We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To meet the high-precision positioning requirements for hybrid machining units, this article presents a geometric error modeling and source error identification methodology for a serial–parallel hybrid kinematic machining unit (HKMU) with five axis. A minimal kinematic error modeling of the serial–parallel HKMU is established with screw-based method after elimination of redundant errors. A set of composite error indices is formulated to describe the terminal accuracy distribution characteristics in a quantitative manner. A modified projection method is proposed to determine the actual compensable and noncompensable source errors of the HKMU by identifying such transformable source errors. Based on this, the error compensation and comparison analysis are carried out on the exemplary HKMU to numerically verify the effectiveness of the proposed modified projection method. The geometric error evaluations reveal that the parallel module has a larger impacts on the terminal accuracy of the platform of the HKMU than the serial module. The error compensation results manifest that the modified projection method can find additional compensable source errors and significantly reduce the average and maximum values of geometric errors of the HKMU. Hence, the proposed methodology can be applied to improve the accuracy of kinematic calibration of the compensable source errors and can reduce the difficulty and workload of tolerance design for noncompensable source errors of such serial–parallel hybrid mechanism.
Gentiana straminea Maxim. (Gentianaceae) is an important traditional Tibetan herb that is mainly distributed on the Qinghai-Tibetan Plateau. Despite its agricultural and pharmacological importance, there remains a paucity of microsatellite markers, particularly expressed sequence tag-simple sequence repeat (EST-SSR) markers, available for this local endemic species. In this study, based on previous Illumina transcriptome data of G. straminea, a total of 96 EST-SSR markers were initially designed and tested. Thirty-two of 96 loci (33.33%) were successfully amplified and verified for validation. Among them, 10 were polymorphic and had clear bands. The polymorphism information content values were 0.09–0.799, the number of alleles per locus ranged from 3 to 14, and the levels of observed and expected heterozygosity were 0.078–0.722 and 0.238–0.884, respectively, which suggested a high level of information. Moreover, cross-amplification was successful for 10 loci in two other related species, Gentiana macrophylla Pallas and Gentiana dahurica Fischer. These EST-SSR markers provide a valuable tool for investigating the genetic diversity related to quantitative traits and population genetic studies on G. straminea and related species in sect. Cruciata Gaudin.
This paper retrospectively analysed the prevalence of macrolide-resistant Mycoplasma pneumoniae (MRMP) in some parts of China. Between January 2013 and December 2019, we collected 4,145 respiratory samples, including pharyngeal swabs and alveolar lavage fluid. The highest PCR-positive rate of M. pneumoniae was 74.5% in Beijing, the highest resistance rate was 100% in Shanghai, and Gansu was the lowest with 20%. The highest PCR-positive rate of M. pneumoniae was 74.5% in 2013, and the highest MRMP was 97.4% in 2019; the PCR-positive rate of M. pneumoniae for adults in Beijing was 17.9% and the MRMP was 10.48%. Among the children diagnosed with community-acquired pneumonia (CAP), the PCR-positive and macrolide-resistant rates of M. pneumoniae were both higher in the severe ones. A2063G in domain V of 23S rRNA was the major macrolide-resistant mutation, accounting for more than 90%. The MIC values of all MRMP to erythromycin and azithromycin were ≥ 64 μg/ml, and the MICs of tetracycline and levofloxacin were ≤ 0.5 μg/ml and ≤ 1 μg/ml, respectively. The macrolide resistance varied in different regions and years. Among inpatients, the macrolide-resistant rate was higher in severe pneumonia. A2063G was the common mutation, and we found no resistance to tetracycline and levofloxacin.
The authors‘ previous research has demonstrated that parallel mechanisms (PMs) with hybrid branch chains (i.e., branch chains containing planar or spatial loops) can possess symbolic forward position (SFP) solutions and motion decoupling (MD). In order to further study the conditions of a three-chain six degrees of freedom (DOF) parallel mechanism with SFP and MD, this paper proposes one 6-DOF branch chain A and two 5-DOF branch chains B and C. Based on these, a class of four 6-DOF PMs with three branch chains is devised. The symbolic position analysis of three of four such PMs is performed consequently, featuring partial MD and SFPs, which reveals that if the position or orientation of a point on the moving platform can be determined by the position of the hybrid branch chain, the PM exhibits partial MD and SFP. Finally, the accuracy of the symbolized forward and inverse solution algorithms is verified through numerical examples. This research brings a new insight into the design and position analysis of 6-DOF PMs, particularly those with SFP and partial MD.
A low-energy proton accelerator named pulsed synchronous linear accelerator (PSLA) is proposed and developed at the Institute of Fluid Physics, which is driven by unipolar-pulsed high voltages. Pulsed-accelerating electric fields and low-energy ion beams are precisely synchronized on temporal and spatial positions for continuous acceleration. The operating mode and the features of the PSLA are introduced. At present, the feasibility of a low-energy proton PSLA has been verified in principle. An average accelerating gradient up to 3 MV/m for protons is achieved.
To evaluate the impact of administering probiotics to prevent Clostridioides difficile infection (CDI) among patients receiving therapeutic antibiotics.
Design:
Stepped-wedge cluster-randomized trial between September 1, 2016, and August 31, 2019.
Setting:
This study was conducted in 4 acute-care hospitals across an integrated health region.
Patients:
Hospitalized patients, aged ≥55 years.
Methods:
Patients were given 2 probiotic capsules daily (Bio-K+, Laval, Quebec, Canada), containing 50 billion colony-forming units of Lactobacillus acidophilus CL1285, L. casei LBC80R, and L. rhamnosus CLR2. We measured hospital-acquired CDI (HA-CDI) and the number of positive C. difficile tests per 10,000 patient days as well as adherence to administration of Bio-K+ within 48 and 72 hours of antibiotic administration. Mixed-effects generalized linear models, adjusted for influenza admissions and facility characteristics, were used to evaluate the impact of the intervention on outcomes.
Results:
Overall adherence of Bio-K+ administration ranged from 76.9% to 84.6% when stratified by facility and periods. Rates of adherence to administration within 48 and 72 hours of antibiotic treatment were 60.2% –71.4% and 66.7%–75.8%, respectively. In the adjusted analysis, there was no change in HA-CDI (incidence rate ratio [IRR], 0.92; 95% confidence interval [CI], 0.68–1.23) or C. difficile positivity rate (IRR, 1.05; 95% CI, 0.89–1.24). Discharged patients may not have received a complete course of Bio-K+. Our hospitals had a low baseline incidence of HA-CDI. Patients who did not receive Bio-K+ may have differential risks of acquiring CDI, introducing selection bias.
Conclusions:
Hospitals considering probiotics as a primary prevention strategy should consider the baseline incidence of HA-CDI in their population and timing of probiotics relative to the start of antimicrobial administration.
The lack of excellent wheat germplasm resources on the Qinghai-Tibet Plateau has led to a gradual decrease in genetic diversity and an increasingly narrow genetic background in wheat grown in this region. Rational use of excellent genes from wheat relatives is important to increase genetic diversity, broaden the genetic base and achieve high yield and quality in common wheat. The objective of this study was to use principal component and cluster analyses of 13 important agronomic traits of 44 Polish wheat varieties over 3 years and comprehensively evaluate them to screen for excellent germplasm resources, thus providing the basic material for broadening the genetic base of Qinghai-Tibet Plateau wheat germplasm resources.
In this paper, we study existence of rotating periodic solutions for p-Laplacian differential systems. We first build a new continuation theorem by topological degree, and then obtain the existence of rotating periodic solutions for two kinds of p-Laplacian differential systems via this continuation theorem, extend some existing relevant results.
SARS-CoV-2 rapidly spreads among humans via social networks, with social mixing and network characteristics potentially facilitating transmission. However, limited data on topological structural features has hindered in-depth studies. Existing research is based on snapshot analyses, preventing temporal investigations of network changes. Comparing network characteristics over time offers additional insights into transmission dynamics. We examined confirmed COVID-19 patients from an eastern Chinese province, analyzing social mixing and network characteristics using transmission network topology before and after widespread interventions. Between the two time periods, the percentage of singleton networks increased from 38.9$ \% $ to 62.8$ \% $$ (p<0.001) $; the average shortest path length decreased from 1.53 to 1.14 $ (p<0.001) $; the average betweenness reduced from 0.65 to 0.11$ (p<0.001) $; the average cluster size dropped from 4.05 to 2.72 $ (p=0.004) $; and the out-degree had a slight but nonsignificant decline from 0.75 to 0.63 $ (p=0.099). $ Results show that nonpharmaceutical interventions effectively disrupted transmission networks, preventing further disease spread. Additionally, we found that the networks’ dynamic structure provided more information than solely examining infection curves after applying descriptive and agent-based modeling approaches. In summary, we investigated social mixing and network characteristics of COVID-19 patients during different pandemic stages, revealing transmission network heterogeneities.
A systematic simulation study of the $n/m=1/1$ instability driven by energetic counter-passing particles in tokamak plasmas has been carried out using the kinetic-MHD (Magnetohydrodynamics) hybrid code M3D-K. The safety factor's radial profile is monotonically increasing with central value $q_0$ less than unity. The linear simulation results show that the instability is either a $m/n=1/1$ energetic particle mode or a $m/n=1/1$ global Alfvén eigenmode depending on the value of the central safety factor. The mode frequencies are close to the tip of Alfvén continuum spectrum at the magnetic axis. The excited modes are radially localized near the magnetic axis well within the safety factor $q=1$ surface. The main wave particle resonance is found to be $\omega _\phi +2\omega _\theta =\omega$, where ω is the mode frequency. The nonlinear simulation results show that there is a long period of quasi-steady-state saturation phase with frequency chirping up after initial saturation. Correspondingly, the energetic particle distribution with low energies is flattened in the core of the plasma. After this quasi-steady phase, the mode amplitude grows again and frequency jumps down to a low value corresponding to a new mode similar to the energetic co-passing particle-driven low-frequency fishbone while the energetic particle distribution is flattened for higher energies in the core of plasma.
To determine whether discontinuing active screening for vancomycin-resistant Enterococcus (VRE) in Alberta, Canada, acute-care facilities had an associated impact on the rate of rise of hospital-acquired (HA) VRE bloodstream infection (VRE-BSI).
Setting:
Acute-care facilities in Alberta, Canada.
Patients:
All patients who were admitted to Alberta Health Services or Covenant Health acute-care facilities between January 1, 2013, and March 31, 2020, and who met the definition for hospital-acquired VRE-BSI were included in the analyses.
Methods:
An intervention time-series Poisson regression was used to determine the slope change in VRE incidence between the pre- and postintervention (screening) periods. The patient population was separated into 3 cohorts: group 1 (low risk, VRE screening stopped), group 2 (high risk, VRE screening stopped), and group 3 (high risk, VRE screening continued). For all groups, a level- and slope-change model was used.
Results:
We did not find a statistically significant difference in the slope change or rate of rise in VRE-BSI before and after the intervention, with incidence rate ratio (IRRs) of 1.015 (95% confidence interval [CI], 0.982–1.049), 1.025 (95% CI, 0.967–1.086), and 0.989 (95% CI, 0.924–1.059) for groups 1, 2 and 3, respectively.
Conclusions:
In Alberta, the rate of HA VRE-BSI has remained consistent, and our findings indicate that there has been no increase in the rate of rise of HA VRE-BSI in sites or units that discontinued screening for VRE, regardless of patient risk group.
Coronavirus disease 2019 (COVID-19) asymptomatic cases are hard to identify, impeding transmissibility estimation. The value of COVID-19 transmissibility is worth further elucidation for key assumptions in further modelling studies. Through a population-based surveillance network, we collected data on 1342 confirmed cases with a 90-days follow-up for all asymptomatic cases. An age-stratified compartmental model containing contact information was built to estimate the transmissibility of symptomatic and asymptomatic COVID-19 cases. The difference in transmissibility of a symptomatic and asymptomatic case depended on age and was most distinct for the middle-age groups. The asymptomatic cases had a 66.7% lower transmissibility rate than symptomatic cases, and 74.1% (95% CI 65.9–80.7) of all asymptomatic cases were missed in detection. The average proportion of asymptomatic cases was 28.2% (95% CI 23.0–34.6). Simulation demonstrated that the burden of asymptomatic transmission increased as the epidemic continued and could potentially dominate total transmission. The transmissibility of asymptomatic COVID-19 cases is high and asymptomatic COVID-19 cases play a significant role in outbreaks.
Lithospheric thinning occurred in the North China Craton (NCC) that resulted in extensive Mesozoic magmatism, which has provided the opportunity to explore the mechanism of the destruction of the NCC. In this study, new zircon U–Pb ages, geochemical and Lu–Hf isotopic data are presented for Early Cretaceous adakitic rocks in the Liaodong Peninsula, with the aim of establishing their origin as well as the thinning mechanism of the NCC. The zircon U–Pb data show that crystallization occurred during 127–120 Ma (i.e. Early Cretaceous). These rocks are characterized by high Sr (294–711 ppm) content and Sr/Y ratio (38.5–108), low Yb (0.54–1.24 ppm) and Y (4.9–16.4 ppm) contents, and with no obvious Eu anomalies, implying that they are adakitic rocks. They are enriched in large-ion lithophile elements (e.g. Ba, K, Pb and Sr) and depleted in high-field-strength elements (e.g. Nb, Ta, P and Ti). These adakitic rocks have negative zircon ϵHf(t) contents (−28.9 to −15.0) with two-stage Hf model ages (TDM2) of 3004–2131 Ma. Based on the geochemical features, such as low TiO2 and MgO contents, and high La/Yb and K2O/Na2O ratios, these adakites originated from the partial melting of thickened eclogitic lower crust. They were in an extensional setting associated with the slab rollback of the Palaeo-Pacific Ocean. In combination with previous studies, as a result of the rapid retracting of the Palaeo-Pacific Ocean during 130–120 Ma, the asthenosphere upwelled and modified the thickened lithospheric mantle, which lost its stability, resulting in the lithospheric delamination and thinning of the NCC.
This paper presents a new method to reveal the relation between the surface deformation and near-field amplitude of a reflector antenna based on complex geometrical optics, which could be used as an efficient way to estimate the antenna surface verified by simulation results. The measurement process based on this method is envisaged to be realized by a single scanning of the near-field amplitude which would overcome many limitations of radio holography and phase retrieval methods such as the frequency and elevation. The largest source of error in the original deformation-amplitude equation (DAE) has been corrected by considering the Gaussian feed as a complex point source. To track the ray trajectory so that the improved DAE could be solved, an iteration method including a golden section search algorithm is designed to make the solution converge. By solving the modified DAE, simulation result shows that a more accurate solution could be obtained, and the antenna surface could be recovered to a root mean square error of under 30 microns.
Microtubule-severing protein (MTSP) is critical for the survival of both mitotic and postmitotic cells. However, the study of MTSP during meiosis of mammalian oocytes has not been reported. We found that spastin, a member of the MTSP family, was highly expressed in oocytes and aggregated in spindle microtubules. After knocking down spastin by specific siRNA, the spindle microtubule density of meiotic oocytes decreased significantly. When the oocytes were cultured in vitro, the oocytes lacking spastin showed an obvious maturation disorder. Considering the microtubule-severing activity of spastin, we speculate that spastin on spindles may increase the number of microtubule broken ends by severing the microtubules, therefore playing a nucleating role, promoting spindle assembly and ensuring normal meiosis. In addition, we found the colocalization and interaction of collapsin response mediator protein 5 (CRMP5) and spastin in oocytes. CRMP5 can provide structural support and promote microtubule aggregation, creating transportation routes, and can interact with spastin in the microtubule activity of nerve cells (30). Knocking down CRMP5 may lead to spindle abnormalities and developmental disorders in oocytes. Overexpression of spastin may reverse the abnormal phenotype caused by the deletion of CRMP5. In summary, our data support a model in which the interaction between spastin and CRMP5 promotes the assembly of spindle microtubules in oocytes by controlling microtubule dynamics, therefore ensuring normal meiosis.
To understand how the different data collections methods of the Alberta Health Services Infection Prevention and Control Program (IPC) and the National Surgical Quality Improvement Program (NSQIP) are affecting reported rates of surgical site infections (SSIs) following total hip replacements (THRs) and total knee replacements (TKRs).
Design:
Retrospective cohort study.
Setting:
Four hospitals in Alberta, Canada.
Patients:
Those with THR or TKR surgeries between September 1, 2015, and March 31, 2018.
Methods:
Demographic information, complex SSIs reported by IPC and NSQIP were compared and then IPC and NSQIP data were matched with percent agreement and Cohen’s κ calculated. Statistical analysis was performed for age, gender and complex SSIs. A P value <.05 was considered significant.
Results:
In total, 7,549 IPC and 2,037 NSQIP patients were compared. The complex SSI rate for NSQIP was higher compared to IPC (THR: 1.19 vs 0.68 [P = .147]; TKR: 0.92 vs 0.80 [P = .682]). After matching, 7 SSIs were identified by both IPC and NSQIP; 3 were identified only by IPC, and 12 were identified only by NSQIP (positive agreement, 0.48; negative agreement, 1.0; κ = 0.48).
Conclusions:
Different approaches to monitor SSIs may lead to different results and trending patterns. NSQIP reports total SSI rates that are consistently higher than IPC. If systems are compared at any point in time, confidence on the data may be eroded. Stakeholders need to be aware of these variations and education provided to facilitate an understanding of differences and a consistent approach to SSI surveillance monitoring over time.
Spatial profiles of impurity emission measurements in the extreme ultraviolet (EUV) spectroscopic range in radiofrequency (RF)-heated discharges are combined with one-dimensional and three-dimensional transport simulations to study the effects of resonant magnetic perturbations (RMPs) on core impurity accumulation at EAST. The amount of impurity line emission mitigation by RMPs appears to be correlated with the ion Z for lithium, carbon, iron and tungsten monitored, i.e. stronger suppression of accumulation for heavier ions. The targeted effect on the most detrimental high-Z impurities suggests a possible advantage using RMPs for impurity control. Profiles of transport coefficients are calculated with the STRAHL one-dimensional impurity transport code, keeping $\nu /D$ fixed and using the measured spatial profiles of $\textrm{F}{\textrm{e}^{20 + }}$, $\textrm{F}{\textrm{e}^{21 + }}$ and $\textrm{F}{\textrm{e}^{22 + }}$ to disentangle the transport coefficients. The iron diffusion coefficient ${D_{\textrm{Fe}}}$ increases from $1.0- 2.0\;{\textrm{m}^2}\;{\textrm{s}^{ - 1}}$ to $1.5- 3.0\;{\textrm{m}^2}\;{\textrm{s}^{ - 1}}$ from the core region to the edge region $(\rho \gt 0.5)$ after the onset of RMPs. Meanwhile, an inward pinch of iron convective velocity ${\nu _{\textrm{Fe}}}$ decreases in magnitude in the inner core region and increases significantly in the outer confined region, simultaneously contributing to preserving centrally peaked $\textrm{Fe}$ profiles and exhausting the impurities. The ${D_{\textrm{Fe}}}$ and ${\nu _{\textrm{Fe}}}$ variations lead to reduced impurity contents in the plasma. The three-dimensional edge impurity transport code EMC3-EIRENE was also applied for a case of RMP-mitigated high-Z accumulation at EAST and compared to that of low-Z carbon. The exhaust of ${\textrm{C}^{6 + }}$ toward the scrape-off layer accompanying an overall suppression of heavier ${\textrm{W}^{30 + }}$ is observed when using RMPs.
Pre-existing health conditions may exacerbate the severity of coronavirus disease 2019 (COVID-19). We aimed to estimate the case-fatality rate (CFR) and rate ratios (RR) for patients with hypertension (HBP) and diabetes mellitus (DM) in the New York state. We obtained the age-specific number of COVID-19 confirmed cases and deaths from public reports provided by the New York State Department of Health, and age-specific prevalence of HBP and DM from the Behavioral Risk Factor Surveillance System 2017. We calculated CFR and RR for COVID-19 patients with HBP and DM based on the reported number of deaths with the comorbidity divided by the expected number of COVID-19 cases with the comorbidity. We performed subgroup analysis by age and calculated the CFR and RR for ages of 18–44, 45–64 and 65+ years, respectively. We found that the older population had a higher CFR, but the elevated RRs associated with comorbidities are more pronounced among the younger population. Our findings suggest that besides the elderly, the young population with comorbidity should also be considered as a vulnerable group.
Adverse outcomes following Clostridioides difficile infection (CDI) are not often reported for long-term care facility (LTCF) residents. We focused on the adverse outcomes due to CDI identified in Alberta LTCFs.
Methods:
All positive Clostridioides difficile stool specimens identified by laboratory-identified (LabID) event surveillance in Alberta from 2011 to 2018, along with Alberta Continuing Care Information System, were used to define CDI in Alberta LTCFs. CDI cases were classified as long-term care onset, hospital onset, and community onset. Laboratory records were linked to provincial databases to analyze acute-care admissions and mortality within 30-day post CDI. Age, sex, case classification, episode, and operator type, were investigated using logistic regression.
Results:
Overall, 902 CDI cases were identified in 762 LTCF residents. Of all CDI events, 860 (95.3%) were long-term care onset, 38 (4.2%) were hospital onset, and 4 (0.4%) were community onset. The CDI rate was 2.0 of 100,000 resident days. In total, 157 residents (20.6%) had 30-day all-cause mortality, 126 CDI cases (14.0%) had 30-day all-cause acute-care admissions. The 30-day all-cause mortality rate was significantly higher in residents aged >80 versus ≤80 years (24.9 vs 12.3 per 100 residents; P < .05). Residents aged >80 years, with hospital-onset CDI, and those staying in private or voluntary LTCFs were more likely to have 30-day all-cause acute-care admissions.
Conclusions:
The prevalence of CDI adverse outcomes is in LTCFs was found to be high using LabID event surveillance. Annual review of CDI adverse outcomes using LabID event can minimize the burden of surveillance and standardize the process across all Alberta LTCFs.
Background: In Alberta, Canada, surgical site infections (SSIs) following total hip (THR) and knee replacements (TKR) are reported using 2 data sources: infection prevention and control (IPC), which surveys all THR and TKR using NHSN definitions and the Canadian International Classification of Disease, Tenth Revision (ICD-10-CA) codes, and the National Surgical Quality Improvement Program (NSQIP), which uses a systematic sampling process that involves an 8-day cycle schedule, modified NHSN definitions and current procedural terminology (CPT) codes. We compared the similarities and discrepancies in THR/TKR SSI reporting. Methods: A retrospective multisite cohort study of IPC and NSQIP THR/TKR SSI data at 4 hospitals was performed. SSI data were collected between September 1, 2015, and March 31, 2018. Demographic information and complex and total SSIs reported by IPC and NSQIP were compared for both THR and TKR surgeries. To determine whether both data sources reported similar trends over time, total SSIs by quarter were compared. Univariate analyses using a t test for age and the χ2 test for gender for complex SSIs and total SSIs was performed. The Pearson correlation and the Shapiro-Wilk test were used to assess the THR and TKR trends between the 2 data sources. A P value of <.05 was considered significant. Results: Following the removal of duplicates and missing data, 7,549 IPC and 2,037 NSQIP patients, respectively, were compared. Age, gender, and other demographic parameters were not significantly different. Total THR and TKR SSIs per 100 procedures using NSQIP data were significantly higher than the same rates using IPC data: THR, 2.25 versus 0.92 (P < .05) and TKR, 3.43 versus 1.26 (P < .05). Both IPC and NSQIP data indicated increasing total THR SSI rates over time, but with different magnitudes (r = 0.658). For total TKR SSI, the IPC rate decreased, whereas the NSQIP rate increased over the same period (r = 0.374). When superficial SSIs were excluded, the rates reported between IPC and NSQIP data by hospital and by procedure type were more comparable, with trends toward higher rates reported by NSQIP for THR than for TKR: THR, 1.19 versus 0.68 (P = 0.15) and TKR, 0.92 versus 0.80 (P = .68). Conclusions: Different approaches used to monitor SSIs following surgeries may lead to different results and trend patterns. NSQIP reports total SSI rates that are significantly higher than the IPC Alberta orthopedic population predominantly as a result of increased identification of superficial SSIs. Because the diagnosis of superficial SSIs may be less reliable, SSI reporting should focus on complex infections.