We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
Identifying routes of transmission among hospitalized patients during a healthcare-associated outbreak can be tedious, particularly among patients with complex hospital stays and multiple exposures. Data mining of the electronic health record (EHR) has the potential to rapidly identify common exposures among patients suspected of being part of an outbreak.
We retrospectively analyzed 9 hospital outbreaks that occurred during 2011–2016 and that had previously been characterized both according to transmission route and by molecular characterization of the bacterial isolates. We determined (1) the ability of data mining of the EHR to identify the correct route of transmission, (2) how early the correct route was identified during the timeline of the outbreak, and (3) how many cases in the outbreaks could have been prevented had the system been running in real time.
Correct routes were identified for all outbreaks at the second patient, except for one outbreak involving >1 transmission route that was detected at the eighth patient. Up to 40 or 34 infections (78% or 66% of possible preventable infections, respectively) could have been prevented if data mining had been implemented in real time, assuming the initiation of an effective intervention within 7 or 14 days of identification of the transmission route, respectively.
Data mining of the EHR was accurate for identifying routes of transmission among patients who were part of the outbreak. Prospective validation of this approach using routine whole-genome sequencing and data mining of the EHR for both outbreak detection and route attribution is ongoing.
Recovery of multidrug-resistant (MDR) Pseudomonas aeruginosa and Klebsiella pneumoniae from a cluster of patients in the medical intensive care unit (MICU) prompted an epidemiologic investigation for a common exposure.
Clinical and microbiologic data from MICU patients were retrospectively reviewed, MICU bronchoscopes underwent culturing and borescopy, and bronchoscope reprocessing procedures were reviewed. Bronchoscope and clinical MDR isolates epidemiologically linked to the cluster underwent molecular typing using pulsed-field gel electrophoresis (PFGE) followed by whole-genome sequencing.
Of the 33 case patients, 23 (70%) were exposed to a common bronchoscope (B1). Both MDR P. aeruginosa and K. pneumonia were recovered from the bronchoscope’s lumen, and borescopy revealed a luminal defect. Molecular testing demonstrated genetic relatedness among case patient and B1 isolates, providing strong evidence for horizontal bacterial transmission. MDR organism (MDRO) recovery in 19 patients was ultimately linked to B1 exposure, and 10 of 19 patients were classified as belonging to an MDRO pseudo-outbreak.
Surveillance of bronchoscope-derived clinical culture data was important for early detection of this outbreak, and whole-genome sequencing was important for the confirmation of findings. Visualization of bronchoscope lumens to confirm integrity should be a critical component of device reprocessing.
Email your librarian or administrator to recommend adding this to your organisation's collection.