We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we describe the system design and capabilities of the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope at the conclusion of its construction project and commencement of science operations. ASKAP is one of the first radio telescopes to deploy phased array feed (PAF) technology on a large scale, giving it an instantaneous field of view that covers $31\,\textrm{deg}^{2}$ at $800\,\textrm{MHz}$. As a two-dimensional array of 36$\times$12 m antennas, with baselines ranging from 22 m to 6 km, ASKAP also has excellent snapshot imaging capability and 10 arcsec resolution. This, combined with 288 MHz of instantaneous bandwidth and a unique third axis of rotation on each antenna, gives ASKAP the capability to create high dynamic range images of large sky areas very quickly. It is an excellent telescope for surveys between 700 and $1800\,\textrm{MHz}$ and is expected to facilitate great advances in our understanding of galaxy formation, cosmology, and radio transients while opening new parameter space for discovery of the unknown.
The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia and will cover the full ASKAP band of 700–1800 MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey and Sydney University Molonglo Sky Survey radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with
$\sim$
15 arcsec resolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, we present a description of the RACS survey and the first data release of 903 images covering the sky south of declination
$+41^\circ$
made over a 288-MHz band centred at 887.5 MHz.
IAU Symposium 336, Astrophysical Masers: Unlocking the Mysteries of the Universe, took place between 4 - 8 September, 2017 in Cagliari, on the beautiful island of Sardinia. The Symposium, the fifth focusing on masers as a tool for astrophysics, was dedicated to our friend and colleague Malcolm Walmsley, who sadly passed away shortly before the meeting. To quote Karl Menten: “Malcolm made numerous fundamental contributions to our understanding of the physics and chemistry of star formation and the interstellar medium. He was an exceptional scientist, a highly esteemed colleague and a true gentleman”. Vale Malcolm. The topics discussed at the symposium covered a huge range, from star-formation, evolved stars, galaxies and their constituents, super-massive black-holes to cosmology.
Background: Approximately 12-15% of patients with intracranial aneurysms (IA) have affected first-degree relatives, and are considered to have familial intracranial aneurysms (FIA). Individuals with FIA are at higher risk for aneurysm formation and subarachnoid hemorrhage. THSD1 is the only gene to be associated with nonsyndromic FIA at this time. Our study aims to find rare DNA variants that are major risk factors for FIA in our cohort of patients. Methods: To date we have enrolled 37 affected and 31 unaffected people from 16 families. We have done exome or genome sequencing on at least 1 person from each of 12 families. Results: A rare p.(R686W) variant in THSD1 was found in 1/12 families, but did not cosegregate fully with disease. While less attractive as the primary cause of FIA, we cannot rule out the potential modifying effects of THSD1 p.(R686W) in this family. A second candidate, an extracellular matrix gene within a chromosomal region previously implicated by familial mapping studies, contains rare variants in 4/12 of our families. All four variants are predicted to be damaging. Conclusions: Alongside environmental risk factors, individual FIA families may also have complex rare variant contributions to their disease, such as digenic and multi-locus contributions.
This paper describes the system architecture of a newly constructed radio telescope – the Boolardy engineering test array, which is a prototype of the Australian square kilometre array pathfinder telescope. Phased array feed technology is used to form multiple simultaneous beams per antenna, providing astronomers with unprecedented survey speed. The test array described here is a six-antenna interferometer, fitted with prototype signal processing hardware capable of forming at least nine dual-polarisation beams simultaneously, allowing several square degrees to be imaged in a single pointed observation. The main purpose of the test array is to develop beamforming and wide-field calibration methods for use with the full telescope, but it will also be capable of limited early science demonstrations.
A survey of the Milky Way disk and the Magellanic System at the wavelengths of the 21-cm atomic hydrogen (H i) line and three 18-cm lines of the OH molecule will be carried out with the Australian Square Kilometre Array Pathfinder telescope. The survey will study the distribution of H i emission and absorption with unprecedented angular and velocity resolution, as well as molecular line thermal emission, absorption, and maser lines. The area to be covered includes the Galactic plane (|b| < 10°) at all declinations south of δ = +40°, spanning longitudes 167° through 360°to 79° at b = 0°, plus the entire area of the Magellanic Stream and Clouds, a total of 13 020 deg2. The brightness temperature sensitivity will be very good, typically σT≃ 1 K at resolution 30 arcsec and 1 km s−1. The survey has a wide spectrum of scientific goals, from studies of galaxy evolution to star formation, with particular contributions to understanding stellar wind kinematics, the thermal phases of the interstellar medium, the interaction between gas in the disk and halo, and the dynamical and thermal states of gas at various positions along the Magellanic Stream.
We present results of Very Long Baseline Array (VLBA) polarimetric 22 GHz H2O maser observations of a number of low/intermediate mass evolved stars. We observed 3 Miras (Ap Lyn, IK Tau and IRC+60370), 1 semi-regular variable (RT Vir) and 1 pPN (OH231.8+4.2). Circular polarization is detected in the H2O maser region of OH231.8+4.2 and we infer a magnetic field of |B||| = ~45 mG. This implies an extrapolated magnetic field of ~2.5 G on the surface of the central star. The preliminary results on RT Vir and IRC+60370 also indicate the first detection of weak H2O maser linear polarization.
Silicon monoxide maser emission has been detected in the circumstellar envelopes of many evolved stars. It is a good tracer of the wind dynamics within a few stellar radii of the central star. We investigated the polarization morphology in the circumstellar envelope of an AGB star, R Cas, by using the VLBA to map the linear and circular polarization of the v=1, J=1-0 SiO maser transition during 23 epochs over two stellar cycles. The average fractional circular polarization is a few percent. The average fractional linear polarization per epoch is 11–58%, but some isolated features exceed 100%, probably because the total intensity emission is smoother and more resolved-out. The maser electric polarization vector angle has a preferrential tendency to be either parallel or perpendicular to the radial direction to the star.
The methanol multi-beam (MMB) survey has produced the largest and most complete catalogue of Galactic 6.7-GHz methanol masers to date. 6.7-GHz methanol masers are exclusively associated with high-mass star formation, and as such provide invaluable insight into the Galactic distribution and properties of high-mass star formation regions. I present the statistical properties of the MMB catalogue and, through the calculation of kinematic distances, investigate the resolution of distance ambiguities and explore the Galactic distribution.
The results of the first complete survey for 6668-MHz CH3OH and 6035-MHz excited-state OH masers in the Small and Large Magellanic Clouds are presented. A new 6668-MHz CH3OH maser in the Large Magellanic Cloud has been detected towards the star-forming region N 160a, together with a new 6035-MHz excited-state OH maser detected towards N 157a. We also re-observed the previously known 6668-MHz CH3OH masers and the single known 6035-MHz OH maser. Neither maser transition was detected above ~0.13 Jy in the Small Magellanic Cloud. All observations were initially made using the CH3OH Multibeam (MMB) survey receiver on the 64-m Parkes radio telescope as part of the overall MMB project. Accurate positions were measured with the Australia Telescope Compact Array (ATCA). In a comparison of the star formation maser populations in the Magellanic Clouds and our Galaxy, the LMC maser populations are demonstrated to be smaller than their Milky Way counterparts. CH3OH masers are under-abundant by a factor of ~50, whilst OH and H2O masers are a factor of ~10 less abundant than our Galaxy.
Rapidly-evolving red supergiants (RSG) lose half or more of their mass before ending their lives as supernovae. Masers allow us to study the mass loss from 4 nearby RSG in AU-scale detail using MERLIN and EVN/global VLBI. The water maser clouds are over-dense and over-magnetised with respect to the surrounding wind. In most cases, the brighter an individual maser component is the smaller its apparent (beamed) FWHM appears, as predicted for approximately spherical clouds. Individual water maser features have a typical half-life of 5-10 yr, but comparison with single dish monitoring suggests that the water vapour clouds themselves survive many decades (the water maser shell crossing time), within which the local masers wink on and off. OH mainline masers are found in the tenuous surrounding gas, overlapping the water maser shell, surrounded by OH 1612-MHz masers at a greater distance from the star.
A new 7-beam methanol multibeam receiver is being used to survey the Galaxy for newly forming massive stars, that are pinpointed by strong methanol maser emission at 6.668 GHz. The receiver, jointly constructed by Jodrell Bank Observatory (JBO) and the Australia Telescope National Facility (ATNF), was successfully commissioned at Parkes in January 2006. The Parkes-Jodrell survey of the Milky Way for methanol masers is two orders of magnitude faster than previous systematic surveys using 30-m class dishes, and is the first systematic survey of the entire Galactic plane. The first 53 days of observations with the Parkes telescope have yielded 518 methanol sources, of which 218 are new discoveries. We present the survey methodology as well as preliminary results and analysis.
A new 7-beam methanol multibeam receiver was successfully commissioned at Parkes Observatory in January 2006, and has begun surveying the Milky Way for newly forming massive stars, that are pinpointed by strong methanol maser emission at 6.7 GHz. The receiver was jointly constructed by Jodrell Bank Observatory and the Australia Telescope National Facility for use on the Parkes and Lovell Telescopes. The whole galactic plane is being surveyed within latitudes ±2°, with a velocity resolution of 0.1 km s−1 and a 5-σ sensitivity of ~0.7 Jy. Altogether 200 days of observing will be required.
We present the first direct measurements of the magnetic field strength and direction in a collimated jet from an evolved star on its way to become a planetary nebula. Very Long Baseline Array (VLBA) observations of the linear and circular polarization of the H$_2$O masers in the collimated jet of W43A reveal a strong toroidal magnetic field, indicating that the jet is magnetically collimated. The magnetic field strength in the jet extrapolated back to the stellar surface yields a surface field of several Gauss, consistent with the measurements of maser polarization in a large sample of evolved stars. The origin of the magnetic field is yet unknown, although the jet precession might point to the existence of a heavy planet or stellar companion. This is the first direct observational evidence for magnetic collimation in the jets, that likely plays an important role in shaping planetary nebulae.
Conductive-polymer coated fabrics have been investigated as intelligent materials in the past years. In this paper, a flexible fabric strain sensor coated with polypyrrole is reported, which is featured with high sensitivity, good stability and large deformation. It is fabricated by chemical vapor deposition at low temperature. The effects of temperature, humidity, acid and alkaline medium have been assessed. The conductivity-strain tests reveal the sensor exhibits a high strain sensitivity of ~160 for a deformation as large as 50%, while its good stability is indicated by a small loss of conductivity after the thermal and humidity aging tests, and supported by the slight change in conductivity and sensitivity over a storage of eighteen months. The acid and alkaline solution mainly decreased their initial conductivity but have the slight effect to their sensitivity. The flexible fabric strain sensor is expected to be a promising “soft” smart material in the smart garment, wearable hardware and biomedical applications.
High-mass star formation is not well understood chiefly because examples are deeply embedded, relatively distant, and crowded with sources of emission. Using VLA and VLBA observations of H2O and SiO maser emission, we have mapped in detail the structure and proper motion of material 20-500 AU from the closest high-mass YSO, radio source I in the Orion KL region. We observe streams of material driven in a rotating, wide angle, bipolar wind from the the surface of an edge-on accretion disk. The example of source I provides strong evidence that high-mass star formation proceeds via accretion.
We have discovered 22 GHz water vapor maser toward a narrow-line type 1 (NLS1) Seyfert galaxy, NGC4051. The detection of water masers in
such galaxies is very rare. The Doppler-shifted maser components
symmetrically straddle a component lying at about 712 km s-1. The
location of each maser component is of great interest for studying
galactic dynamical structures around an active nucleus. We report on
preliminary results of VLA observations.