We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Fundamental knowledge about the processes that control the functioning of the biophysical workings of ecosystems has expanded exponentially since the late 1960s. Scientists, then, had only primitive knowledge about C, N, P, S, and H2O cycles; plant, animal, and soil microbial interactions and dynamics; and land, atmosphere, and water interactions. With the advent of systems ecology paradigm (SEP) and the explosion of technologies supporting field and laboratory research, scientists throughout the world were able to assemble the knowledge base known today as ecosystem science. This chapter describes, through the eyes of scientists associated with the Natural Resource Ecology Laboratory (NREL) at Colorado State University (CSU), the evolution of the SEP in discovering how biophysical systems at small scales (ecological sites, landscapes) function as systems. The NREL and CSU are epicenters of the development of ecosystem science. Later, that knowledge, including humans as components of ecosystems, has been applied to small regions, regions, and the globe. Many research results that have formed the foundation for ecosystem science and management of natural resources, terrestrial environments, and its waters are described in this chapter. Throughout are direct and implicit references to the vital collaborations with the global network of ecosystem scientists.
Spontaneous capillary flow of liquids in narrow spaces plays a key role in a plethora of applications including lab-on-a-chip devices, heat pipes, propellant management devices in spacecrafts and flexible printed electronics manufacturing. In this work we use a combination of theory and experiment to examine capillary-flow dynamics in open rectangular microchannels, which are often found in these applications. Scanning electron microscopy and profilometry are used to highlight the complexity of the free-surface morphology. We develop a self-similar lubrication-theory-based model accounting for this complexity and compare model predictions to those from the widely used modified Lucas–Washburn model, as well as experimental observations over a wide range of channel aspect ratios $\lambda$ and equilibrium contact angles $\theta _0$. We demonstrate that for large $\lambda$ the two model predictions are indistinguishable, whereas for smaller $\lambda$ the lubrication-theory-based model agrees better with experiments. The lubrication-theory-based model is also shown to have better agreement with experiments at smaller $\theta _0$, although as $\theta _0\rightarrow {\rm \pi}/4$ it fails to account for important axial curvature contributions to the free surface and the agreement worsens. Finally, we show that the lubrication-theory-based model also quantitatively predicts the dynamics of fingers that extend ahead of the meniscus. These findings elucidate the limitations of the modified Lucas–Washburn model and demonstrate the importance of accounting for the effects of complex free-surface morphology on capillary-flow dynamics in open rectangular microchannels.
Palmer amaranth is the latest pigweed species documented in Connecticut; it was identified there in 2019. In a single-dose experiment, the Connecticut Palmer amaranth biotype survived the field-use rates of glyphosate (840 g ae ha−1) and imazaquin (137 g ai ha−1) herbicides applied separately. Additional experiments were conducted to (1) determine the level of resistance to glyphosate and acetolactate synthase (ALS) inhibitors in the Connecticut-resistant (CT-Res) biotype using whole-plant dose-response bioassays, and (2) evaluate the response of the CT-Res biotype to POST herbicides commonly used in Connecticut cropping systems. Based on the effective dose required for 90% control (ED90), the CT-Res biotype was 10-fold resistant to glyphosate when compared with the Kansas-susceptible (KS-Sus) biotype. Furthermore, the CT-Res biotype was highly resistant to ALS-inhibitor herbicides; only 18% control was achieved with 2,196 g ai ha−1 imazaquin. The CT-Res biotype was also cross-resistant to other ALS-inhibitor herbicides, including chlorimuron-ethyl (13.1 g ai ha−1), halosulfuron-methyl (70 g ai ha−1), and sulfometuron-methyl (392 g ai ha−1). The CT-Res Palmer amaranth was controlled 75% to 100% at 21 d after treatment (DAT) with POST applications of 2,4-D (386 g ae ha−1), carfentrazone-ethyl (34 g ai ha−1), clopyralid (280 g ae ha−1), dicamba (280 g ae ha−1), glufosinate (595 g ai ha−1), lactofen (220 g ai ha−1), oxyfluorfen (1,121g ai ha−1), and mesotrione (105 g ai ha−1) herbicides. Atrazine (2,240 g ai ha−1) controlled the CT-Res biotype only 52%, suggesting the biotype is resistant to this herbicide as well. Here we report the first case of Palmer amaranth from Connecticut with multiple resistance to glyphosate and ALS inhibitors. Growers should proactively use all available weed control tactics, including the use of effective PRE and alternative POST herbicides (tested in this study), for effective control of the CT-Res biotype.
Glyphosate-resistant (GR) Palmer amaranth is a troublesome weed that can emerge throughout the soybean growing season in Nebraska and several other regions of the United States. Late-emerging Palmer amaranth plants can produce seeds, thus replenishing the soil seedbank. The objectives of this study were to evaluate single or sequential applications of labeled POST herbicides such as acifluorfen, dicamba, a fomesafen and fluthiacet-methyl premix, glyphosate, and lactofen on GR Palmer amaranth control, density, biomass, seed production, and seed viability, as well as grain yield of dicamba- and glyphosate-resistant (DGR) soybean. Field experiments were conducted in a grower’s field infested with GR Palmer amaranth near Carleton, NE, in 2018 and 2019, with no PRE herbicide applied. Acifluorfen, dicamba, a premix of fomesafen and fluthiacet-methyl, glyphosate, or lactofen were applied POST in single or sequential applications between the V4 and R6 soybean growth stages, with timings based on product labels. Dicamba applied at V4 or in sequential applications at V4 followed by R1 or R3 controlled GR Palmer amaranth 91% to 100% at soybean harvest, reduced Palmer amaranth density to as low as 2 or fewer plants m−2, reduced seed production to 557 to 2,911 seeds per female plant, and resulted in the highest soybean yield during both years of the study. Sequential applications of acifluorfen, fomesafen and fluthiacet premix, or lactofen were not as effective as dicamba for GR Palmer amaranth control; however, they reduced seed production similar to dicamba. On the basis of the results of this study, we conclude that dicamba was effective for controlling GR Palmer amaranth and reduced density, biomass, and seed production without DGR soybean injury. Herbicides evaluated in this study had no effect on Palmer amaranth seed viability.
This study investigated the impact of the Webinar on deep human learning of CHD.
Materials and methods:
This cross-sectional survey design study used an open and closed-ended questionnaire to assess the impact of the Webinar on deep learning of topical areas within the management of the post-operative tetralogy of Fallot patients. This was a quantitative research methodology using descriptive statistical analyses with a sequential explanatory design.
Results:
One thousand-three-hundred and seventy-four participants from 100 countries on 6 continents joined the Webinar, 557 (40%) of whom completed the questionnaire. Over 70% of participants reported that they “agreed” or “strongly agreed” that the Webinar format promoted deep learning for each of the topics compared to other standard learning methods (textbook and journal learning). Two-thirds expressed a preference for attending a Webinar rather than an international conference. Over 80% of participants highlighted significant barriers to attending conferences including cost (79%), distance to travel (49%), time commitment (51%), and family commitments (35%). Strengths of the Webinar included expertise, concise high-quality presentations often discussing contentious issues, and the platform quality. The main weakness was a limited time for questions. Just over 53% expressed a concern for the carbon footprint involved in attending conferences and preferred to attend a Webinar.
Conclusion:
E-learning Webinars represent a disruptive innovation, which promotes deep learning, greater multidisciplinary participation, and greater attendee satisfaction with fewer barriers to participation. Although Webinars will never fully replace conferences, a hybrid approach may reduce the need for conferencing, reduce carbon footprint. and promote a “sustainable academia”.
Pilot randomized double-blind-controlled trial of repetitive paired associative stimulation (rPAS), a paradigm that combines transcranial magnetic stimulation (TMS) of the dorsolateral prefrontal cortex (DLPFC) with peripheral median nerve stimulation.
Objectives:
To study the impact of rPAS on DLPFC plasticity and working memory performance in Alzheimer’s disease (AD).
Methods:
Thirty-two patients with AD (females = 16), mean (SD) age = 76.4 (6.3) years were randomized 1:1 to receive a 2-week (5 days/week) course of active or control rPAS. DLPFC plasticity was assessed using single session PAS combined with electroencephalography (EEG) at baseline and on days 1, 7, and 14 post-rPAS. Working memory and theta–gamma coupling were assessed at the same time points using the N-back task and EEG.
Results:
There were no significant differences between the active and control rPAS groups on DLPFC plasticity or working memory performance after the rPAS intervention. There were significant main effects of time on DLPFC plasticity, working memory, and theta–gamma coupling, only for the active rPAS group. Further, on post hoc within-group analyses done to generate hypotheses for future research, as compared to baseline, only the rPAS group improved on post-rPAS day 1 on all three indices. Finally, there was a positive correlation between working memory performance and theta–gamma coupling.
Conclusions:
This study did not show a beneficial effect of rPAS for DLPFC plasticity or working memory in AD. However, post hoc analyses showed promising results favoring rPAS and supporting further research on this topic. (Clinicaltrials.gov-NCT01847586)
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
To evaluate the occurrence, clinical course and outcomes of olfactory and gustatory dysfunction in patients with laboratory confirmed coronavirus disease 2019 infection.
Methods
This is a prospective cross-sectional study of patients diagnosed with coronavirus disease 2019 infection by reverse transcription polymerase chain reaction over two months. The epidemiological and clinical outcomes studied were: age, sex, general symptoms, and olfactory and taste dysfunction.
Results
A total of 410 coronavirus disease 2019 infected patients were included in the study, with 262 males (63.9 per cent) and 148 females (36.1 per cent). Ninety-nine patients (24.1 per cent) reported chemosensory dysfunction, of which 85 patients (20.7 per cent) reported both olfactory and taste dysfunction. Olfactory and taste dysfunction were proportionally more common in females. The mean duration of olfactory and taste dysfunction was 4.9 days, with a range of 2–15 days.
Conclusion
Olfactory and taste dysfunction are prevalent symptoms in coronavirus disease 2019 patients. In this study, they were more common in females than males. The occurrence of such dysfunctions is lower in the Indian population than in the European population.
Cardiac tumours are relatively uncommon, particularly in children. Myofibroma is an extremely rare variety of cardiac tumour, which nearly always arises in the context of infantile myofibromatosis. Herein, we present a case of a solitary cardiac myofibroma causing right ventricular outflow tract obstruction in a 2-month-old male infant.
Deaths due to opioid overdose have reached unprecedented levels in Canada; over 12,800 opioid-related deaths occurred between January 2016 and March 2019, and overdose death rates increased by approximately 50% from 2016 to 2018.1 In 2016, Health Canada declared the opioid epidemic a national public health crisis,2 and life expectancy increases have halted in Canada for the first time in decades.3 Children are not exempt from this crisis, and the Chief Public Health Officer of Canada has recently prioritized the prevention of problematic substance use among Canadian youth.4
This work investigated the photophysical pathways for light absorption, charge generation, and charge separation in donor–acceptor nanoparticle blends of poly(3-hexylthiophene) and indene-C60-bisadduct. Optical modeling combined with steady-state and time-resolved optoelectronic characterization revealed that the nanoparticle blends experience a photocurrent limited to 60% of a bulk solution mixture. This discrepancy resulted from imperfect free charge generation inside the nanoparticles. High-resolution transmission electron microscopy and chemically resolved X-ray mapping showed that enhanced miscibility of materials did improve the donor–acceptor blending at the center of the nanoparticles; however, a residual shell of almost pure donor still restricted energy generation from these nanoparticles.
To determine the radiological prevalence of frontal cells according to the International Frontal Sinus Anatomy Classification in patients undergoing computed tomography of the paranasal sinuses for clinical symptoms of chronic rhinosinusitis, and to examine the association between cell classification and frontal sinusitis development.
Methods
A total of 180 (left and right) sides of 90 patients were analysed. The prevalence of each International Frontal Sinus Anatomy Classification cell was assessed. Logistic regression analysis was used to compare the distribution of various cells in patients with and without frontal sinusitis.
Results
The agger nasi cell was the most commonly occurring cell, seen in 95.5 per cent of patients. The prevalence rates for supra agger cells, supra agger frontal cells, supra bullar frontal cells, supra bullar cells, supra-orbital ethmoid cells and frontal septal cells were 33.3 per cent, 22.2 per cent, 21.1 per cent, 36.1 per cent, 39.4 per cent and 21.1 per cent, respectively. There was no significant difference in the occurrence of any of the cell types in patients with frontal sinusitis compared to those without (p > 0.05).
Conclusion
The presence of any of the International Frontal Sinus Anatomy Classification cells was not significantly associated with frontal sinusitis.
The catastrophic declines of three species of ‘Critically Endangered’ Gyps vultures in South Asia were caused by unintentional poisoning by the non-steroidal anti-inflammatory drug (NSAID) diclofenac. Despite a ban on its veterinary use in 2006 (India, Nepal, Pakistan) and 2010 (Bangladesh), residues of diclofenac have continued to be found in cattle carcasses and in dead wild vultures. Another NSAID, meloxicam, has been shown to be safe to vultures. From 2012 to 2018, we undertook covert surveys of pharmacies in India, Nepal and Bangladesh to investigate the availability and prevalence of NSAIDs for the treatment of livestock. The purpose of the study was to establish whether diclofenac continued to be sold for veterinary use, whether the availability of meloxicam had increased and to determine which other veterinary NSAIDs were available. The availability of diclofenac declined in all three countries, virtually disappearing from pharmacies in Nepal and Bangladesh, highlighting the advances made in these two countries to reduce this threat to vultures. In India, diclofenac still accounted for 10–46% of all NSAIDs offered for sale for livestock treatment in 2017, suggesting weak enforcement of existing regulations and a continued high risk to vultures. Availability of meloxicam increased in all countries and was the most common veterinary NSAID in Nepal (89.9% in 2017). Although the most widely available NSAID in India in 2017, meloxicam accounted for only 32% of products offered for sale. In Bangladesh, meloxicam was less commonly available than the vulture-toxic NSAID ketoprofen (28% and 66%, respectively, in 2018), despite the partial government ban on ketoprofen in 2016. Eleven different NSAIDs were recorded, several of which are known or suspected to be toxic to vultures. Conservation priorities should include awareness raising, stricter implementation of current bans, bans on other vulture-toxic veterinary NSAIDs, especially aceclofenac and nimesulide, and safety-testing of other NSAIDs on Gyps vultures to identify safe and toxic drugs.
Synthetic cationic polymer-mediated synthesis of silver nanoparticles and selective antimicrobial activity of the same were demonstrated. Polyethyleneimine (PEI)-coated silver nanoparticles showed antimicrobial activity against Acinetobacter baumannii as a function of the polymeric molecular weight (MW) of PEI. Silver nanoparticles were coated with PEI of three different MWs: Ag-NP-1 with PEI exhibiting a MW of 750,000, Ag-NP-2 with PEI exhibiting a MW of 1300, and Ag-NP-3 with PEI exhibiting a MW of 60,000. These nanoparticles showed a particle size distribution of 4–20 nm. The nanoparticles exhibited potent antimicrobial activity against A. baumannii, with the minimum inhibitory concentration of Ag-NP-1, Ag-NP-2, and Ag-NP-3 on the order of 5, 10, and 5 μg/mL, respectively, and minimum bactericidal concentration of Ag-NP-1, Ag-NP-2, and Ag-NP-3 on the order of 10, 20, and 10 μg/mL, respectively. Fluorescence imaging of Ag-NPs revealed selective transfusion of Ag-NPs across the cell membrane as a function of the polymeric MW; differential interaction of the cytoplasmic proteins during antimicrobial activity was observed.
To depict various temporal bone abnormalities on high-resolution computed tomography in congenital aural atresia patients, and correlate these findings with auditory function test results and microtia subgroup.
Methods
Forty patients (56 ears) with congenital malformation of the auricle and/or external auditory canal were evaluated. Auricles were graded according to Marx's classification, divided into subgroups of minor (grades I and II) and major (III and IV) microtia. Other associated anomalies of the external auditory canal, tympanic cavity, ossicular status, oval and round windows, facial nerve, and inner ear were evaluated.
Results
Minor and major microtia were observed in 53.6 and 46.4 per cent of ears respectively. Mean hearing levels were 62.47 and 62.37 dB respectively (p = 0.98). The malleus was the most commonly dysplastic ossicle (73.3 vs 80.8 per cent of ears respectively, p = 0.53). Facial nerve (mastoid segment) abnormalities were associated (p = 0.04) with microtia subgroup (80 vs 100 per cent in minor vs major subgroups).
Conclusion
Microtia grade was not significantly associated with mean hearing levels or other ear malformations, except for external auditory canal and facial nerve (mastoid segment) anomalies. High-resolution computed tomography is essential in congenital aural atresia, before management strategy is decided.
To assess the coverage of the adolescent weekly iron and folic acid supplementation (WIFS) programme in rural West Bengal, India.
Design:
We conducted a population-based cross-sectional survey of intended WIFS programme beneficiaries (in-school adolescent girls and boys and out-of-school adolescent girls).
Setting:
Birbhum Health and Demographic Surveillance System.
Participants:
A total of 4448 adolescents 10–19 years of age participated in the study.
Results:
The percentage of adolescents who reported taking four WIFS tablets during the last month as intended by the national programme was 9·4 % among in-school girls, 7·1 % for in-school boys and 2·3 % for out-of-school girls. The low effective coverage was due to the combination of large deficits in WIFS provision and poor adherence. A large proportion of adolescents reported they were not provided any WIFS tablets in the last month: 61·7 % of in-school girls, 73·3 % of in-school boys and 97·1 % of out-of-school girls. In terms of adherence, only 41·6 % of in-school girls, 38·1 % of in-school boys and 47·4 % of out-of-school girls reported that they consumed all WIFS tablets they received. Counselling from teachers, administrators and school staff was the primary reason adolescents reported taking WIFS tablets, whereas the major reasons for non-adherence were lack of perceived benefit, peer suggestion not to take WIFS and a reported history of side effects.
Conclusions:
The effective coverage of the WIFS programme for in-school adolescents and out-of-school adolescent girls is low in rural Birbhum. Integrated supply- and demand-side strategies appear to be necessary to increase the effective coverage and potential benefits of the WIFS programme.
OBJECTIVES/GOALS: The history of immune suppression, especially CD4 nadir, has been shown to be a strong predictor of HIV-associated neurocognitive disorders (HAND). However, the potential mechanism of this association is not well understood. This study examined the relationship between CD4 nadir and brain atrophy. METHODS/STUDY POPULATION: Fifty-nine people with HIV participated in the cross-sectional study (mean age, 56.5 ± 5.8; age range, 41-69; 15 females; 46 African-Americans). High resolution structural MRI images were obtained using a 3T Siemens scanner. From a comprehensive 7-domain neuropsychological test battery, a global deficit score (GDS) and HAND diagnoses were determined for each participant. The correlation between CD4 nadir (the lowest ever lymphocyte CD4 count) and cortical thickness was investigated using a vertex-wise non-parametric approach with a conservative statistical threshold of p < 0.05 (FWE-corrected). RESULTS/ANTICIPATED RESULTS: Out of the 59 participants, 12 met standard Frascati criteria for asymptomatic neurocognitive impairment (ANI) and two met the criteria for mild neurocognitive disorder (MND). Across all participants, low CD4 nadir was associated with widespread cortical thinning, especially in the frontal and temporal regions. Higher GDS (indicating worse global neurocognitive function) was associated with bilateral frontal cortical thinning, and the association largely persisted in the subset of participants who did not meet HAND criteria. DISCUSSION/SIGNIFICANCE OF IMPACT: These results suggest that the low CD4 nadir may be associated with widespread neural injury in the brain, especially in the frontal and temporal regions. This spatial profile might contribute to the prevalence/phenotypes of HAND in the cART era, such as the frequently observed deficits in the executive domain.
OBJECTIVES/GOALS: Although their 5-year survival >90%, young patients with HL face tradeoffs between near-term disease control and risk of treatment-related adverse effects decades later, so we seek to understand what patients and clinicians value in HL treatment decisions. METHODS/STUDY POPULATION: Leveraging our access to large cohorts of physicians, HL patients/survivors, and caregivers, we will use adaptive choice-based conjoint analysis (ACBC) to elicit treatment preferences when offered scenarios that incorporate tradeoffs, e.g., would a patient rather live 20 years with 10% risk of second malignancy or live 40 years with 30% of second malignancy. To reduce survey fatigue, prior choice responses limit subsequent scenarios. Through ACBC, we will identify variations in preferences and the importance of disease outcomes, treatment characteristics, and late effects for HL by respondent type. RESULTS/ANTICIPATED RESULTS: The goal is a final sample of 200 physicians and 200 patients/caregivers. We will collect demographics from physicians (age, type of physician, years practicing, type of practice, gender, and geography) and patients/caregivers (age at diagnosis, time since treatment, race, gender, smoker, education). We will ask questions about values of disease outcomes, late effects (second cancers, cardiac disease, chronic fatigue and neuropathy), and treatment characteristics (uncertainty of late effects, salvageability). Results will include utilities about participants views on disease-control and late effects. We anticipate participants to value disease control over late effects. DISCUSSION/SIGNIFICANCE OF IMPACT: Our study will elicit how physicians and patients/caregivers value treatment tradeoffs for HL. In an era of multiple treatment choices with varying short- and long-term benefits and harms, identifying values and preferences become critical for patient-centered treatment decisions.
The widespread evolution of herbicide resistance in weed populations has become an increasing concern for no-tillage (NT) growers in semiarid regions of the U.S. Great Plains. Lack of cost-effective and alternative new herbicide sites of action further exacerbates the problem of herbicide-resistant (HR) weeds and threatens the long-term sustainability of prevailing cropping systems in the region. A recent decline in commodity prices and increasing herbicide costs to manage HR weeds has spurred research efforts to build a strong rationale for developing ecologically based integrated weed management (IWM) strategies in the U.S. Great Plains. Integration of cover crops (CCs) in NT dryland production systems potentially offers several ecosystem services, including weed control, soil health improvement, decline in selective pest pressure, and overall reduction in pest management inputs. This review article aims to document the role of CCs for IWM, with emphasis on exploring emerging weed issues; ecological, economic, and agronomic benefits of growing CCs; and constraints preventing adoption of CCs in NT cropping systems in the semiarid Great Plains. We attempt to focus on changes in weed management practices, their long-term impacts on weed seedbanks, weed shifts, and herbicide-resistance evolution in the most common weed species in the region. We also highlight current knowledge gaps and propose new research priorities based on an improved understanding of CC management strategies that will ultimately aid in achieving sustainable weed management goals and preserving natural resources in water-limited environments.
Online learning has become an increasingly expected and popular component for education of the modern-day adult learner, including the medical provider. In light of the recent coronavirus pandemic, there has never been more urgency to establish opportunities for supplemental online learning. Heart University aims to be “the go-to online resource” for e-learning in CHD and paediatric-acquired heart disease. It is a carefully curated open access library of paedagogical material for all providers of care to children and adults with CHD or children with acquired heart disease, whether a trainee or a practising provider. In this manuscript, we review the aims, development, current offerings and standing, and future goals of Heart University.