We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Conduct disorder (CD) has been associated with dysfunction in reinforcement-based decision-making. Two forms of affective traits that reflect the components of CD severity are callous-unemotional (CU; reduced guilt/empathy) traits and irritability. The form of the reinforcement-based decision-making dysfunction with respect to CD and CU traits remains debated and has not been examined with respect to irritability in cases with CD. The goals of the current study were to determine the extent of dysfunction in differential (reward v. punishment) responsiveness in CD, and CU traits and irritability in participants with CD.
Methods
The study involved 178 adolescents [typically developing (TD; N = 77) and cases with CD (N = 101)]. Participants were scanned with fMRI during a passive avoidance task that required participants to learn to respond to (i.e. approach) stimuli that engender reward and refrain from responding to (i.e. passively avoid) stimuli that engender punishment.
Results
Adolescents with CD showed reduced differential reward-punishment responsiveness within the striatum relative to TD adolescents. CU traits, but not irritability, were associated with reduced differential reward-punishment responsiveness within the striatum, rostromedial, and lateral frontal cortices.
Conclusions
The results suggest CD is associated with reduced differential reward-punishment responsiveness and the extent of this dysfunction in participants with CD is associated with the severity of CU traits but not irritability.
This chapter comprises the following sections: names, taxonomy, subspecies and distribution, descriptive notes, habitat, movements and home range, activity patterns, feeding ecology, reproduction and growth, behavior, parasites and diseases, status in the wild, and status in captivity.
Outbreaks of cyclosporiasis, a food-borne illness caused by the coccidian parasite Cyclospora cayetanensis have increased in the USA in recent years, with approximately 2300 laboratory-confirmed cases reported in 2018. Genotyping tools are needed to inform epidemiological investigations, yet genotyping Cyclospora has proven challenging due to its sexual reproductive cycle which produces complex infections characterized by high genetic heterogeneity. We used targeted amplicon deep sequencing and a recently described ensemble-based distance statistic that accommodates heterogeneous (mixed) genotypes and specimens with partial genotyping data, to genotype and cluster 648 C. cayetanensis samples submitted to CDC in 2018. The performance of the ensemble was assessed by comparing ensemble-identified genetic clusters to analogous clusters identified independently based on common food exposures. Using these epidemiologic clusters as a gold standard, the ensemble facilitated genetic clustering with 93.8% sensitivity and 99.7% specificity. Hence, we anticipate that this procedure will greatly complement epidemiologic investigations of cyclosporiasis.
The purpose of this study was to examine the effectiveness, satisfaction, and acceptance of a low-cost Lombard-response (LR) device in a group of individuals with Parkinson’s disease (IWPD) and their communication partners (CPs).
Method:
Sixteen IWPD and hypophonia and their CPs participated in the study. The IWPD wore a LR device that included a small MP3 player (Sony Walkman) and headphones playing a multi-talker noise audio file at 80 dB during lab-based speech tasks and during their daily conversational speech over a 2-week device trial period. Outcome measures included average conversational speech intensity and scores on a questionnaire related to speech impairment, communication effectiveness, and device satisfaction.
Results:
Conversational speech intensity of the IWPD is increased by 7 to 10 dB with the LR device. Following a 2-week trial period, eight of the IWPD (50%) gave the LR device moderate-to-high satisfaction and effectiveness ratings and decided to purchase the device for long-term daily use. At the 4-month follow-up, none of the IWPDs were still using the LR device. Device rejection was related to discomfort (loudness), headaches, interference with cognition, and difficulty controlling device.
Conclusion:
Short-term acceptance and satisfaction with the LR device was moderate, but long-term acceptance, beyond 4 months, was absent. Future studies are required to determine if other types of low-cost LR devices can be developed that improve long-term efficacy and device acceptance in IWPD and hypophonia.
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease. Non-alcoholic steatohepatitis (NASH) is a more severe form of NAFLD and causes subsequent pathological changes including cirrhosis and hepatocellular carcinoma. Inflammation is the key pathological change in NASH and involves a series of cytokines and chemokines. The C-X-C motif chemokine 10 (CXCL10), which is known as a pro-inflammation chemokine, was recently proven to play a pivotal role in the pathogenesis of NASH. Hepatic CXCL10 is mainly secreted by hepatocytes and liver sinusoidal endothelium. By binding to its specific receptor CXCR3, CXCL10 recruits activated CXCR3+ T lymphocytes and macrophages to parenchyma and promotes inflammation, apoptosis and fibrosis. The circulating CXCL10 level correlates with the severity of lobular inflammation and is an independent risk factor for NASH patients. Thus, CXCL10 may be both a potential prognostic tool and a therapeutic target for the treatment of patients with NASH. The aim of this review is to highlight the growing advances in basic knowledge and clinical interest of CXCL10 in NASH to propagate new insights into novel pharmacotherapeutic avenues.
By
Lisa Emberson, Stockholm Environment Institute, University of York,
Kebin He, Tsinghua University,
Johan Rockström, Stockholm Resilience Centre, Stockholm University,
Markus Amann, International Institute for Applied Systems Analysis,
Jennie Barron, Stockholm Environment Institute, University of York,
Robert Correll, Global Environment Technology Foundation,
Sara Feresu, Institute of Environmental Studies, University of Zimbabwe,
Richard Haeuber, United States Environmental Protection Agency),
Kevin Hicks, Stockholm Environment Institute, University of York,
Francis X. Johnson, Stockholm Environment Institute, Stockholm University,
Anders Karlqvist, Swedish Polar Research Secretariat,
Zbigniew Klimont, International Institute for Applied Systems Analysis,
Iyngararasan Mylvakanam, United Nations Environment Programme,
Wei Wei Song, Tsinghua University,
Harry Vallack, Stockholm Environment Institute, University of York,
Qiang Zhang, Tsinghua University,
Jill Jäger, Sustainable Europe Research Institute
Modern energy systems have been central to the development of human societies. They have perhaps been the single most important determinant of growth of our industrial societies and our modern economy. Unfortunately, they have also been a key driver of many of the negative environmental trends observed in the world today. For example, current energy systems are the predominant source of carbon dioxide (CO2) emissions, accounting for 84% of total global CO2 emissions and 64% of global greenhouse gas (GHG) emissions related to human activities. Past trends suggest that this percentage is likely to increase in the future if our energy needs continue to be met by fossil fuels.
The impact of GHG emissions on climate is arguably the most significant environmental impact associated with our energy systems, as the effects of such emissions are felt globally. However, these effects will not necessarily be equitable. Due to the realities of global and national economics, the areas that may suffer the greatest impacts from climate change may be those that have to date contributed the least in terms of GHG emissions. Our fossil fuel-based energy systems also emit substantial quantities of other atmospheric pollutants, for example sulphur dioxide (SO2), nitrogen oxides (NOx), primary particulate matter (PM), and non-methane volatile organic compounds (NMVOCs), which degrade air quality and cause damage to health and ecosystems through processes such as acidifi cation, eutrophication, and the formation of ground-level ozone (O3) and secondary PM. Biomass-based energy systems can also have substantial impacts on land and water resources.
We find a strong tendency for positive returns during the overnight period followed by reversals during the trading day. This behavior is driven by an opening price that is high relative to intraday prices. It is concentrated among stocks that have recently attracted the attention of retail investors, it is more pronounced for stocks that are difficult to value and costly to arbitrage, and it is greater during periods of high overall retail investor sentiment. The additional implicit transaction costs for retail traders who buy high-attention stocks near the open frequently exceed the effective half spread.
The observing program of the Nordic Near-Earth-Object Network (NEON) accrues knowledge about the physical and dynamical properties of near-Earth objects (NEOs) using state-of-the-art inverse methods. Photometric and astrometric observations are being carried out at the Nordic Optical Telescope. Here, the NEON observations from June 2004–September 2006 are reviewed. Statistical orbital inversion is illustrated by the so-called Volume-of-Variation method. Statistical inversion for spins and shapes is carried using a simple triaxial shape model yielding analytical disk-integrated brightnesses for both Lommel-Seeliger and Lambert scattering laws. The novel approach allows spin-shape error analyses with the help of large numbers of sample solutions. Currently, such spin-shape solutions have been derived for 2002 FF12, 2003 MS2, 2003 RX7, and 2004 HW. For (1862) Apollo, an unambiguous spin-shape solution has been obtained using the conventional, convex inversion method and, for (1685) Toro and (1981) Midas, the conventional method has been applied repeatedly to map the regime of possible solutions.
Dynamin is a 100 kD GTPase that plays an essential role in clathrin-coated vesicle formation during receptor mediated endocytosis, and in caveolae internalization and may play a role in intracellular membrane trafficking (1). It shares an extensive sequence homology (70% identity) to shibiregene product in Drosophila(2,3). The shibiretsmutants exhibit a rapid and reversible paralysis at non-permissive temperature due to a depletion of synaptic vesicles in their nerve termini which is believed to be caused by a block in endocytosis since there is an accumulation of “collared” clathrin-coated pits at the plasma membrane (4). Synaptosomes treated with GTPγs produces elongated necks surrounded by dynamin (6). Purified recombinant dynamin itself can assemble to form spirals and bind to lipid vesicles to form tubes, which resemble the “collar” at the necks of coated pits (5). These dynamin tubes vesiculate upon GTP treatment (7), suggesting a unique role of dynamin acting as a mechanoenzyme which causes clathrin-coated vesicles to be pinched off plasma membrane.
A major concern in the development and implementation of metal implants for the clinical use is the assessment of material-induced mutagenesis. In this study we used synchrotron microspectroscopy in the mid-infrared region (4000-400 cm1 ) to non-invasively assess the in situ human cell responses to metal surfaces. Specifically we examined the subtle genetic aberrations of cells as they responded to a range of metals commonly used in metal prosthetic devices. Relative band intensities and band intensity ratios for functional groups of biomolecules that are inherent to the experimental system were examined. The molecular components of the biomolecules as they were perturbed by the interactions with metals were investigated. These results demonstrate the potential use of synchrotron FTIR microspectroscopy to screen the mutagenicity of metal implants.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.