We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Birth weight influences not only brain development, but also mental health outcomes, including depression, but the underlying mechanism is unclear.
Methods.
The phenotypic data of 12,872–91,009 participants (59.18–63.38% women) from UK Biobank were included to test the associations between the birth weight, depression, and brain volumes through the linear and logistic regression models. As birth weight is highly heritable, the polygenic risk scores (PRSs) of birth weight were calculated from the UK Biobank cohort (154,539 participants, 56.90% women) to estimate the effect of birth weight-related genetic variation on the development of depression and brain volumes. Finally, the mediation analyses of step approach and mediation analysis were used to estimate the role of brain volumes in the association between birth weight and depression. All analyses were conducted sex stratified to assess sex-specific role in the associations.
Result.
We observed associations between birth weight and depression (odds ratio [OR] = 0.968, 95% confidence interval [CI] = 0.957–0.979, p = 2.29 × 10−6). Positive associations were observed between birth weight and brain volumes, such as gray matter (B = 0.131, p = 3.51 × 10−74) and white matter (B = 0.129, p = 1.67 × 10−74). Depression was also associated with brain volume, such as left thalamus (OR = 0.891, 95% CI = 0.850–0.933, p = 4.46 × 10−5) and right thalamus (OR = 0.884, 95% CI = 0.841–0.928, p = 2.67 × 10−5). Additionally, significant mediation effects of brain volume were found for the associations between birth weight and depression through steps approach and mediation analysis, such as gray matter (B = –0.220, p = 0.020) and right thalamus (B = –0.207, p = 0.014).
Conclusions.
Our results showed the associations among birth weight, depression, and brain volumes, and the mediation effect of brain volumes also provide evidence for the sex-specific of associations.
There has been considerable interest in stratospheric airships as a cost-effective alternative to earth orbit satellites for sightseeing, aerial photography, communication and carrying weapons, etc. Many countries have plans to develop the airship owing to its greatly expected usage. The suspended curtain plays a vital role in force transmission in stratospheric airships but lacks attention. In this paper, the relationship between the optimal shape of suspended curtain and load conditions was studied through CAE Abaqus and Isight. Firstly, by using secondary development function of Abaqus, parametric FEA models of suspended curtains and envelopes have been established, several parameters were used to describe the shape of suspended curtains. Secondly, parameters of the suspended curtain shape were optimized under different loading conditions by means of the genetic algorithm. Lastly, through the analysis of the results, some conclusions are summarized: The relationship between n1(n2) and nb was found to be linear when the suspended curtain is subjected to vertical load. The stress transfer law of suspended curtain and inflatable membrane structure under the inclined load were also obtained, which are valuable for the structural engineering design of stratospheric airships..
Although higher dietary intake of MUFA has been shown to improve glycaemic control and lipid profiles, whether MUFA consumption from different sources is linked to the development of type 2 diabetes (T2D) remains unclear. We aimed to prospectively assess the associations of plant-derived MUFA (P-MUFA) and animal-derived MUFA (A-MUFA) intakes with T2D risk in a nationwide oriental cohort. Overall, 15 022 Chinese adults, aged ≥20 years, from the China Health and Nutrition Survey (CHNS 1997–2011) were prospectively followed up for a median of 14 years. Consumption of MUFA from plant and animal sources was assessed using 3-d 24-h recalls in each survey, and the cumulative average of intake was calculated. Multivariable-adjusted Cox models were constructed to estimate the hazard ratios (HR) of T2D according to quartiles of MUFA intake. P-MUFA were mainly consumed from cooked vegetable oils, fried bread sticks and rice, while A-MUFA were mainly consumed from pork, lard and eggs. Intake of P-MUFA was associated with a higher risk of T2D (HRQ4 v. Q1 1·50 (95 % CI 1·18, 1·90); Ptrend = 0·0013), whereas A-MUFA showed no significant association (HRQ4 v. Q1 0·84 (95 % CI 0·59, 1·20); Ptrend = 0·30). When further considering the cooking method of food sources, consumption of P-MUFA from fried foods was positively associated with T2D risk (HRQ4 v. Q1 1·60 (95 % CI 1·26, 2·02); Ptrend = 0·0006), whereas non-fried P-MUFA were not associated. Intake of MUFA from fried plant-based foods may elevate T2D risk among the Chinese population.
Let
$\{M_{n}\}_{n=1}^{\infty }$
be a sequence of expanding matrices with
$M_{n}=\operatorname{diag}(p_{n},q_{n})$
, and let
$\{{\mathcal{D}}_{n}\}_{n=1}^{\infty }$
be a sequence of digit sets with
${\mathcal{D}}_{n}=\{(0,0)^{t},(a_{n},0)^{t},(0,b_{n})^{t},\pm (a_{n},b_{n})^{t}\}$
, where
$p_{n}$
,
$q_{n}$
,
$a_{n}$
and
$b_{n}$
are positive integers for all
$n\geqslant 1$
. If
$\sup _{n\geqslant 1}\{\frac{a_{n}}{p_{n}},\frac{b_{n}}{q_{n}}\}<\infty$
, then the infinite convolution
$\unicode[STIX]{x1D707}_{\{M_{n}\},\{{\mathcal{D}}_{n}\}}=\unicode[STIX]{x1D6FF}_{M_{1}^{-1}{\mathcal{D}}_{1}}\ast \unicode[STIX]{x1D6FF}_{(M_{1}M_{2})^{-1}{\mathcal{D}}_{2}}\ast \cdots \,$
is a Borel probability measure (Cantor–Dust–Moran measure). In this paper, we investigate whenever there exists a discrete set
$\unicode[STIX]{x1D6EC}$
such that
$\{e^{2\unicode[STIX]{x1D70B}i\langle \unicode[STIX]{x1D706},x\rangle }:\unicode[STIX]{x1D706}\in \unicode[STIX]{x1D6EC}\}$
is an orthonormal basis for
$L^{2}(\unicode[STIX]{x1D707}_{\{M_{n}\},\{{\mathcal{D}}_{n}\}})$
.
The aim of this study was to investigate the in vivo degradation mechanism and the mechanical properties of poly(lactide-co-glycolide)/beta-tricalcium phosphate (PLGA/β-TCP) composite anchors. Anchors composed of PLGA and β-TCP were implanted in the dorsal subcutaneous tissue of beagle dogs for 6, 12, 16, and 26 weeks. The degradation of the materials was evaluated by measuring the changes in thermal behavior, crystallinity, and mechanical properties. Scanning electron microscope (SEM) was used to observe the surface and longitudinal section of the material. The evaluation of mechanical strength retention and degradation properties suggest that the addition of β-TCP particles efficiently enhances their mechanical properties and thermal characteristics and delays their degradation rate. By analyzing the results of SEM, X-ray diffraction, and differential scanning calorimetry, we can infer that after 12 weeks, the connection between β-TCP and PLGA becomes less compact, which accelerates the decline of mechanical strength.
To investigate the morphology and dimensions of the vestibular aqueduct on axial, single-oblique and double-oblique computed tomography images.
Methods
The computed tomography temporal bone scans of 112 patients were retrospectively evaluated. Midpoint and opercular measurements were performed using axial, single-oblique and double-oblique images. Morphometric analyses were also conducted. The vestibular aqueduct sizes on axial, single-oblique and double-oblique images were compared.
Results
At the midpoint, the mean (± standard deviation) vestibular aqueduct measured 0.61 ± 0.23 mm, 0.74 ± 0.27 mm and 0.82 ± 0.38 mm on axial, single-oblique and double-oblique images, respectively; at the operculum, the vestibular aqueduct measured 0.91 ± 0.30 mm, 1.11 ± 0.45 mm and 1.66 ± 1.07 mm on the respective images. The co-efficients of variation of the vestibular aqueduct measured at the midpoint were 37.4 per cent, 36.5 per cent and 47.5 per cent on axial, single-oblique and double-oblique images, respectively; at the operculum, the measurements were 33.0 per cent, 40.5 per cent and 64.5 per cent. Regarding morphology, the vestibular aqueduct was fissured (33.5 per cent), tubular (64.3 per cent) or invisible (2.2 per cent).
Conclusion
The morphology and dimensions of the vestibular aqueduct were highly variable among axial, single-oblique and double-oblique images.
Using time-resolved laser-scanning confocal microscopy and ultrafast optical pump/THz probe spectroscopy, we measure photoluminescence (PL) and THz-conductivity in perovskite micro-crystals and films. PL quenching and lifetime variations occur from local heterogeneity. Ultrafast THz-spectra measure sharp quantum transitions from excitonic Rydberg states, providing weakly bound excitons with a binding energy of ~13.5 meV at low temperatures. Ab-initio electronic structure calculations give a direct band gap of 1.64 eV, a dielectric constant of ~18, heavy electrons, and light holes, resulting in weakly bound excitons, consistent with the binding energies from the experiment. The complementary spectroscopy and simulations reveal fundamental insights into perovskite light-matter interactions.
Nanosize SiCp (n-SiCp) reinforced Mg–9Al matrix composites (Mg–9Al–xSiC, x = 2.5, 5, 7.5, 10 wt%) with nearly full densification are fabricated by the semisolid powder hot pressing technique assisted with ultrasonic. The effect of SiC nanoparticle contents on microstructures and mechanical properties of the composites is systematically investigated. Grain size and density of Mg–9Al–xSiC composites and morphology of bonding interfacial between the n-SiCp and matrix are found to be greatly dependent on the n-SiCp contents, resulting in the strength and ductility of the composites increase first and then decrease as the increase of n-SiCp contents. As the SiCp content increasing to 7.5 wt%, superior mechanical properties with the yield strength of 191 MPa, ultimate tensile strength of 248 MPa, and elongation to failure of 5.3% are achieved. The improved mechanical properties could be attributed to grain boundary strengthening, Orowan strengthening, and load transfer strengthening.
OBJECTIVES/SPECIFIC AIMS: The primary goal of this project is to verify findings from a murine prostatitis model in the human setting. METHODS/STUDY POPULATION: Methods include primary cell isolation and culture, FACS, adoptive transfer, 3D cell culture, histology, immunofluorescence, xenograft, and tissue recombination. The study population includes patients undergoing HoLEP or radical prostatectomy due to hyperplasia or adjacent bladder or prostate cancer. RESULTS/ANTICIPATED RESULTS: Having verified similar sensitivities to androgen receptor (AR) inhibitors between naive murine and human basal prostate stem cells, we anticipate that autoimmune inflammation in humans affects the response of basal prostate stem cells in a manner similar to the murine setting as well. This includes increased proliferation, increased differentiation, and decreased response to AR inhibitors. DISCUSSION/SIGNIFICANCE OF IMPACT: The identification of survival mechanisms used by basal prostate stem cells in an androgen deprived environment may give insight to the process by which prostate cancer becomes androgen independent. The effect of inflammation on proliferation, survival, and AR signaling in these cells may also provide information relevant to cancer initiation and progression.
The effect of equal-channel angular pressing (ECAP) at various temperatures (310, 330, and 350 °C) on precipitations and strengthening mechanisms of Mg–9Al–1Si alloys was investigated. The results indicated that the average grain size decreased gradually with decreasing of ECAP temperature. The distribution of the Mg2Si phase changed a little when the ECAP temperature increased. However, the different morphologies of β-Mg17Al12 phase were observed, including continuous and uncontinuous precipitation of particles at 310 and 350 °C. The continuous β-Mg17Al12 phase was hardly found and the refined β-Mg17Al12 phase was distributed dispersedly in the matrix at 330 °C. Thus, the mechanical properties of the Mg–9Al–1Si alloy was optimum: ultimate tensile strength and elongation were ∼350.8 MPa and ∼14.77%, respectively. It can be deduced that both grain refinement strengthening and precipitation strengthening play significant roles in strength increment of the alloy during the ECAP process. However, precipitation strengthening is the predominant mechanism.
OBJECTIVES/SPECIFIC AIMS: The primary goal of this project is to verify murine findings in the human setting. METHODS/STUDY POPULATION: The methods include primary cell isolation and culture, FACS, adoptive transfer, 3D-cell culture, histology, immunofluorescence, xenograft, and tissue recombination. The study population includes patients undergoing radical prostatectomy due to hyperplasia or adjacent bladder or prostate cancer. RESULTS/ANTICIPATED RESULTS: Having verified similar sensitivities to androgen receptor (AR) inhibitors between naive murine and human basal prostate stem cells, we anticipate that autoimmune inflammation in humans affects the response of basal prostate stem cells in a manner similar to the murine setting as well. This includes increased proliferation, differentiation, and response to AR inhibitors. DISCUSSION/SIGNIFICANCE OF IMPACT: The identification of survival mechanisms used by basal prostate stem cells in an androgen deprived environment may give insight to the process by which prostate cancer becomes androgen independent. The effect of inflammation on proliferation, survival, and AR signaling in these cells may also provide information relevant to cancer initiation and progression.
Some rare microscopic cycloneuralians are present in the Cambrian of South China, represented by Eopriapulites and Eokinorhynchus (both early Cambrian), fossil embryos of Markuelia (middle to late Cambrian), and palaeoscolecids (early to late Cambrian). Among them, palaeoscolecids are relatively diverse and abundant. Here, we describe new material of three-dimensionally phosphatized and microscopic cycloneuralians from the Paibian Stage of Wangcun Lagerstätte, western Hunan, South China. New material includes fossil embryos assignable to Markuelia sp., two other types of fossil embryos, and three species of palaeoscolecids, including Dispinoscolex decorus Duan, Dong, and Donoghue, 2012, Schistoscolex hunanensis Duan, Dong, and Donoghue, 2012, and Austroscolex sinensis new species. The palaeoscolecid fragments differ mainly in size and armor of the trunk annuli. Since Eokinorhynchus and Eopriapulites occurred the earliest among the Cambrian cycloneuralians, it is proposed here that: (1) cycloneuralians originated in the Cambrian Fortunian small shelly faunas rather than in the early Cambrian macrobenthos, (2) ancestral cycloneuralians may have simple trunk armor, and (3) Eopriapulites represents an ancestral cycloneuralian.
With the use of temporal derivative of flux function, a two-stage temporal discretization has been recently proposed in the design of fourth-order schemes based on the generalized Riemann problem (GRP) [21] and gas-kinetic scheme (GKS) [28]. In this paper, the fourth-order gas-kinetic scheme will be extended to solve the compressible multicomponent flow equations, where the two-stage temporal discretization and fifth-order WENO reconstruction will be used in the construction of the scheme. Based on the simplified two-species BGK model [41], the coupled Euler equations for individual species will be solved. Each component has its individual gas distribution function and the equilibrium states for each component are coupled by the physical requirements of total momentum and energy conservation in particle collisions. The second-order flux function is used to achieve the fourth-order temporal accuracy, and the robustness is as good as the second-order schemes. At the same time, the source terms, such as the gravitational force and the chemical reaction, will be explicitly included in the two-stage temporal discretization through their temporal derivatives. Many numerical tests from the shock-bubble interaction to ZND detonative waves are presented to validate the current approach.
A “RE-free” and I-phase-containing Mg–8Sn-based alloy system was developed and successfully fabricated through the equal channel angular pressing (ECAP) process. The influence of the Zn/Al mass ratio on the microstructures and mechanical properties of the as-ECAPed Mg–8Sn–(5,6,7)Zn–2(wt%)Al alloys was investigated using an optical microscope, an X-ray diffractometer, a scanning electron microscope, a transmission electron microscope, and a universal testing machine. Grain size, dynamic recrystallization behavior, and texture were found to be greatly affected by the Zn/Al mass ratio. Furthermore, the ultimate tensile strength (250 MPa) and elongation (14.5%) of the alloy with a Zn/Al mass ratio of 3 were considerably increased compared to those of the as-ECAPed alloys with Zn/Al ratios of 2.5 and 3.5 (ultimate tensile strength and elongation of 215 MPa and 13% and 184 MPa and 10%, respectively). This significant enhancement was attributed to extensive grain boundary strengthening, precipitation strengthening, and higher work hardening capacity as well as texture randomization. The strength and ductility of the as-ECAPed alloys are also discussed in terms of the I-phase and Mg2Sn formation.
In this paper, we proposed a simple approach to analyse the efficiency and propulsive characteristics of the high-altitude propeller in accordance to the Vortex Lattice Lifting line Method (VLM) theory, which is commonly used in preliminary design and parametric studies of propeller propulsion. The Computational Fluid Dynamics (CFD) method was used to obtain aerofoil aerodynamic data. The optimal pitch angle and propeller blade chord length (along the radial direction) can be calculated using the information from the database. The propeller wake model sees helical slipstreams applied to both lightly and moderately loaded propellers. The proposed method is capable of identifying the optimal efficiency through varying the number of propeller blades, radius and the rotational speed. The relationship between the optimal efficiency and design parameters is then established. This method was verified using CFD calculations.
Two Cloisonné enamel architectural components from Fuwangge in the Forbidden City that were produced from Yangzhou (one production center) in Qing Dynasty (1616-1911 A.D.) were chosen and analyzed. A combination of Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and micro-Raman spectroscopy was successfully used to analyze eight colors in enamel glazes (yellow, white, pink, turquoise, yellow green, deep blue, red and deep green). Chemical composition results reveal that the enamel glaze matrix belongs to lead-potash-lime glass (PbO-K2O-CaO-SiO2). Based on Raman spectroscopy, lead-tin yellow types II, cassiterite, lead arsenate, fluorite and hematite were found as opacifiers and/or colorants. In addition, a detailed discussion of raw materials, such as fluorite and borax, might provide valuable information to trace manufacturing technology and provenance.
Clathrin heavy chain 1 (CLTC) has been considered a “moonlighting protein” which acts in membrane trafficking during interphase and in stabilizing spindle fibers during mitosis. However, its roles in meiosis, especially in mammalian oocyte maturation, remain unclear. This study investigated CLTC expression and function in spindle formation and chromosome congression during mouse oocyte meiotic maturation. Our results showed that the expression level of CLTC increased after germinal vesicle breakdown (GVBD) and peaked in the M phase. Immunostaining results showed CLTC distribution throughout the cytoplasm in a cell cycle-dependent manner. Appearance and disappearance of CLTC along with β-tubulin (TUBB) could be observed during spindle dynamic changes. To explore the relationship between CLTC and microtubule dynamics, oocytes at metaphase were treated with taxol or nocodazole. CLTC colocalized with TUBB at the enlarged spindle and with cytoplasmic asters after taxol treatment; it disassembled and distributed into the cytoplasm along with TUBB after nocodazole treatment. Disruption of CLTC function using stealth siRNA caused a decreased first polar body extrusion rate and extensive spindle formation and chromosome congression defects. Taken together, these results show that CLTC plays an important role in spindle assembly and chromosome congression through a microtubule correlation mechanism during mouse oocyte maturation.
Interspecies somatic cell nuclear transfer (iSCNT), a powerful tool in basic scientific research, has been used widely to increase and preserve the population of endangered species. Yak (Bos grunniens) is one of these species. Development to term of interspecies cloned yak embryos has not been achieved, possibly due to abnormal epigenetic reprogramming. Previous studies have demonstrated that treatment of intraspecies cloned embryos with (NaBu) significantly improves nuclear–cytoplasmic reprogramming and viability in vitro. Therefore, in this study, we evaluated the effect of optimal NaBu concentration and exposure time on preimplantation development of yak iSCNT embryos and on the expression patterns of developmentally important genes. The results showed that 8-cell rate, blastocyst formation rate and total cell number increased significantly compared with their untreated counterparts when yak iSCNT embryos were treated with 5 nM NaBu for 12 h after activation, but that the 2-cell stage embryo rate was not significantly different. The treatment of NaBu also increased significantly the expression levels of Oct-4 and decreased the expression levels of HDAC-2, Dnmt-1 and IGF-1; the expression patterns of these genes were more similar to that of their bovine–yak in vitro fertilization (BY-IVF) counterparts. The results described above indicated that NaBu treatment improved developmental competence in vitro and ‘corrected’ the gene expression patterns of yak iSCNT embryos.
In this work, we present a method able to fabricate thin GaN nanomembranes fit for device applications. Starting from commercial GaN on sapphire substrates, MBE was used to deposit a sacrificial layer, which comprises of a superlattice of InN/InGaN, after which thin a GaN film of hundreds of nanometers thickness was grown on top. Pulsed laser irridiation with photon energy of 2.3eV gives rise to the controlled decomposition of the sacrificial intermediate layer, which can be followed by easy separation of the top GaN membrane from the substrate. This process can be used to manufacture GaN membranes with low defect density and a wider range of thickness. We demonstrated that large area, free-standing GaN membranes, with a thickness from 200nm and up, could be made using this method, and the high crystal quality of the lift-off GaN layers is well preserved in this process.
We present a fast Poisson solver on spherical shells. With a special change of variable, the radial part of the Laplacian transforms to a constant coefficient differential operator. As a result, the Fast Fourier Transform can be applied to solve the Poisson equation with operations. Numerical examples have confirmed the accuracy and robustness of the new scheme.