We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Topological transition and helicity conversion of vortex torus knots and links are studied using direct numerical simulations of the incompressible Navier–Stokes equations. We find three topological transitional routes (viz. merging, reconnection and transition to turbulence) in the evolution of vortex knots and links over a range of torus aspect ratios and winding numbers. The topological transition depends not only on the initial topology but also on the initial geometry of knots/links. For small torus aspect ratios, the initially knotted or linked vortex tube rapidly merges into a vortex ring with a complete helicity conversion from the writhe and link components to the twist. For large torus aspect ratios, the vortex knot or link is untied into upper and lower coiled loops via the first vortex reconnection, with a helicity fluctuation including loss of writhe and link, and generation of twist. Then, the relatively unstable lower loop can undergo a secondary reconnection to split into multiple small vortices with a similar helicity fluctuation. Surprisingly, for moderate torus aspect ratios, the incomplete reconnection of tangled vortex loops together with strong vortex interactions triggers transition to turbulence, in which the topological helicity decomposition fails due to the breakdown of vortex core lines.
The subduction model of the Neo-Tethys during the Early Cretaceous has always been a controversial topic, and the scarcity of Early Cretaceous magmatic rocks in the southern part of the Gangdese batholith is the main cause of this debate. To address this issue, this article presents new zircon U–Pb chronology, zircon Hf isotope, whole-rock geochemistry and Sr–Nd isotope data for the Early Cretaceous quartz diorite dykes with adakite affinity in Liuqiong, Gongga. Zircon U–Pb dating of three samples yielded ages of c. 141–137 Ma, indicating that the Liuqiong quartz diorite was emplaced in the Early Cretaceous. The whole-rock geochemical analysis shows that the Liuqiong quartz diorite is enriched in large-ion lithophile elements (LILEs) and light rare-earth elements (LREEs) and is depleted in high-field-strength elements (HFSEs), which are related to slab subduction. Additionally, the Liuqiong quartz diorite has high SiO2, Al2O3 and Sr contents, high Sr/Y ratios and low heavy rare-earth element (HREE) and Y contents, which are compatible with typical adakite signatures. The initial 87Sr/86Sr values of the Liuqiong adakite range from 0.705617 to 0.705853, and the whole-rock ϵNd(t) values vary between +5.78 and +6.24. The zircon ϵHf(t) values vary from +11.5 to +16.4. Our results show that the Liuqiong adakite magma was derived from partial melting of the Neo-Tethyan oceanic plate (mid-ocean ridge basalt (MORB) + sediment + fluid), with some degree of subsequent peridotite interaction within the overlying mantle wedge. Combining regional data, we favour the interpretation that the Neo-Tethyan oceanic crust was subducted at a low angle beneath the Gangdese during the Early Cretaceous.
Pneumatic muscle actuator (PMA) similar to biological muscle is a new type of pneumatic actuator. The flexible manipulator based on PMAs was constructed to simulate the actual movement of the human upper arm. Considering the model errors and external disturbances, the fuzzing sliding mode control based on the saturation function was proposed. Compared with other fuzzy control methods, fuzzy control and saturation function are used to adjust the robust terms to improve the tracking accuracy and reduce the high-frequency chattering.
Embryo quality determines the success of in vitro fertilization and embryo transfer (IVF-ET) treatment. Biomarkers for the evaluation of embryo quality have some limitations. Apoptosis in cumulus cells (CCs) is important for ovarian function. PTEN (phosphatase and tensin homolog) is a well known tumour suppressor gene that functions as a mediator of apoptosis and is crucial for mammalian reproduction. In the present study, we analyzed the expression level of PTEN in human CCs and aimed to investigate its association with embryo developmental competence in IVF treatment cycles. The PTEN mRNA level in CCs was measured using real-time fluorescence quantitative PCR. The association of the differential expression of PTEN with embryo quality was analyzed. Our data showed that PTEN mRNA levels were significantly decreased in CCs surrounding mature oocytes compared with immature oocytes. Similar changes were found in the analysis of fertilization and blastocyst formation. The speculation that the measurement of PTEN mRNA levels in human CCs would provide a useful tool for selecting oocytes with greater chances to implant into the uterus needs to be further verified through single-embryo transfer in the future. The proapoptotic mechanism of PTEN in human reproduction needs to be further studied.
The role of neurological proteins in the development of bipolar disorder (BD) and schizophrenia (SCZ) remains elusive now. The current study aims to explore the potential genetic correlations of plasma neurological proteins with BD and SCZ.
Methods:
By using the latest genome-wide association study (GWAS) summary data of BD and SCZ (including 41,917 BD cases, 11,260 SCZ cases, and 396,091 controls) derived from the Psychiatric GWAS Consortium website (PGC) and a recently released GWAS of neurological proteins (including 750 individuals), we performed a linkage disequilibrium score regression (LDSC) analysis to detect the potential genetic correlations between the two common psychiatric disorders and each of the 92 neurological proteins. Two-sample Mendelian randomisation (MR) analysis was then applied to assess the bidirectional causal relationship between the neurological proteins identified by LDSC, BD and SCZ.
Results:
LDSC analysis identified one neurological protein, NEP, which shows suggestive genetic correlation signals for both BD (coefficient = −0.165, p value = 0.035) and SCZ (coefficient = −0.235, p value = 0.020). However, those association did not remain significant after strict Bonferroni correction. Two sample MR analysis found that there was an association between genetically predicted level of NEP protein, BD (odd ratio [OR] = 0.87, p value = 1.61 × 10−6) and SCZ (OR = 0.90, p value = 4.04 × 10−6). However, in the opposite direction, there is no genetically predicted association between BD, SCZ, and NEP protein level.
Conclusion:
This study provided novel clues for understanding the genetic effects of neurological proteins on BD and SCZ.
Athetis lepigone Möschler (Lepidoptera, Noctuidae) is a common maize pest in Europe and Asia. However, there is no long-term effective management strategy is available yet to suppress its population. Adults rely heavily on olfactory cues to locate their optimal host plants and oviposition sites. Pheromone-binding proteins (PBPs) are believed to be responsible for recognizing and transporting different odorant molecules to interact with receptor membrane proteins. In this study, the ligand-binding specificities of two AlepPBPs (AlepPBP2 and AlepPBP3) for sex pheromone components and host plant (maize) volatiles were measured by fluorescence ligand-binding assay. The results demonstrated that AlepPBP2 had a high affinity with two pheromones [(Z)-7-dodecenyl acetate, Ki = 1.11 ± 0.1 μM, (Z)-9-tetradecenyl acetate, Ki = 1.32 ± 0.15 μM] and ten plant volatiles, including (-)-limonene, α-pinene, myrcene, linalool, benzaldehyde, nonanal, 2-hexanone, 3-hexanone, 2-heptanone and 6-methyl-5-hepten-2-one. In contrast, we found that none of these chemicals could bind to AlepPBP3. Our results clearly show no significant differences in the functional characterization of the binding properties between AlepPBP2 and AlepPBP3 to sex pheromones and host plant volatiles. Furthermore, molecular docking was employed for further detail on some crucial amino acid residues involved in the ligand-binding of AlepPBP2. These findings will provide valuable information about the potential protein binding sites necessary for protein-ligand interactions which appear as attractive targets for the development of novel technologies and management strategies for insect pests.
The long-distance stable transport of relativistic electron beams (REBs) in plasmas is studied by full three-dimensional particle-in-cell simulations. Theoretical analysis shows that the beam transport is mainly influenced by three transverse instabilities, where the excitation of self-modulation instability, and the suppression of the filamentation instability and the hosing instability are important to realize the beam stable transport. By modulating the transport parameters such as the electron density ratio, the relativistic Lorentz factor, the beam envelopes and the density profiles, the relativistic bunches having a smooth density profile and a length of several plasma wave periods can suppress the beam-plasma instabilities and propagate in plasmas for long distances with small energy losses. The results provide a reference for the research of long-distance and stable transport of REBs, and would be helpful for new particle beam diagnosis technology and space active experiments.
The quantum defect (QD) is an important issue that demands prompt attention in high-power fiber lasers. A large QD may aggravate the thermal load in the laser, which would impact the frequency, amplitude noise and mode stability, and threaten the security of the high-power laser system. Here, we propose and demonstrate a cladding-pumped Raman fiber laser (RFL) with QD of less than 1%. Using the Raman gain of the boson peak in a phosphorus-doped fiber to enable the cladding pump, the QD is reduced to as low as 0.78% with a 23.7 W output power. To our knowledge, this is the lowest QD ever reported in a cladding-pumped RFL. Furthermore, the output power can be scaled to 47.7 W with a QD of 1.29%. This work not only offers a preliminary platform for the realization of high-power low-QD fiber lasers, but also proves the great potential of low-QD fiber lasers in power scaling.
Technology that develops rapidly has profoundly affected the business field and reshaped some behaviours of corporations, and the discussion on startup risk-taking behaviour in the new era is still insufficient. Based on social network theory and social capital theory, this article studies how social networks and entrepreneurial ecosystems support startup risk-taking behaviour. This article cuts into this issue through the perspective of coopetition. Based on 737 responses, this article employs regression and fuzzy-set qualitative comparative analysis to explore the relationships between networks, ecosystem coopetition, and risk-taking behaviour. Results indicate that networks and coopetition may stimulate startup risk-taking behaviour, and coopetition may weaken the impacts of networks. There are replacement effects between different characteristics of networks, and there are several configurations, which may lead to high-level risk-taking. This article may help us understand startup risk-taking behaviour in the digital era and the positive impacts of ecosystems.
The article aims to estimate and forecast the transmissibility of shigellosis and explore the association of meteorological factors with shigellosis. The mathematical model named Susceptible–Exposed–Symptomatic/Asymptomatic–Recovered–Water/Food (SEIARW) was used to explore the feature of shigellosis transmission based on the data of Wuhan City, China, from 2005 to 2017. The study applied effective reproduction number (Reff) to estimate the transmissibility. Daily meteorological data from 2008 to 2017 were used to determine Spearman's correlation with reported new cases and Reff. The SEIARW model fit the data well (χ2 = 0.00046, p > 0.999). The simulation results showed that the reservoir-to-person transmission of the shigellosis route has been interrupted. The Reff would be reduced to a transmission threshold of 1.00 (95% confidence interval (CI) 0.82–1.19) in 2035. Reducing the infectious period to 11.25 days would also decrease the value of Reff to 0.99. There was a significant correlation between new cases of shigellosis and atmospheric pressure, temperature, wind speed and sun hours per day. The correlation coefficients, although statistically significant, were very low (<0.3). In Wuhan, China, the main transmission pattern of shigellosis is person-to-person. Meteorological factors, especially daily atmospheric pressure and temperature, may influence the epidemic of shigellosis.
Understanding factors associated with post-discharge sleep quality among COVID-19 survivors is important for intervention development.
Aims
This study investigated sleep quality and its correlates among COVID-19 patients 6 months after their most recent hospital discharge.
Method
Healthcare providers at hospitals located in five different Chinese cities contacted adult COVID-19 patients discharged between 1 February and 30 March 2020. A total of 199 eligible patients provided verbal informed consent and completed the interview. Using score on the single-item Sleep Quality Scale as the dependent variable, multiple linear regression models were fitted.
Results
Among all participants, 10.1% reported terrible or poor sleep quality, and 26.6% reported fair sleep quality, 26.1% reported worse sleep quality when comparing their current status with the time before COVID-19, and 33.7% were bothered by a sleeping disorder in the past 2 weeks. After adjusting for significant background characteristics, factors associated with sleep quality included witnessing the suffering (adjusted B = −1.15, 95% CI = −1.70, −0.33) or death (adjusted B = −1.55, 95% CI = −2.62, −0.49) of other COVID-19 patients during hospital stay, depressive symptoms (adjusted B = −0.26, 95% CI = −0.31, −0.20), anxiety symptoms (adjusted B = −0.25, 95% CI = −0.33, −0.17), post-traumatic stress disorders (adjusted B = −0.16, 95% CI = −0.22, −0.10) and social support (adjusted B = 0.07, 95% CI = 0.04, 0.10).
Conclusions
COVID-19 survivors reported poor sleep quality. Interventions and support services to improve sleep quality should be provided to COVID-19 survivors during their hospital stay and after hospital discharge.
A slender trefoil knotted vortex is studied using direct numerical simulation of the Navier–Stokes equations for vortex Reynolds numbers ($Re \equiv \varGamma /\nu$, circulation/viscosity) up to 12 000. For initially zero twist ($T_{w,0}=0$), neither the writhe $W_r$ nor the global helicity $H$ is conserved. Initially $W_r$ slowly decreases, then suddenly drops during reconnection and becomes almost constant thence; its evolution is almost $Re$ independent. Before reconnection, $H$ also gradually decreases but sharply increases during reconnection. The evolution of $H$ after reconnection strongly depends on $Re$. While steadily decreasing at low $Re$, $H$ significantly increases before eventually decaying at high $Re$. Flow visualization, helicity decomposition and helical wave decomposition reveal that significant amounts of positive and negative twist helicities are simultaneously generated before and during reconnection. Also, the small leading and large trailing rings resulting from asymmetric reconnection have respectively negative and positive twists, which then decay differently due to different initial values, geometries and mutual induction. In particular, at high $Re$, the twist in the small ring, under stretching by the large trailing ring, decays much faster and even switches sign to become positive by the writhe-to-twist conversion – the main reason for the ‘transient growth’ of $H$. Simulations with non-zero initial twists ($T_{w,0}=7.48$ and $22.48$) reveal that the overall dynamics is similar to the $T_{w,0}=0$ case. Hence, the evolution of the trefoil knotted vortex is mainly governed by $W_r$, not $T_w$, although the latter is found to play an essential role in enstrophy growth as well as energy cascade.
Spodoptera litura is an important pest that causes significant economic damage to numerous crops worldwide. Sex pheromones (SPs) mediate sexual communication in S. litura and show a characteristic degree of rhythmic activity, occurring mainly during the scotophase; however, the specific regulatory mechanisms remain unclear. Here, we employed a genome-wide analysis to identify eight candidate circadian clock genes in S. litura. Sequence characteristics and expression patterns were analyzed. Our results demonstrated that some circadian clock genes might regulate the biosynthesis and perception of SPs by regulating the rhythmic expression of SP biosynthesis-related genes and SP perception-related genes. Interestingly, all potential genes exhibited peak expression in the scotophase, consistent with the SP could mediate courtship and mating behavior in S. litura. Our findings are helpful in elucidating the molecular mechanism by which circadian clock genes regulate sexual communication in S. litura.
The late Palaeozoic Yong’an–Meizhou depression belt is an important iron (Fe) and polymetallic metallogenic belt in southern China. It has undergone a transformation from Tethys to the circum-Pacific tectonic domain. The Luoyang deposit is one of the typical Fe skarn deposits in the Yong’an–Meizhou depression belt of eastern China. Garnet is a characteristic mineral in the deposit. Two generations of garnets are detected in the deposit based on their textural characteristics and trace-element contents, and are represented by Fe-enriched andradite. The first generation of garnets (Grt1) have two types of garnets (Grt1-A and Grt1-B). Type A garnets of the first generation (Grt1-A) (Adr80-88) replaced by massive diopside-magnetite assemblage exhibit distinct oscillatory zonings and display patterns of enriched light rare earth elements (LREE) to weak heavy rare earth elements (HREE), with weak negative to positive Eu anomalies, and highest U, ΣREE and Sn contents. Type B garnets of the first generation (Grt1-B) are irregular zones (Adr94-96) coexisting with magnetite, in which Grt1-A is generally dissolved, and have obviously LREE-enriched and HREE-depleted patterns, with weak negative to positive Eu anomalies, and moderate U, ΣREE and Zn contents. Garnets of the second generation (Grt2) (Adr96-99) that replaced massive magnetite together with sphalerite show unzoned patterns, with a flat REE pattern and pronounced negative Eu anomalies as well as contents of lowest U and ΣREE, and highest W. The substitution of REEs in garnets occurs as [X2+]VIII –1[REE3+]VIII +1[Si4+]IV –1[Z3+]IV +1in an Al-enriched environment. Luoyang hydrothermal fluids shifted from reducing conditions with relatively high-U and -ΣREE characteristics to oxidizing conditions with relatively low-U and -ΣREE characteristics. The reduced siderophile elements and increased fO2 in fluid during Grt1-B formation caused magnetite mineralization and reduced Zn contents during Grt2 formation, causing the deposition of sphalerite. All garnets formed from magmatic fluid and were controlled by infiltrative metasomatism in an opened system.
Bacterial dysentery (BD) brings a major disease burden to developing countries. Exploring the influence of temperature and its interaction with other meteorological factors on BD is significant for the prevention and early warning of BD in the context of climate change. Daily BD cases and meteorological data from 2008 to 2018 were collected in all nine prefecture-level cities in Jilin Province. A one-stage province-level model and a two-stage city-specific multivariate meta-pooled level distributed lag non-linear model were established to explore the correlation between temperature and BD, then the weather-stratified generalised additive model was used to test the interaction. During the study period, a total of 26 971 cases of BD were developed. The one-stage and two-stage cumulative dose-response ‘J’ curves overlapped, and results showed a positive correlation between temperature and BD with a 1–6 days lag effect. Age group ⩾5 years was found to be more sensitive to the effects. Moreover, there was a significant interaction between temperature, humidity and precipitation (P = 0.004, 0.002, respectively) on BD under high temperature (>0 °C), reminding residents and policymakers to pay attention to the prevention of BD in situations with both high temperature and humidity, high temperature and precipitation during the temperate monsoon climate.
Supraglacial lakes and rivers dominate the storage and transport of meltwater on the southwest Greenland Ice Sheet (GrIS) surface. Despite functioning as interconnected hydrologic networks, supraglacial lakes and rivers are commonly studied as independent features, resulting in an incomplete understanding of their collective impact on meltwater storage and routing. We use Landsat 8 satellite imagery to assess the seasonal evolution of supraglacial lakes and rivers on the southwest GrIS during the 2015 melt season. Remotely sensed meltwater areas and volumes are compared with surface runoff simulations from three climate models (MERRA-2, MAR 3.6 and RACMO 2.3), and with in situ observations of proglacial discharge in the Watson River. We find: (1) at elevations >1600 m, 21% of supraglacial lakes and 28% of supraglacial rivers drain into moulins, signifying the presence of high-elevation surface-to-bed meltwater connections even during a colder-than-average melt season; (2) while supraglacial lakes dominate instantaneous surface meltwater storage, supraglacial rivers dominate total surface meltwater area and discharge; (3) the combined surface area of supraglacial lakes and rivers is strongly correlated with modeled surface runoff; and (4) of the three models examined here, MERRA-2 runoff yields the highest overall correlation with observed proglacial discharge in the Watson River.
The tobacco cutworm Spodoptera litura (Lepidoptera: Noctuidae) is a polyphagous pest with a highly selective and sensitive chemosensory system involved in complex physiological behaviors such as searching for food sources, feeding, courtship, and oviposition. However, effective management strategies for controlling the insect pest populations under threshold levels are lacking. Therefore, there is an urgent need to formulate eco-friendly pest control strategies based on the disruption of the insect chemosensory system. In this study, we identified 158 putative chemosensory genes based on transcriptomic and genomic data for S. litura, including 45 odorant-binding proteins (OBPs, nine were new), 23 chemosensory proteins (CSPs), 60 odorant receptors (ORs, three were new), and 30 gustatory receptors (GRs, three were new), a number higher than those reported by previous transcriptome studies. Subsequently, we constructed phylogenetic trees based on these genes in moths and analyzed the dynamic expression of various genes in head capsules across larval instars using quantitative real-time polymerase chain reaction. Nine genes–SlitOBP8, SlitOBP9, SlitOBP25, SlitCSP1, SlitCSP7, SlitCSP18, SlitOR34, SlitGR240, and SlitGR242–were highly expressed in the heads of 3- to 5-day-old S. litura larvae. The genes differentially expressed in olfactory organs during larval development might play crucial roles in the chemosensory system of S. litura larvae. Our findings substantially expand the gene inventory for S. litura and present potential target genes for further studies on larval feeding in S. litura.