Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-10T22:29:43.473Z Has data issue: false hasContentIssue false

The Most Detailed Picture Yet of an Embedded High Mass YSO

Published online by Cambridge University Press:  23 September 2016

L. J. Greenhill
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138, USA
M. J. Reid
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138, USA
C. J. Chandler
Affiliation:
NRAO, P.O. Box O, Socorro, NM 87801, USA
P. J. Diamond
Affiliation:
MERLIN/VLBI National Facility, Jodrell Bank Observatory, Macclesfield, SK11 9DL, UK
M. Elitzur
Affiliation:
Department of Physics & Astronomy, University of Kentucky, Lexington, KY 40506, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

High-mass star formation is not well understood chiefly because examples are deeply embedded, relatively distant, and crowded with sources of emission. Using VLA and VLBA observations of H2O and SiO maser emission, we have mapped in detail the structure and proper motion of material 20-500 AU from the closest high-mass YSO, radio source I in the Orion KL region. We observe streams of material driven in a rotating, wide angle, bipolar wind from the the surface of an edge-on accretion disk. The example of source I provides strong evidence that high-mass star formation proceeds via accretion.

Type
Part 4: Massive Star Formation
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Allen, D. A., & Burton, M. G. 1993, Nature, 363, 54 Google Scholar
Bonnell, I. A., Bate, M. R., & Zinnecker, H. 1998, MNRAS, 298, 93 Google Scholar
Cesaroni, R., et al. 1999, A&A, 345, 949 Google Scholar
Churchwell, E., Wood, D. O. S., Felli, M., & Massi, M. 1987, ApJ, 321, 516 Google Scholar
Doeleman, S. S., Lonsdale, C. J., & Pelkey, S. 1999, ApJ, 510, L55 Google Scholar
Gaume, R. A., Wilson, T. L., Vrba, F. J., Johnston, K. J., & Schmid-Burgk, J. 1998, ApJ, 493, 940 Google Scholar
Genzel, R., & Stutzki, J. 1989, ARAA, 27, 41 Google Scholar
Gezari, D. Y. 1992, ApJ, 396, L43 Google Scholar
Gezari, D. Y, Backman, D. E., & Werner, M. W. 1998, ApJ, 509, 283 Google Scholar
Greenhill, L. J., Gwinn, C. R., Schwartz, C., Moran, J. M., & Diamond, P. J. 1998, Nature, 396, 650 Google Scholar
McKee, C. F., Tan, J. C. 2002, Nature, 416, 59 CrossRefGoogle Scholar
Menten, K. M., & Reid, M. J. 1995, ApJ, 445, L157 Google Scholar
Plambeck, R. L., Wright, M. C. H., Mundy, L. G., Looney, L. W. 1995, ApJ, 455, L189 Google Scholar
Schultz, A. S. B, et al. 1999, ApJ, 511, 282 Google Scholar
Shepherd, D. S., & Kurtz, S. E. 1999, 523, 690 Google Scholar
Zhang, Q., Hunter, T. R., & Sridharan, T. K. 1998, ApJ, 505, L151 CrossRefGoogle Scholar