MgO thin films are widely used in plasma display panels (PDPs) to protect the dielectric layer, which is composed of PbO2, B2O3, and SiO2 compound, against ion bombardment during discharge. To improve the electrical properties of the MgO thin films, (Ba,Sr,Ca)CO3 or LaB6, which has a lower work function than that of MgO, added to the MgO films. The effects of (Ba,Sr,Ca)CO3 or LaB6 addition on the electrical properties, microstructure, and electronic band structure were investigated. In the case where (Ba,Sr,Ca)CO3 was added, the firing voltage, which is the voltage when the panel is ignited the first time during increasing input voltage, was about 18.4 V lower than that of the conventional MgO films. In the case where LaB6 was added, the firing voltage was also reduced by about 24 V. The luminance and luminous efficiency were also increased. Of particular interest was the valence band spectra changed after adding (Ba,Sr,Ca)CO3 or LaB6. The valence band edge, which is the top of the valence band, was shifted to lower binding states and the width of the valence band was increased. Moreover, the band gap was slightly reduced. Considering the emission mechanism of MgO films in plasma display panels, these results mean that the secondary electrons can be ejected more easily and the ejected electrons have more energy. Therefore, the addition of (Ba,Sr,Ca)CO3 or LaB6 might improve the electrical properties.