We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Enhanced sensitivity to oestrogen signalling may drive increased risk for depressive symptoms when exposed to peripartum sex-steroid hormone fluctuations.
Aim
Testing if 116 pre-identified sex steroid-responsive transcripts that predicted perinatal depression (PND) translates to a pharmacological model of hormone-induced mood changes.
Method
We generated longitudinal, genome-wide gene-expression and DNA-methylation data from 60 women exposed to a gonadotrophin-releasing hormone agonist (GnRHa) or placebo. We used linear mixed-effect models to assess differences between baseline and follow-up for gene expression and DNA methylation in the biphasic ovarian response to GnRHa.
Results
Of the 116 PND-predictive transcripts, a significant (19%) overlap was observed with those differentially expressed post-GnRHa at both early and later follow-up, indicating sustained effects. Similarly, 49% of tested genes were differentially methylated post-GnRHa at the late follow-up. Within the GnRHa group, a large proportion of PND genes were significantly associated (gene expression; DNA methylation) with changes in depressive symptoms (28%; 66%), oestradiol levels (49%; 66%) and neocortex serotonin transporter binding (8%; 45%) between baseline and follow-up.
Conclusions
Our data bridge clinical PND biomarkers with a pharmacological model of sex hormone-induced mood changes and directly relate oestrogen-induced biological changes with depressive symptoms and associated serotonin-signalling changes. Our data highlight that individual variations in molecular sensitivity to oestrogen associate with susceptibility to hormone-induced mood changes and hold promise for candidate biomarkers.
Declaration of interest
V.G.F. received honorarium for being a speaker for H. Lundbeck A/S. E.B.B. receives research funding from Böhringer Ingelheim to investigate FKBP5 as a potential drug target for depression.
This chapter describes the biological processes and some of the molecular mediators required during early implantation events and illustrates the clinical consequences when these processes are perturbed. Implantation occurs at approximately 6-7 days after fertilization. Initial adhesion of the blastocyst to the uterine wall, termed apposition, is unstable. The temporal and spatial expression of several growth factors, cytokines and adhesion molecules within the uterus and pre-implantation blastocyst suggests that they may play important roles. Reproductive pathologies resulting from implantation defects span a spectrum of clinical presentations ranging from infertility to recurrent pregnancy loss to pre-eclampsia. Infertility may result from failure of fertilization or from loss of the fertilized blastocyst prior to implantation. Pre-eclampsia, a clinical syndrome characterized by hypertension and proteinuria that develops after 20 weeks' gestation, is the leading cause of maternal mortality in the industrialized world and increases perinatal mortality five-fold.