We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
Congenitally corrected transposition is a complex cardiac lesion that is often associated with ventricular septal defect, obstruction of the outflow tract of the morphologically left ventricle, and abnormalities of the morphologically tricuspid valve.1,2 Nomenclature for this lesion has been variable and confusing.1 In this review, we define, and hopefully clarify this terminology. The lesion is a combination of discordant union of the atrial chambers with the ventricles, and the ventricles with the arterial trunks.1,2 In rare circumstances, discordant atrioventricular connections can be associated with concordant ventriculo-arterial connections. This malformation has been called “isolated ventricular inversion”. The term is less than precise, and the descriptive approach using the phrase “discordant atrioventricular connections with concordant ventriculo-arterial connections” is preferred, as discussed below.
Hydrogen passivation of non-radiative defects increases the luminescence intensity from silicon nanocrystals. In this study, photoluminescence (PL) and time-resolved PL were used to investigate the chemical kinetics of the hydrogen passivation process. Isochronal and isothermal annealing sequences were used to determine the reaction kinetics for the absorption and desorption of hydrogen, using the generalised consistent simple thermal (GST) model proposed by Stesmans for Pb defects at planar Si/SiO2 interfaces. This included determination of the activation energies and rate constants for the forward and reverse reactions as well as the associated spread in activation energies. The reaction kinetics determined from such measurements were found to be in excellent agreement with those for the passivation of Pb defects at planar Si/SiO2 interfaces, suggesting the nanocrystal emission process is also limited by such defects. These results provide useful model data as well as insight into the processing conditions needed to achieve optimum passivation in H2. As an extension to the work, a preliminary study into passivation by atomic hydrogen was pursued via a post-metallization Al anneal (alneal). A considerable gain in luminescence efficiency was achieved over the previously optimised passivation in H2.
Email your librarian or administrator to recommend adding this to your organisation's collection.