We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Our knowledge of the universe comes from recording the photon and particle fluxes incident on the Earth from space. We thus require sensitive measurement across the entire energy spectrum, using large telescopes with efficient instrumentation located on superb sites. Technological advances and engineering constraints are nearing the point where we are recording as many photons arriving at a site as is possible. Major advances in the future will come from improving the quality of the site. The ultimate site is, of course, beyond the Earth’s atmosphere, such as on the Moon, but economic limitations prevent our exploiting this avenue to the degree that the scientific community desires. Here we describe an alternative, which offers many of the advantages of space for a fraction of the cost: the Antarctic Plateau.
The Renaissance story of Pythagoras and Pythagorean wisdom, its religious and its scientific aspects alike, is a complicated one. One of the arresting dimensions of early Renaissance Pythagoreanism is consequent on the rediscovery of certain ancient sources. From Marsilio Ficino's viewpoint, Pythagoras' musical and theological debts were unquestionably to Orpheus. Not only did Ficino confront the twin Pythagorean notions of metensomatosis and metempsychosis, but he was drawn into speculating about the cycle of lives and of deaths, deaths that are inter-lives as lives are inter-deaths. This chapter shows that Ficino specifically identified as Pythagorean in his Platonic Theology 4.1.14-16, one that focuses, on the mystery and the symbolism of 12. It can serve to introduce what the Renaissance saw as Pythagoras'mathematical, though to us it is his arithmological legacy. Iamblichus gives the fullest ancient listing of the Symbola in his Protreptic, but provides long list in On the Pythagorean Life.
This Summary for Policymakers presents key findings from the Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX). The SREX approaches the topic by assessing the scientific literature on issues that range from the relationship between climate change and extreme weather and climate events (‘climate extremes’) to the implications of these events for society and sustainable development. The assessment concerns the interaction of climatic, environmental, and human factors that can lead to impacts and disasters, options for managing the risks posed by impacts and disasters, and the important role that non-climatic factors play in determining impacts. Box SPM.1 defines concepts central to the SREX.
The character and severity of impacts from climate extremes depend not only on the extremes themselves but also on exposure and vulnerability. In this report, adverse impacts are considered disasters when they produce widespread damage and cause severe alterations in the normal functioning of communities or societies. Climate extremes, exposure, and vulnerability are influenced by a wide range of factors, including anthropogenic climate change, natural climate variability, and socioeconomic development (Figure SPM.1). Disaster risk management and adaptation to climate change focus on reducing exposure and vulnerability and increasing resilience to the potential adverse impacts of climate extremes, even though risks cannot fully be eliminated (Figure SPM.2). Although mitigation of climate change is not the focus of this report, adaptation and mitigation can complement each other and together can significantly reduce the risks of climate change. [SYR AR4, 5.3]