Skip to main content Accessibility help

Structural, optical, and electronic properties of room temperature ferromagnetic GaCuN film grown by hybrid physical-chemical vapor deposition

  • Chul Hwan Choi (a1), Seon Hyo Kim (a1), Hyo Jin Lee, Yoon Hee Jeong (a2) and Myung Hwa Jung (a3)...


Ferromagnetic Cu-doped GaN film was grown on a GaN-buffered sapphire (0001) substrate by a hybrid physical-chemical-vapor-deposition method (HPCVD). The GaCuN film (Cu: 3.6 at.%) has a highly c-axis-oriented hexagonal wurtzite crystal structure, which is similar to GaN buffer but without any secondary phases such as metallic Cu, CuxNy, and CuxGay compounds. Two weak near-band edge (NBE) emissions at 3.38 eV and donor-acceptor-pair (DAP) transition at 3.2 eV with a typical strong broad yellow emission were observed in photoluminescence spectra for GaN buffer. In contrast, the yellow emission was completely quenched in GaCuN film because Ga vacancies causing the observed yellow emission in undoped GaN were substituted by Cu atoms. In addition, GaCuN film exhibits a blue shift of NBE emission, which could be explained with the +2 oxidation state of Cu ions, replacing +3 Ga ions resulting in band gap increment. The valance sate of Cu in GaCuN film was also confirmed by x-ray photoelectron spectroscopy (XPS) analysis. The GaCuN film shows ferromagnetic ordering and possesses a residual magnetization of 0.12 emu/cm3 and a coercive field of 264 Oe at room temperature. The unpaired spins in Cu2+ ions (d9) are most likely to be responsible for the observed ferromagnetism in GaCuN.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1.Das Sarma, S.: Ferromagnetic semiconductors: A giant appears in spintronics. Nat. Mater. 2, 292 (2003).
2.Pearton, S.J., Abernathy, C.R., Norton, D.P., Hebard, A.F., Park, Y.D., Boatner, L.A., and Budai, J.D.: Advances in wide bandgap materials for semiconductor spintronics. Mater. Sci. Eng., R 40, 137 (2003).
3.Pearton, S.J., Norton, D.P., Frazier, R., Han, S.Y., Abernathy, C.R., and Zavada, J.M.: Spintronics device concepts. IEE Proc: Circuits Syst. Mag. 152, 312 (2005).
4.Yagami, K., Tulapurkar, A.A., Fukushima, A., and Suzuki, Y.: Low-current spin-transfer switching and its thermal durability in a low-saturation-magnetization nanomagnet. Appl. Phys. Lett. 85, 5634 (2004).
5.Zhang, S., Levy, P.M., and Fert, A.: Mechanisms of spin-polarized current-driven magnetization switching. Phys. Rev. Lett. 88, 236601 (2002).
6.Ku, K.C., Potashnik, S.J., Wang, R.F., Chun, S.H., Schiffer, P., Samarth, N., Seong, M.J., Mascarenhas, A., Johnston-Halperin, E., Myers, R.C., Gossard, A.C., and Awschalom, D.D.: Highly enhanced Curie temperature in low-temperature annealed [Ga,Mn] As epilayers. Appl. Phys. Lett. 82, 2302 (2003).
7.Sato, K. and Katayama-Yoshida, H.: Material design of GaN-based ferromagnetic diluted magnetic semiconductors. Jpn. J. Appl. Phys. 40, L485 (2001).
8.Asahi, H., Zhou, Y.K., Hashimoto, M., Kim, M.S., Li, X.J., Emura, S., and Hasegawa, S.: GaN-based magnetic semiconductors for nanospintronics., J. Phys. Condens. Matter 16, S5555 (2004).
9.Biswas, K., Sardar, K., and Rao, C.N.R.: Ferromagnetism in Mn-doped GaN nanocrystals prepared solvothermally at low temperatures. Appl. Phys. Lett. 89, 132503 (2006).
10.Shon, Y., Lee, S., Jeon, H.C., Park, Y.S., Kim, D.Y., Kang, T.W., Kim, J.S., Kim, E.K., Fu, D.J., Fan, X.J., Park, Y.J., Baik, J.M., and Lee, J.L.: Origin of clear ferromagnetism for p-type GaN implanted with Fe[sup +] (5 and 10 at.%). Appl. Phys. Lett. 89, 082505 (2006).
11.Cui, X.Y., Medvedeva, J.E., Delley, B., Freeman, A.J., Newman, N., and Stampfl, C.: Role of embedded clustering in dilute magnetic semiconductors: Cr doped GaN. Phys. Rev. Lett. 95, 256404 (2005).
12.Dhar, S., Brandt, O., Trampert, A., Daweritz, L., Friedland, K.J., Ploog, K.H., Keller, J., Beschoten, B., and Guntherodt, G.: Origin of high-temperature ferromagnetism in (Ga,Mn)N layers grown on 4H–SiC(0001) by reactive molecular-beam epitaxy. Appl. Phys. Lett. 82, 2077 (2003).
13.Przybylinska, H., Bonanni, A., Wolos, A., Kiecana, M., Sawicki, M., Dietl, T., Malissa, H., Simbrunner, C., Wegscheider, M., and Sitter, H.: Magnetic properties of a new spintronic material–GaNFe. Mater. Sci. Eng., B 126, 222 (2006).
14.Lee, J-H., Choi, I-H., Shin, S., Lee, S., Lee, J., Whang, C., Lee, S-C., Lee, K-R., Baek, J-H., Chae, K.H., and Song, J.: Room-temperature ferromagnetism of Cu-implanted GaN. Appl. Phys. Lett. 90, 032504 (2007).
15.Wu, R.Q., Peng, G.W., Liu, L., Feng, Y.P., Huang, Z.G., and Wu, Q.Y.: Cu-doped GaN: A dilute magnetic semiconductor from first-principles study. Appl. Phys. Lett. 89, 062505 (2006).
16.Seong, H.K., Kim, J.Y., Kim, J.J., Lee, S.C., Kim, S.R., Kim, U., Park, T.E., and Choi, H.J.: Room-temperature ferromagnetism in Cu doped GaN nanowires. Nano Lett. 7, 3366 (2007).
17.Zeng, X., Pogrebnyakov, A.V., Kotcharov, A., Jones, J.E., Xi, X.X., Lysczek, E.M., Redwing, J.M., Xu, S., Li, Q., Lettieri, J., Schlom, D.G., Tian, W., Pan, X., and Liu, Z-K.: In situ epitaxial MgB2 thin films for superconducting electronics. Nat. Mater. 1, 35 (2002).
18.Chakraborti, D., Narayan, J., and Prater, J.T.: Room temperature ferromagnetism in Zn1-xCu xO thin films. Appl. Phys. Lett. 90, 062504 (2007).
19.Hou, D.L., Ye, X.J., Meng, H.J., Zhou, H.J., Li, X.L., Zhen, C.M., and Tang, G.D.: Magnetic properties of n-type Cu-doped ZnO thin films. Appl. Phys. Lett. 90, 142502 (2007).
20.Puchert, M.K., Hartmann, A., Lamb, R.N., and Martin, J.W.: Highly resistive sputtered ZnO films implanted with copper. J. Mater. Res. 11, 2463 (1996).
21.Wagner, C.D., Naumkin, A.V., Kraut-Vass, A., Allison, J.W., Powell, C.J., and Rumble, J.R. Jr: X-ray Photoelectron Spectroscopy Database (Version 3.5) [National Institute of Standard and Technology (NIST) Online Databases, August 27, 2007].
22.Moulder, J.F., Stickle, W.F., Sobol, P.E., and Bomben, K.D.: Handbook of X-ray Photoelectron Spectroscopy, ed. Chastain, J. (Physical Electronics Inc., 1992).
23.Cho, C-R., Hwang, J-Y., Kim, J-P., Jeong, S-Y., Jang, M-S., Lee, W-J., and Kim, D-H.: Ferromagnetism of heteroepitaxial Zn1-xCuxO films grown on n-GaN substrates. Jpn. J. Appl. Phys. 43, L1383 (2004).
24.Fleischer, K., Toth, M., Phillips, M.R., Zou, J., Li, G., and Chua, S.J.: Depth profiling of GaN by cathodoluminescence microanalysis. Appl. Phys. Lett. 74, 1114 (1999).
25.Gelhausen, O., Malguth, E., Phillips, M.R., Goldys, E.M., Strassburg, M., Hoffmann, A., Graf, T., Gjukic, M., and Stutzmann, M.: Doping-level-dependent optical properties of GaNMn. Appl. Phys. Lett. 84, 4514 (2004).
26.Clerjaud, B., Naud, C., Deveaud, B., Lambert, B., Plot, B., Bremond, G., Benjeddou, C., Guillot, G., and Nouailhat, A.: The acceptor level of vanadium in III–V compounds. J. Appl. Phys. 58, 4207 (1985).
27.Amano, H., Hiramatsu, K., and Akasaki, I.: Heteroepitaxial growth and the effect of strain on the luminescent properties of GaN films on (11–20) and (0001) sapphire substrates. Jpn. J. Appl. Phys., Part 2 2, L1384 (1988).
28.Herng, T.S., Lau, S.P., Yu, S.F., Yang, H.Y., Wang, L., Tanemura, M., and Chen, J.S.: Magnetic anisotropy in the ferromagnetic Cu-doped ZnO nanoneedles. Appl. Phys. Lett. 90, 032509 (2007).
29.Herbich, M., Twardowski, A., Scalbert, D., and Petrou, A.: Bound magnetic polaron in Cr-based diluted magnetic semiconductors. Phys. Rev. B: Condens. Matter 58, 7024 (1998).
30.Kaminski, A. and Das Sarma, S.: Polaron percolation in diluted magnetic semiconductors. Phys. Rev. Lett. 88, 247202 (2002).


Structural, optical, and electronic properties of room temperature ferromagnetic GaCuN film grown by hybrid physical-chemical vapor deposition

  • Chul Hwan Choi (a1), Seon Hyo Kim (a1), Hyo Jin Lee, Yoon Hee Jeong (a2) and Myung Hwa Jung (a3)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed