We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Heart disease is the leading cause of death in schizophrenia. However, there has been little research directly examining cardiac function in schizophrenia.
Aims
To investigate cardiac structure and function in individuals with schizophrenia using cardiac magnetic resonance imaging (CMR) after excluding medical and metabolic comorbidity.
Method
In total, 80 participants underwent CMR to determine biventricular volumes and function and measures of blood pressure, physical activity and glycated haemoglobin levels. Individuals with schizophrenia (‘patients’) and controls were matched for age, gender, ethnicity and body surface area.
Results
Patients had significantly smaller indexed left ventricular (LV) end-diastolic volume (effect size d = −0.82, P = 0.001), LV end-systolic volume (d = −0.58, P = 0.02), LV stroke volume (d = −0.85, P = 0.001), right ventricular (RV) end-diastolic volume (d = −0.79, P = 0.002), RV end-systolic volume (d = −0.58, P = 0.02), and RV stroke volume (d = −0.87, P = 0.001) but unaltered ejection fractions relative to controls. LV concentricity (d = 0.73, P = 0.003) and septal thickness (d = 1.13, P < 0.001) were significantly larger in the patients. Mean concentricity in patients was above the reference range. The findings were largely unchanged after adjusting for smoking and/or exercise levels and were independent of medication dose and duration.
Conclusions
Individuals with schizophrenia show evidence of concentric cardiac remodelling compared with healthy controls of a similar age, gender, ethnicity, body surface area and blood pressure, and independent of smoking and activity levels. This could be contributing to the excess cardiovascular mortality observed in schizophrenia. Future studies should investigate the contribution of antipsychotic medication to these changes.
A mainstay of current multiple sclerosis (MS) clinical trial conduct is the comparison of randomized groups of patients using experimental therapy and a placebo. If placebo must be used, it may be possible to limit the number of subjects exposed to placebo by unbalanced randomization, in which fewer subjects are randomized onto placebo than onto experimental therapy. It could, in theory, be possible to replace a placebo arm with a treatment arm in which patients are exposed to a considerably lower dose of active therapy that is not expected to be maximally effective, but is expected to show some benefit. Creating a virtual placebo cohort using extant data from natural history and placebo-controlled studies could reduce the need for, or even replace, placebo groups in future studies. Clinical trials in MS have traditionally been designed with a frequentist approach to statistical inference. An alternative statistical inference approach uses Bayesian procedures.