosis. The changes in SSD with temperature were similar between the S and the S × N populations and between the N and the N × S populations, also suggesting a maternal effect. Overall, our results showed no drastic effect of hybridization on C. bowringi, being neither negative (hybrid inferiority) nor positive (heterosis). Rather, the phenotypes of hybrids were intermediate between the phenotypes of their parents.
A recently developed pneumonia caused by SARS-CoV-2 has quickly spread across the world. Unfortunately, a simplified risk score that could easily be used in primary care or general practice settings has not been developed. The objective of this study is to identify a simplified risk score that could easily be used to quickly triage severe COVID-19 patients. All severe and critical adult patients with laboratory-confirmed COVID-19 on the West campus of Union Hospital, Wuhan, China, from 28 January 2020 to 29 February 2020 were included in this study. Clinical data and laboratory results were obtained. CURB-65 pneumonia score was calculated. Univariate logistic regressions were applied to explore risk factors associated with in-hospital death. We used the receiver operating characteristic curve and multivariate COX-PH model to analyse risk factors for in-hospital death. A total of 74 patients (31 died, 43 survived) were finally included in the study. We observed that compared with survivors, non-survivors were older and illustrated higher respiratory rate, neutrophil-to-lymphocyte ratio, D-dimer and lactate dehydrogenase (LDH), but lower SpO2 as well as impaired liver function, especially synthesis function. CURB-65 showed good performance for predicting in-hospital death (area under curve 0.81, 95% confidence interval (CI) 0.71–0.91). CURB-65 ⩾ 2 may serve as a cut-off value for prediction of in-hospital death in severe patients with COVID-19 (sensitivity 68%, specificity 81%, F1 score 0.7). CURB-65 (hazard ratio (HR) 1.61; 95% CI 1.05–2.46), LDH (HR 1.003; 95% CI 1.001–1.004) and albumin (HR 0.9; 95% CI 0.81–1) were risk factors for in-hospital death in severe patients with COVID-19. Our study indicates CURB-65 may serve as a useful prognostic marker in COVID-19 patients, which could be used to quickly triage severe patients in primary care or general practice settings.
Teenagers are important carriers of Neisseria meningitidis, which is a leading cause of invasive meningococcal disease. In China, the carriage rate and risk factors among teenagers are unclear. The present study presents a retrospective analysis of epidemiological data for N. meningitidis carriage from 2013 to 2017 in Suizhou city, China. The carriage rates were 3.26%, 2.22%, 3.33%, 3.53% and 9.88% for 2013, 2014, 2015, 2016 and 2017, respectively. From 2014 to 2017, the carriage rate in the 15- to 19-year-old age group (teenagers) was the highest and significantly higher than that in remain age groups. Subsequently, a larger scale survey (December 2017) for carriage rate and relative risk factors (population density, time spent in the classroom, gender and antibiotics use) were investigated on the teenagers (15- to 19-year-old age) at the same school. The carriage rate was still high at 33.48% (223/663) and varied greatly from 6.56% to 52.94% in a different class. Population density of the classroom was found to be a significant risk factor for carriage, and 1.4 persons/m2 is recommended as the maximum classroom density. Further, higher male gender ratio and more time spent in the classroom were also significantly associated with higher carriage. Finally, antibiotic use was associated with a significantly lower carriage rate. All the results imply that attention should be paid to the teenagers and various measures can be taken to reduce the N. meningitidis carriage, to prevent and control the outbreak of IMD.
For the guarantee of the long-distance transport of the bunches of China Initiative Accelerator Driven System (CIADS), a new scheme is proposed that extra magnetic field is used in the accelerator-target coupling section before the windowless target to minimize the self-modulation (SM) mechanism. Particle-in-cell simulations are carried out to study the influence of the solenoidal magnetic field on the self-modulation mechanism when long proton bunches move in the background plasmas. The long proton bunches used in the simulations are similar to these in the linear accelerator of CIADS. It is found that the presence of the solenoidal magnetic field will significantly inhibit the self-modulation process. For the strong magnetic field, the longitudinal separation and transverse focusing of the long bunches disappear. We attribute these phenomena to the reason that the strong solenoidal magnetic field restricts the transverse movement of plasma electrons. Thus, there are not enough electrons around the bunch to compensate the space charge effect. Moreover, without transverse current, the longitudinal pinched effect disappears, and the long bunch can not be separated into small pulses anymore.
The catechol-O-methyltransferase (COMT) gene is related to dopamine degradation and has been suggested to be involved in the pathogenesis of major depressive disorder (MDD). However, how this gene affects brain function properties in MDD is still unclear.
Methods:
Fifty patients with MDD and 35 cognitively normal participants underwent a resting-state functional magnetic resonance imaging scan. A voxelwise and data-drive global functional connectivity density (gFCD) analysis was used to investigate the main effects and the interactions of disease states and COMT rs4680 gene polymorphism on brain function.
Results:
We found significant group differences of the gFCD in bilateral fusiform area (FFA), post-central and pre-central cortex, left superior temporal gyrus (STG), rectal and superior temporal gyrus and right ventrolateral prefrontal cortex (vlPFC); abnormal gFCDs in left STG were positively correlated with severity of depression in MDD group. Significant disease × COMT interaction effects were found in the bilateral calcarine gyrus, right vlPFC, hippocampus and thalamus, and left SFG and FFA. Further post-hoc tests showed a nonlinear modulation effect of COMT on gFCD in the development of MDD. Interestingly, an inverted U-shaped modulation was found in the prefrontal cortex (control system) but U-shaped modulations were found in the hippocampus, thalamus and occipital cortex (processing system).
Conclusion:
Our study demonstrated nonlinear modulation of the interaction between COMT and depression on brain function. These findings expand our understanding of the COMT effect underlying the pathophysiology of MDD.
Evidence on the relationship between maternal Hb concentration and spontaneous abortion (SA) risk is limited and conflicting. The purpose of the study was to evaluate whether maternal preconception anaemia or high Hb concentration is associated with risk of SA.
Design:
A population-based cohort study established between 2013 and 2017.
Settings:
Local maternal and child care service centres in each county.
Participants:
In total, 3 971 428 women aged 20–49 years, who participated in National Free Pre-Pregnancy Checkups Project from 2013 to 2016 and successfully got pregnant before 2017 in rural China.
Results:
A total of 101 700 (2·56 %) women were recorded having SA, with highest SA rate in women with severe anaemia (4·58 %). Compared with women with Hb of 110–149 g/l, the multivariable-adjusted OR for SA was 1·52 (95 % CI: 1·25, 1·86) for women with Hb < 70 g/l, 0·92 (0·84, 1·01) for 70–99 g/l, 0·80 (0·77, 0·83) for 100–109 g/l, 1·11 (1·08, 1·15) for 150–159 g/l, 1·12 (1·04, 1·20) for 160–169 g/l and 1·02 (0·93, 1·12) for ≥ 170 g/l, respectively. An approximate U-shaped curve for the risk of SA with Hb concentrations was observed when Hb concentrations less than 145 g/l, above which the association plateaued (Pnon-linear < 0·001).
Conclusions:
Severe anaemia and high Hb concentration before pregnancy were associated with an increased risk of SA. Women with mild anaemia prior to pregnancy had lower risk of SA. Underlying mechanisms need to be further studied.
Studies have indicated that psychological stress impairs human fertility and that various stressors can induce apoptosis of testicular cells. However, the mechanisms by which psychological stress on males reduces semen quality and stressors induce apoptosis in testicular cells are largely unclear. Using a psychological (restraint) stress mouse model, we tested whether male psychological stress triggers apoptosis of spermatozoa and spermatogenic cells through activating tumour necrosis factor (TNF)-α signalling. Wild-type or TNF-α−/− male mice were restrained for 48 h before examination for apoptosis and expression of TNF-α and TNF receptor 1 (TNFR1) in spermatozoa, epididymis, seminiferous tubules and spermatogenic cells. The results showed that male restraint significantly decreased fertilization rate and mitochondrial membrane potential, while increasing levels of malondialdehyde, active caspase-3, TNF-α and TNFR1 in spermatozoa. Male restraint also increased apoptosis and expression of TNF-α and TNFR1 in caudae epididymides, seminiferous tubules and spermatogenic cells. Sperm quality was also significantly impaired when spermatozoa were recovered 35 days after male restraint. The restraint-induced damage to spermatozoa, epididymis and seminiferous tubules was significantly ameliorated in TNF-α−/− mice. Furthermore, incubation with soluble TNF-α significantly reduced sperm motility and fertilizing potential. Taken together, the results demonstrated that male psychological stress induces apoptosis in spermatozoa and spermatogenic cells through activating the TNF-α system and that the stress-induced apoptosis in spermatogenic cells can be translated into impaired quality in future spermatozoa.
The microbiota–gut–brain axis, especially the microbial tryptophan (Trp) biosynthesis and metabolism pathway (MiTBamp), may play a critical role in the pathogenesis of major depressive disorder (MDD). However, studies on the MiTBamp in MDD are lacking. The aim of the present study was to analyze the gut microbiota composition and the MiTBamp in MDD patients.
Methods
We performed shotgun metagenomic sequencing of stool samples from 26 MDD patients and 29 healthy controls (HCs). In addition to the microbiota community and the MiTBamp analyses, we also built a classification based on the Random Forests (RF) and Boruta algorithm to identify the gut microbiota as biomarkers for MDD.
Results
The Bacteroidetes abundance was strongly reduced whereas that of Actinobacteria was significantly increased in the MDD patients compared with the abundance in the HCs. Most noteworthy, the MDD patients had increased levels of Bifidobacterium, which is commonly used as a probiotic. Four Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologies (KOs) (K01817, K11358, K01626, K01667) abundances in the MiTBamp were significantly lower in the MDD group. Furthermore, we found a negative correlation between the K01626 abundance and the HAMD scores in the MDD group. Finally, RF classification at the genus level can achieve an area under the receiver operating characteristic curve of 0.890.
Conclusions
The present findings enabled a better understanding of the changes in gut microbiota and the related Trp pathway in MDD. Alterations of the gut microbiota may have the potential as biomarkers for distinguishing MDD patients form HCs.
Grid is an important factor in numerical simulation of hypersonic aerothermodynamics. This paper introduces three criteria for determining grid size in the transition flow regime when using the computational fluid dynamics (CFD) method or the direct simulation Monte Carlo (DSMC) method. The numerical relationship between these three criteria sizes is deduced according to the one-dimensional fluid theory. Then, the relationship is verified using the CFD method to simulate the flow around a two-dimensional cylinder. At the same time, the dependence of simulation accuracy on grid size in the CFD and DSMC methods is studied and the mechanism is given. The result shows that the simulation accuracy of heat flux especially depends on the normal grid size next to surfaces, where the $Re_{\mathit{cell},w}$ criterion and the $\unicode[STIX]{x1D706}_{w}$ criterion based on local parameters are applicable and equivalent, while the $Re_{\mathit{cell},\infty }$ criterion based on the free-stream parameter is only applicable under the assumption of constant viscosity coefficient and constant temperature wall conditions. On the other hand, the trend of the heat flux changing with grid size obtained by CFD and DSMC is exactly the opposite. Therefore, the grid size must be strictly satisfied with the grid criteria when comparing CFD with DSMC and even the hybrid DSMC with Navier–Stokes method.
The flow over a square cylinder controlled by a slot synthetic jet positioned at the front surface is investigated experimentally at different excitation frequencies. The Reynolds number based on the free-stream velocity and the side length of the square cylinder is 1000. The flow visualization was conducted using the laser-induced fluorescence technique. The velocity fields upstream and downstream of the square cylinder were measured synchronously with the two-dimensional time-resolved particle image velocimetry technique. Both the evolution of vortex structures and the characteristic frequencies of upstream and downstream flow fields are presented. The flow dynamics vary significantly with the excitation frequency at a fixed stroke length. During one excitation cycle, the synthetic jet vortex pair deflects to one side and later swings to the other side at a quite small excitation frequency of $f_{e}/f_{0}=0.6$, while it only deflects toward one side and does not turn to the other side at $f_{e}/f_{0}=1.0$. Compared with the natural case, the wake characteristics for the above two cases are not changed much by the synthetic jet adopted. At a moderate excitation frequency of $f_{e}/f_{0}=2.0$, the synthetic jet deflects upwards and downwards alternatively. The upstream flow field has a dominant frequency identical to half of the excitation frequency. Under the perturbations of the synthetic jet, two wake vortex pairs are formed per shedding cycle with a shedding frequency equal to that of the square cylinder without control. At a higher excitation frequency of $f_{e}/f_{0}=3.4$, the synthetic jet keeps deflecting to one side, and the upstream flow field is governed by the excitation frequency. The flow separation on the deflected side is suppressed effectively, and no periodic vortex shedding can be observed in the wake. Statistically, the velocity profiles also change with control. The recirculation bubble length in the wake is shortened, and the time-averaged velocity fluctuation is weakened remarkably. The control effects of the synthetic jet and the continuous jet are compared in this paper when placed at the front surface of a square cylinder.