We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Observational studies have found associations between smoking and both poorer cognitive ability and lower educational attainment; however, evaluating causality is challenging. We used two complementary methods to explore this.
Methods
We conducted observational analyses of up to 12 004 participants in a cohort study (Study One) and Mendelian randomisation (MR) analyses using summary and cohort data (Study Two). Outcome measures were cognitive ability at age 15 and educational attainment at age 16 (Study One), and educational attainment and fluid intelligence (Study Two).
Results
Study One: heaviness of smoking at age 15 was associated with lower cognitive ability at age 15 and lower educational attainment at age 16. Adjustment for potential confounders partially attenuated findings (e.g. fully adjusted cognitive ability β −0.736, 95% CI −1.238 to −0.233, p = 0.004; fully adjusted educational attainment β −1.254, 95% CI −1.597 to −0.911, p < 0.001). Study Two: MR indicated that both smoking initiation and lifetime smoking predict lower educational attainment (e.g. smoking initiation to educational attainment inverse-variance weighted MR β −0.197, 95% CI −0.223 to −0.171, p = 1.78 × 10−49). Educational attainment results were robust to sensitivity analyses, while analyses of general cognitive ability were less so.
Conclusion
We find some evidence of a causal effect of smoking on lower educational attainment, but not cognitive ability. Triangulation of evidence across observational and MR methods is a strength, but the genetic variants associated with smoking initiation may be pleiotropic, suggesting caution in interpreting these results. The nature of this pleiotropy warrants further study.
Despite the early promise of behavioral genetic research, efforts to disentangle the genetic contribution to individual differences in behavior (e.g., personality traits) have been slow. Early studies relied on a candidate gene approach to identify genes influencing these traits; however, many of these failed to replicate, despite having a plausible biological mechanism. More recent studies have used whole genome approaches to investigate the genetic architecture of behavioral traits. However, unlike many other complex traits such as height (Marouli et al., 2017; Wood et al., 2014) and schizophrenia (Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014), relatively few genetic variants have been identified which are robustly associated with temperament and individual differences in personality.
There is a wealth of literature on the observed association between childhood trauma and psychotic illness. However, the relationship between childhood trauma and psychosis is complex and could be explained, in part, by gene–environment correlation.
Methods
The association between schizophrenia polygenic scores (PGS) and experiencing childhood trauma was investigated using data from the Avon Longitudinal Study of Parents and Children (ALSPAC) and the Norwegian Mother, Father and Child Cohort Study (MoBa). Schizophrenia PGS were derived in each cohort for children, mothers, and fathers where genetic data were available. Measures of trauma exposure were derived based on data collected throughout childhood and adolescence (0–17 years; ALSPAC) and at age 8 years (MoBa).
Results
Within ALSPAC, we found a positive association between schizophrenia PGS and exposure to trauma across childhood and adolescence; effect sizes were consistent for both child or maternal PGS. We found evidence of an association between the schizophrenia PGS and the majority of trauma subtypes investigated, with the exception of bullying. These results were comparable with those of MoBa. Within ALSPAC, genetic liability to a range of additional psychiatric traits was also associated with a greater trauma exposure.
Conclusions
Results from two international birth cohorts indicate that genetic liability for a range of psychiatric traits is associated with experiencing childhood trauma. Genome-wide association study of psychiatric phenotypes may also reflect risk factors for these phenotypes. Our findings also suggest that youth at higher genetic risk might require greater resources/support to ensure they grow-up in a healthy environment.
Smoking prevalence is higher amongst individuals with schizophrenia and depression compared with the general population. Mendelian randomisation (MR) can examine whether this association is causal using genetic variants identified in genome-wide association studies (GWAS).
Methods
We conducted two-sample MR to explore the bi-directional effects of smoking on schizophrenia and depression. For smoking behaviour, we used (1) smoking initiation GWAS from the GSCAN consortium and (2) we conducted our own GWAS of lifetime smoking behaviour (which captures smoking duration, heaviness and cessation) in a sample of 462690 individuals from the UK Biobank. We validated this instrument using positive control outcomes (e.g. lung cancer). For schizophrenia and depression we used GWAS from the PGC consortium.
Results
There was strong evidence to suggest smoking is a risk factor for both schizophrenia (odds ratio (OR) 2.27, 95% confidence interval (CI) 1.67–3.08, p < 0.001) and depression (OR 1.99, 95% CI 1.71–2.32, p < 0.001). Results were consistent across both lifetime smoking and smoking initiation. We found some evidence that genetic liability to depression increases smoking (β = 0.091, 95% CI 0.027–0.155, p = 0.005) but evidence was mixed for schizophrenia (β = 0.022, 95% CI 0.005–0.038, p = 0.009) with very weak evidence for an effect on smoking initiation.
Conclusions
These findings suggest that the association between smoking, schizophrenia and depression is due, at least in part, to a causal effect of smoking, providing further evidence for the detrimental consequences of smoking on mental health.
There is increasing evidence that smoking is a risk factor for severe mental illness, including bipolar disorder. Conversely, patients with bipolar disorder might smoke more (often) as a result of the psychiatric disorder.
Aims
We conducted a bidirectional Mendelian randomisation (MR) study to investigate the direction and evidence for a causal nature of the relationship between smoking and bipolar disorder.
Method
We used publicly available summary statistics from genome-wide association studies on bipolar disorder, smoking initiation, smoking heaviness, smoking cessation and lifetime smoking (i.e. a compound measure of heaviness, duration and cessation). We applied analytical methods with different, orthogonal assumptions to triangulate results, including inverse-variance weighted (IVW), MR-Egger, MR-Egger SIMEX, weighted-median, weighted-mode and Steiger-filtered analyses.
Results
Across different methods of MR, consistent evidence was found for a positive effect of smoking on the odds of bipolar disorder (smoking initiation ORIVW = 1.46, 95% CI 1.28–1.66, P = 1.44 × 10−8, lifetime smoking ORIVW = 1.72, 95% CI 1.29–2.28, P = 1.8 × 10−4). The MR analyses of the effect of liability to bipolar disorder on smoking provided no clear evidence of a strong causal effect (smoking heaviness betaIVW = 0.028, 95% CI 0.003–0.053, P = 2.9 × 10−2).
Conclusions
These findings suggest that smoking initiation and lifetime smoking are likely to be a causal risk factor for developing bipolar disorder. We found some evidence that liability to bipolar disorder increased smoking heaviness. Given that smoking is a modifiable risk factor, these findings further support investment into smoking prevention and treatment in order to reduce mental health problems in future generations.
Despite the well-documented association between smoking and personality traits such as neuroticism and extraversion, little is known about the potential causal nature of these findings. If it were possible to unpick the association between personality and smoking, it may be possible to develop tailored smoking interventions that could lead to both improved uptake and efficacy.
Methods
Recent genome-wide association studies (GWAS) have identified variants robustly associated with both smoking phenotypes and personality traits. Here we use publicly available GWAS summary statistics in addition to individual-level data from UK Biobank to investigate the link between smoking and personality. We first estimate genetic overlap between traits using LD score regression and then use bidirectional Mendelian randomisation methods to unpick the nature of this relationship.
Results
We found clear evidence of a modest genetic correlation between smoking behaviours and both neuroticism and extraversion. We found some evidence that personality traits are causally linked to certain smoking phenotypes: among current smokers each additional neuroticism risk allele was associated with smoking an additional 0.07 cigarettes per day (95% CI 0.02–0.12, p = 0.009), and each additional extraversion effect allele was associated with an elevated odds of smoking initiation (OR 1.015, 95% CI 1.01–1.02, p = 9.6 × 10−7).
Conclusion
We found some evidence for specific causal pathways from personality to smoking phenotypes, and weaker evidence of an association from smoking initiation to personality. These findings could be used to inform future smoking interventions or to tailor existing schemes.