Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-01T04:39:18.595Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2016

Eric Smith
Affiliation:
Tokyo Institute of Technology
Harold J. Morowitz
Affiliation:
George Mason University, Virginia
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Origin and Nature of Life on Earth
The Emergence of the Fourth Geosphere
, pp. 611 - 659
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Venenivibrio. Licensed under CC [153] BY-SA 3.0 via Wikimedia Commons. http://commons.wikimedia.org/wiki/File:Venenivibrio.jpg#/media/File:Venenivibrio.jpg.
[2] Anabaena sperica2. Licensed under CC [153] BY-SA 3.0 via Wikimedia Commons. http://commons.wikimedia.org/wiki/File:Anabaena_sperica2.jpg#/ media/File:Anabaena_sperica2.jpg.
[3] Published under GNU free documentation license. http://en.wikipedia.org/wiki /GNU_Free_Documentation_License.
[4] Leopard africa, by JanErkamp at the English language Wikipedia. Licensed under CC [153] BY-SA 3.0 via Wikimedia Commons. http://commons.wikimedia.org/ wiki/File:Leopard_africa.jpg#/media/File:Leopard_africa.jpg.
[5] 2006-10-25 Amanita muscaria crop, by Amanita_muscaria_3_vliegenzwammen _op_rij.jpg: Onderwijsgekderivative work: Ak ccm. This file was derived from: Amanita muscaria 3 vliegenzwammen op rij.jpg. Licensed under CC [153] BY-SA 3.0 nl via Wikimedia Commons. http://commons.wikimedia.org/wiki/File:2006 -10-25_Amanita_muscaria_crop.jpg#/media/File:2006-10-25_Amanita_muscaria_ crop.jpg.
[6] Licensed under CC [153].
[7] 20090719 062218 ParameciumBursaria, by Bob, Blaylock at en.wikipedia. Licensed under CC [153] BY-SA 3.0 via Wikimedia Commons. http://commons.wikimedia. org/wiki/File:20090719_062218_ParameciumBursaria.jpg#/media/File:200907.
[8] Global volcanism program, 2013. volcanoes of the world, v. 4.3.4. http://dx.doi.org /10.5479/si.GVP.VOTW4-2013, 2013.
[9] Dallas, Abbot and William, Menke. Length of the global plate boundary at 2.4 Ga. Geology, 18:58–61, 1990.Google Scholar
[10] Harold, Abelson, Gerald Jay, Sussman, and Julie, Sussman. Structure and Interpretation of Computer Programs. MIT Press, Cambridge, MA, second edition, 1996.Google Scholar
[11] Christoph, Adami. Sequence complexity in Darwinian evolution. Complexity, 8:49–56, 2002.Google Scholar
[12] Christoph, Adami. Information theory in molecular biology. Phys. Life Rev., 1:3–22, 2004.Google Scholar
[13] Hirotugu, Akaike. A new look at the statistical model identification. IEEE Trans. Autom. Control, 19:716–723, 1974.Google Scholar
[14] A. M., Alayse-Danet, D., Debruyères, and F., Gaill. The possible nutritional or detoxification role of the epibiotic bacteria of alvinellid polychaetes: review of current data. Symbiosis, 4:51–62, 1987.Google Scholar
[15] Bruce, Alberts. Molecular Biology of the Cell. Garland Science, New York, fourth edition, 2002.Google Scholar
[16] Douglas, Allchin. Paul Boyer: bioenergetics and error. J. Hist. Biol., 35:149–172, 2002.Google Scholar
[17] Douglas E., Allen and W. E. Jr., SeyfriedCompositional controls on vent fluids from ultramafic-hosted hydrothermal systems at mid-ocean ridges: an experimental study at 400?C, 500 bars. Geochim. Cosmochim. Acta, 67:1531–1542, 2004.Google Scholar
[18] Douglas E., Allen and W. E. Jr., SeyfriedSerpentinization and heat generation: constraints from Lost City and Rainbow hydrothermal systems. Geochim. Cosmochim. Acta, 68:1347–1354, 2004.Google Scholar
[19] Luís, A.Nunes Amaral and Kent Baekgaard Lauritsen. Self-organized criticality in a rice-pile model. Phys. Rev. E, 54:R4512–R4515, 1996.Google Scholar
[20] J. P., Amend and E. L., Shock. Energetics of amino acid synthesis in hydrothermal ecosystems. Science, 281:1659–1662, 1998.Google Scholar
[21] Jan P., Amend and Everett L., Shock. Energetics of overall metablic reactions of thermophilic and hyperthermophilic archaea and bacteria. FEMS Microbiol. Rev., 25:175–243, 2001.Google Scholar
[22] Jan. P., Amend, Douglas E., LaRowe, Thomas M., McCollom, and Everett L., Shock. The energetics of organic synthesis inside and outside the cell. Philos. Trans. R. Soc. London, Ser. B, 368:20120255, 2013.Google Scholar
[23] Jan P., Amend, Karyn L., Rogers, Everett L., Shock, Sergio, Gurrieri, and Salvatore, Inguaggiato. Energetics of chemolithoautotrophy in the hydrothermal system of Vulcano Island, southern Italy. Geobiology, 1:37–58, 2003.Google Scholar
[24] Jakob L., Andersen, Tommy, Andersen, Christoph, Flamm, Martin M., Hanczyc, Daniel, Merkle, and Peter F., Stadler. Navigating the chemical space of HCN polymerization and hydrolysis: guiding graph grammars by mass spectrometry data. Entropy, 15:4066–4083, 2013.Google Scholar
[25] Jakob L., Andersen, Christoph, Flamm, Daniel, Merkle, and Peter F., Stadler. Maximizing output and recognizing autocatalysis in chemical reaction networks is NP-complete. J. Syst. Chem., 3:1, 2012.Google Scholar
[26] Jakob L., Andersen, Christoph, Flamm, Daniel, Merkle, and Peter F., Stadler. Inferring chemical reaction patterns using rule composition in graph grammars. J. Syst. Chem., 4:4:1–14, 2013.Google Scholar
[27] Jakob L., Andersen, Christoph, Flamm, Daniel, Merkle, and Peter F., Stadler. Generic strategies for chemical space exploration. Int. J. Comput. Biol. Drug Des., 7:225–258, 2014.Google Scholar
[28] Jakob L., Andersen, Christoph, Flamm, Daniel, Merkle, and Peter F., Stadler. In silico support for Eschenmoser's glyoxylate scenario. Isr. J. Chem., in review, 2015.Google Scholar
[29] Don L., Anderson. New Theory of the Earth. Cambridge University Press, London, 2007.Google Scholar
[30] P. W., Anderson. More is different. Science, New Series, 177:393–396, 1972.Google Scholar
[31] R. B., Anderson. The Fischer–Tropsch Synthesis. Academic Press, New York, 1984.
[32] Miho, Aoshima and Yasuo, Igarashi. A novel oxcalosuccinate-forming enzyme involved in the reductive carboxylation of 2-oxoglutarate in Hydrogenobacter thermophilus TK-6. Mol. Microbiol., 62:748–759, 2006.Google Scholar
[33] Miho, Aoshima and Yasuo, Igarashi. Nondecarboxylating and decarboxylating isocitrate dehydrogenases: oxalosuccinate reductase as an ancestral form of isocitrate dehydrogenase. J. Bacteriol., 190:2050–2055, 2008.Google Scholar
[34] Miho, Aoshima, Masaharu, Ishii, and Yasuo, Igarashi. A novel biotin protein required for reductive carboxylation of 2-oxoglutarate by isocitrate dehydrogenase in Hydrogenobacter thermophilus TK-6. Mol. Microbiol., 51:791–798, 2004.Google Scholar
[35] Miho, Aoshima, Masaharu, Ishii, and Yasuo, Igarashi. A novel enzyme, citryl-CoA lyase, catalysing the second step of the citrate cleavage reaction in Hydrogenobacter thermophilus TK-6. Mol. Microbiol., 52:763–770, 2004.Google Scholar
[36] Miho, Aoshima, Masaharu, Ishii, and Yasuo, Igarashi. A novel enzyme, citryl-CoA synthetase, catalysing the first step of the citrate cleavage reaction in Hydrogenobacter thermophilus TK-6. Mol. Microbiol., 52:751–761, 2004.Google Scholar
[37] Aristotle, . History of Animals. Translated by D'ArcyWentworth Thompson. Clarendon Press, Oxford, 1910.CrossRefGoogle Scholar
[38] William Ross, Ashby. An Introduction to Cybernetics. Chapman and Hall, London, 1956.Google Scholar
[39] W. Ross, Ashby. Requisite variety and its implications for the control of complex systems. Cybernetica, 1:83–99, 1958.Google Scholar
[40] Shreyas S., Athavale, Anton S., Petrov, Chiaolong, Hsiao, Derrick, Watkins, Caitlin D., Prickett, J. Jared, Gossett, Lively, Lie, Jessica C., Bowman, Eric, O-Neill, Chad R., Bernier, Nicholas V., Hud, Roger M., Wartell, Stephen C., Harvey, and Loren Dean, Williams. RNA folding and catalysis mediated by iron(II). PLoS ONE, 7:e38024, 2012.Google Scholar
[41] Henri, Atlan. Strehler's theory of mortality and the second principle of thermodynamics. J. Gerontol., 23:196–200, 1968.Google Scholar
[42] Thomas R., Ayers. Evolution of the solar ionizing flux. J. Geophys. Res., 102:1641–1651, 1997.Google Scholar
[43] Francis, Bacon. Novum Organum. 1620.
[44] Francis, Bacon. The New Organon. Michael Silverthorne and Lisa Jardine, editors. Cambridge University Press, London, 2000.Google Scholar
[45] Scott, Bailey, Richard A., Wing, and Thomas A., Steitz. The structure of T. aquaticus DNA polymerase III is distinct from eukaryotic replicative DNA polymerases. Cell, 126:893–904, 2006.Google Scholar
[46] Per, Bak, Chao, Tang, and Kurt, Wiesenfeld. Self-organized criticality: an explanation of the 1/f noise. Phys. Rev. Lett., 59:381–384, 1987.Google Scholar
[47] Per, Bak, Chao, Tang, and Kurt, Wiesenfeld. Self-organized criticality. Phys. Rev. A, 38:364–374, 1988.Google Scholar
[48] W. E., Balche and R. S., Wolfe. Specificity and biological distribution of coenzyme M (2-mercaptoethanesulfonic acid). J. Bacteriol., 137:256–263, 1979.Google Scholar
[49] Ruma, Banerjee and Stephen W., Ragsdale. The many faces of vitamin B12: catalysis by cobalamin-dependent enzymes. Annu. Rev. Biochem., 72:209–247, 2003.Google Scholar
[50] Arren, Bar-Even, Avi, Flamholz, Elad, Noor, and Ron, Milo. Thermodynamic constraints shape the structure of carbon fixation pathways. Biochim. Biophys. Acta Bioenergetics, 1817(9):1646–1659, 2012.Google Scholar
[51] Carlos F., Barbas III. Organocatalysis lost: modern chemistry, ancient chemistry, and an unseen biosynthetic apparatus. Angew. Chem. Int. Ed., 47:42–47, 2008.Google Scholar
[52] Laura M., Barge, Ivria J., Doloboff, Michael J., Russell, David, VanderVelde, Lauren M., White, Galen D., Stucky, Marc M., Baum, John, Zeytounian, Richard, Kidd, and Isik, Kanik. Pyrophosphate synthesis in iron mineral films and membranessimulating prebiotic submarine hydrothermal precipitates. Geochim. Cosmochim. Acta, 128:1–12, 2014.Google Scholar
[53] Laura M., Barge, Terence P., Kee, Ivria J., Doloboff, Joshua M. P., Hampton, Mohammed, Ismail, Mohamed, Ourkashanian, John, Zeytounian, Marc M., Baum, John A., Moss, Ghung-Kuang, Lin, Richard D., Kidd, and Isik, Kanik. The fuel cell model of abiogenesis: a new approach to origin-of-life simulations. Astrobiology, 14:254–270, 2014.Google Scholar
[54] H. A., Barker and J. V., Beck. The fermentative decomposition of purines by Clostridium acidi-urici and Clostridium cylindrosporum. J. Biol. Chem., 141(1):3–27, 1941.Google Scholar
[55] J. A., Bassham, A. A., Benson, L. D., Kay, A. Z., Harris, A., T.Wilson, and M., Calvin. The path of carbon in photosynthesis XXI. The cyclic regeneration of carbon dioxide acceptor. J. Am. Chem. Soc., 76:1760–1770, 1954.Google Scholar
[56] Anthony D., Baughn, Scott J., Garforth, Catherine, Vilchèze, and William R. Jr., JacobsAn anaerobic-type a-ketoglutarate ferredoxin oxidoreductase completes the oxidative tricarboxylic acid cycle of Mycobacterium tuberculosis. PLoS Pathogens, 5:e1000662, 1–10, 2009.Google Scholar
[57] Monika, Beh, Gerhard, Strauss, Robert, Huber, Karl-Otto, Stetter, and Georg, Fuchs. Enzymes of the reductive citric acid cycle in the autotrophic eubacterium Aquifex pyrophilus and in the archaebacterium Thermoproteus neutrophilus. Arch. Microbiol., 160:306–311, 1993.Google Scholar
[58] Henri, Bénard. Les tourbillons cellulaires dans une nappe liquide. Rev. Gén. Sci. Pure Appl., 11:1261–1271, 1900.Google Scholar
[59] Gunes, Bender, Elizabeth, Pierce, Jeffrey A., Hill, Joseph E., Darty, and Stephen W., Ragsdale. Metal centers in the anaerobic microbial metabolism of CO and CO2. Metallomics, 3:797–815, 2011.Google Scholar
[60] Steven A., Benner, Andrew D., Ellington, and Andreas, Tauer.Modern metabolism as a palimpsest of the RNA world. Proc. Natl. Acad. Sci. USA, 18:7054–7058, 1989.Google Scholar
[61] Charles H., Bennett. Logical reversibility of computation. IBM J. Res. Dev., 17:525–532, 1973.Google Scholar
[62] Charles H., Bennett. The thermodynamics of computation – a review. Int. J. Theor. Phys., 21:905–940, 1982.
[63] Ivan A., Berg, Daniel, Kockelkorn, W. Hugo, Ramos-Vera, Rafael F., Say, Jan, Zarzycki, Michael, Hügler, Birgit E., Alber, and Georg, Fuchs. Autotrophic carbon fixation in archaea. Nature Rev. Microbiol., 8:447–460, 2010.Google Scholar
[64] Claude, Berge. Graphs and Hypergraphs. North-Holland, Amsterdam, revised edition, 1973.Google Scholar
[65] Frederick, Berkovitch, Yvain, Nicolet, Jason T., Wan, Joseph T., Jarrett, and Catherine L., Drennan. Crystal structure of biotin synthase, an S-adenosylmethioninedependent radical enzyme. Science, 303(5654):76–79, 2004.Google Scholar
[66] J. D., Bernal. The Physical Basis of Life. Routledge & Kegan Paul, London, 1951.Google Scholar
[67] J. D., Bernal, editor. The Origin of Life, Weidenfeld and Nicolson, London, 1967.Google Scholar
[68] Michael E., Berndt, Douglas E., Allen, and William E. Jr., SeyfriedReduction of CO2 during serpentinization of olivine at 300°C and 500 bar. Geology, 24:351–354, 1996.Google Scholar
[69] R. A., Berner and K. A., Maasch. Chemical weathering and controls on atmospheric O2 and CO2: fundamental principles were enunciated by J. J. Ebelmen in 1845. Geochim. Cosmochim. Acta, 60:1633–1637, 1996.Google Scholar
[70] Harold S., Bernhardt. The RNA world hypothesis: the worst theory of the early evolution of life (except for all the others). Biol. Direct, 7:23, 2012.Google Scholar
[71] L., Bertini, A., De Sole, D., Gabrielli, G., Jona-Lasinio, and C., Landim. Macroscopic fluctuation theory for stationary non equilibrium states. J. Stat. Phys., 107:635–675, 2002.Google Scholar
[72] L., Bertini, A., De Sole, D., Gabrielli, G., Jona-Lasinio, and C., Landim. On the long-range correlations of thermodynamic systems out of equilibrium. arXiv:0705. 2996v1 [cond-mat.stat-mech], 2007.Google Scholar
[73] L., Bertini, A., De Sole, D., Gabrielli, G., Jona-Lasinio, and C., Landim. Towards a nonequilibrium thermodynamics: a self-contained macroscopic description of driven diffusive systems. J. Stat. Phys., 135:857–872, 2009.Google Scholar
[74] Dany J. V., Beste, Bhushan, Bonde, Nathaniel, Hawkins, Jane L., Ward, Michael H., Beale, Stephan, Noack, Katharina, Nöh, Nicholas J., Kruger, R. George, Ratcliffe, and Johnjoe, McFadden. 13C metabolic flux analysis identifies an unusual route for pyruvate dissimilation in mycobacteria which requires isocitrate lyase and carbon dioxide fixation. PLoS Pathogens, 7(7):e1002091, 07, 2011.Google Scholar
[75] Roy A., Black, Matthew C., Blosser, Benjamin L., Stottrup, Ravi, Tavakley, David W., Deamer, and Sarah L., Keller. Nucleobases bind to and stabilize aggregates of a prebiotic amphiphile, providing a viable mechanism for the emergence of protocells. Proc. Natl. Acad. Sci. USA, early edition:1–5, 2013.Google Scholar
[76] Carrine E., Blank. Phylogenomic dating and the relative ancestry of prokaryotic metabolisms. In J., Seckbach and M., Walsh, editors, From Fossils to Astrobiology, pages 275–295. Springer, New York, 2009.Google Scholar
[77] Robert E., Blankenship. Molecular Mechanisms of Photosynthesis. Blackwell Science,Malden, MA, 2002.Google Scholar
[78] G., Blatter, M. V., Feigel'man, V. B., Geshkenbein, A. I., Larkin, and V. M., Vinokur. Vortices in high-temperature superconductors. Rev. Mod. Phys., 66:1125–1388, 1994.Google Scholar
[79] Konrad, Bloch. Blondes in Venetian Paintings, the Nine-Banded Armadillo, and Other Essays in Biochemistry. Yale University Press, New Haven, CT, 1997.Google Scholar
[80] Konstantin, Bokov and Sergey V., Steinberg. A hierarchical model for evolution of 23S ribosomal RNA. Nature, 457:977–980, 2009.Google Scholar
[81] Ludwig, Boltzmann. Populäre Schriften. J. A. Barth, Leipzig, 1905. Re-issued F. Vieweg, Braunschweig, 1979.Google Scholar
[82] Ludwig, Boltzmann. The second law of thermodynamics. In Populäre Schriften, pages 25–50. J. A. Barth, Leipzig, 1905. Re-issued F. Vieweg, Braunschweig, 1979.Google Scholar
[83] Yan, Boucher, Christophe J., Douady, R., Thane Papke, David A., Walsh, Mary Ellen R., Boudreau, Camilla L., Nesbø, Rebecca J., Case, and W. Ford, Doolittle. Lateral gene transfer and the origins of prokaryotic groups. Annu. Rev. Genet., 37:283–328, 2003.Google Scholar
[84] Bastien, Boussau, Laurent, Guéguen, and Manolo, Gouy. Accounting for horizontal gene transfers explains conflicting hypotheses regarding the position of aquificales in the phylogeny of bacteria. BMC Evol. Biol., 8:272, 2008.Google Scholar
[85] Jessica C., Bowman, Nicholas V., Hud, and Loren Dean, Williams. The ribosome challenge to the RNA world. J. Mol. Evol., 80:143–161, 2015.Google Scholar
[86] Samuel A., Bowring and Ian S., Williams. Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada. Contrib. Mineral Petrol., 134:3–16, 1999.Google Scholar
[87] Eric S., Boyd and John W., Peters. New insights into the evolutionary history of biological nitrogen fixation. Frontiers Microbiol., 4:201, 2013.Google Scholar
[88] Paul, Boyer. Coupling mechanisms in capture, transmission, and use of energy. Annu. Rev. Biochem., 46:955–1026, 1977.Google Scholar
[89] Nanette R., Boyle and John A., Morgan. Computation of metabolic fluxes and efficiencies for biological carbon dioxide fixation. Metab. Eng., 13:150–158, 2011.Google Scholar
[90] Rogier, Braakman and Eric, Smith. The emergence and early evolution of biological carbon fixation. PLoS Comp. Biol., 8:e1002455, 2012. PMID: 22536150.Google Scholar
[91] Rogier, Braakman and Eric, Smith. The compositional and evolutionary logic of metabolism. Phys. Biol., 10:011001, 2013. PMID: 23234798.Google Scholar
[92] Rogier, Braakman and Eric, Smith. Metabolic evolution of a deep-branching hyperthermophilic chemoautotrophic bacterium. PLoS ONE, 9:e87950, 2014.Google Scholar
[93] Dan K., Braithwaite and Junetsu, Ito. Compilation, alignment, and phylogenetic relationships of DNA polymerases. Nucleic Acids Res., 21:787–802, 1993.Google Scholar
[94] Jay A., Brandes, Nabil Z., Boctor, George D., Cody, Benjamin A., Cooper, Robert M., Hazen, and Hatten S. Jr., YoderAbiotic nitrogen reduction on the early Earth. Nature, 395:365–367, 1998.Google Scholar
[95] Ullrich, Brandt. Bifurcated ubihydroquinone oxidation in the cytochrome bc1 complex by proton-gated charge transfer. FEBS Lett., 387:1–6, 1996.Google Scholar
[96] Elbert, Branscomb and Michael J., Russell. Turnstiles and bifurcators: the disequilibrium converting engines that put metabolism on the road. Biochim. Biophys. Acta, 1827:62–78, 2013.Google Scholar
[97] William J., Brazelton and John A., Baross. Abundant transposases encoded by the metagenome of a hydrothermal chimney biofilm. ISME J., 1–5, 2009.Google Scholar
[98] Leon, Brillouin. Science and Information Theory. Dover Phoenix Editions,Mineola, NY, second edition, 2004.Google Scholar
[99] James H., Brown. Macroecology. University of Chicago Press, Chicago, IL, 1995.Google Scholar
[100] Michael R. W., Brown and Arthur, Kornberg. Inorganic polyphosphate in the origin and survival of species. Proc. Natl. Acad. Sci. USA, 101:16085–16087, 2004.Google Scholar
[101] David E., Bryant, Katie E. R., Marriott, Stuart A., Macgregor, Colin, Kilner, Matthew A., Pasek, and Terence P., Kee. On the prebiotic potential of reduced oxidation state phosphorus: the H-phosphinate-pyruvate system. Chem. Commun., 46:3726–3728, 2010.Google Scholar
[102] Bob B., Buchanan and Daniel I., Arnon. A reverse Krebs cycle in photosynthesis: consensus at last. Photosynth. Res., 24:47–53, 1990.Google Scholar
[103] Wolfgang, Buckel and Rudolf K., Thauer. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation. Biochim. Biophys. Acta, 1827:94–113, 2013.Google Scholar
[104] John, Bunge, Amy, Willis, and Fiona, Walsh. Estimating the number of species in microbial diversity studies. Annu. Rev. Stat. Appl., 1:427–455, 2014.Google Scholar
[105] Rod, Burstall. Christopher Strachey – understanding programming languages. Higher-Order Symbolic Comput., 13:52, 2000.Google Scholar
[106] Leo W., Buss. The Evolution of Individuality. Princeton University Press, Princeton, NJ, 2007.Google Scholar
[107] Alison, Butler. Marine siderophores and microbial iron mobilization. BioMetals, 18:369–374, 2005.Google Scholar
[108] Thomas, Butler, Nigel, Goldenfeld, Damien, Mathew, and Zaida, Luthey-Schulten. Extreme genetic code optimality from a molecular dynamics calculation of amino acid polar requirement. Phys. Rev. E, 79:00901, 2009.Google Scholar
[109] A., Butlerow. Formation synthetique d'une substance sucree. Compt. Rend. Acad. Sci., 53:145–147, 1861.Google Scholar
[110] David A., Butterfield, Bruce K., Nelson, Geoffrey, Wheat, Michael, Mottl, and Kevin K., Roe. Evidence for basaltic Sr in midocean ridge-flank hydrothermal systems and implications for the global oceanic Sr isotope balance. Geochim. Cosmochim. Acta, 65:4141–4153, 2001.Google Scholar
[111] Gustavo, Caetano-Anollés, Hee Shin, Kim, and Jay E., Mittenthal. The origin of modern metabolic networks inferred from phylogenemic analysis of protein architecture. Proc. Natl. Acad. Sci. USA, 104:9358–9363, 2007.Google Scholar
[112] Gustavo, Caetano-Anollés, Minglei, Wang, and Derek, Caetano-Anollés. Structural phylogenomics retrodicts the origin of the genetic code and uncovers the evolutionary impact of protein flexibility. PLoS ONE, 8:e72225, 2013.Google Scholar
[113] A. G., Cairns-Smith. Genetic Takeover: and the Mineral Origins of Life. Cambridge University Press, Cambridge, 1982.Google Scholar
[114] A. G., Cairns-Smith. Seven Clues to the Origin of Life – A Scientific Detective Story. Cambridge University Press, Cambridge, 1985.Google Scholar
115] A. G., Cairns-Smith and H., Hartman, editors. Clay Minerals and the Origin of Life. Cambridge University Press, Cambridge, 1986.Google Scholar
[116] Barbara J., Campbell and S. Craig, Cary. Evidence of chemolithoautotrophy in the bacterial community associated with Alvinella pompehana, a hydrothermal vent polychaete. Appl. Environ. Microbiol., 69:5070–5078, 2003.Google Scholar
[117] Ian H., Campbell. Constraints on continental growth models from Nb/U ratios in the 3.5 Ga Barberton and other Archaean basalt-komatiite suites. Am. J. Sci., 303:319–351, 2003.Google Scholar
[118] I. H., Campbell, R.W., Griffiths, and R. I., Hill. Melting in an Archean mantle plume: heads it's basalts, tails it's komatiites. Nature, 339:697–699, 1989.Google Scholar
[119] Sadi, Carnot. Reflections on the Motive Power of Fire, E., Mendoza, editor. Dover, New York, 1960.Google Scholar
[120] B. J., Carr and M. J., Rees. The anthropic principle and the structure of the physical world. Nature, 278:605–612, 1979.Google Scholar
[121] David C., Catling and Kevin J., Zahnle. The planetary air leak. Sci. Am., May:36–43, 2009.Google Scholar
[122] Thomas R., Cech. The RNA worlds in context. Cold Spring Harb. Perspect. Biol., 4:a006742, 2011.Google Scholar
[123] E., Chabrière, M. H., Charon, A., Volbeda, L., Pieulle, E. C., Hatchikian, and J. C., Fontecilla-Camps. Crystal structures of the key anaerobic enzyme pyruvate: ferredoxin oxidoreductase, free and in complex with pyruvate. Nature Struct. Biol., 6:182–190, 1999.Google Scholar
[124] Gregory J., Chaitin. Algorithmic Information Theory. Cambridge University Press, New York, 1990.Google Scholar
[125] Patricia P., Chan and Todd M., Lowe. GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res., 37:D93–D97, 2008.Google Scholar
[126] Jean-Pierre, Changeux, Philippe, Courrége, and Antoine, Danchin. A theory of the epigenesis of neuronal networks by selective stabilization of synapses. Proc. Natl. Acad. Sci. USA, 70:2974–2978, 1973.Google Scholar
[127] Jean-Luc, Charlou and Jean-Pierre, Donval. Hydrothermal methane venting between 12°N and 26°N along the Mid-Atlantic ridge. J. Geophys. Res., 98:9625–9642, 1993.Google Scholar
[128] Nyles W., Charon, Russell C., Johnson, and David, Peterson. Amino acid biosynthesis in the spirochete leptospira: evidence for a novel pathway of isoleucine biosynthesis. J. Bacteriol., 117(1):203–211, 1974.Google Scholar
[129] Geoffrey, Chaucer. Treatise on the Astrolabe, Prologue, II 39–40. 1391.Google Scholar
[130] Lubin, Chen, Michael L., Johnson, and Rodney L., Biltonen. A macroscopic description of lipid bilayer phase transitions of mixed-chain phosphatidylcholines: chain-length and chain-asymmetry dependence. Biophys. J., 80:254–270, 2001.Google Scholar
[131] Peiqiu, Chen and Eugene I., Shakhnovich. Lethal mutagenesis in viruses and bacteria. Genetics, 183:639–650, 2009.Google Scholar
[132] Xi, Chen, Na, Li, and Andrew D., Ellington. Ribozyme catalysis of metabolism in the RNA world. Chem. Biodiv., 4:633–655, 2007.Google Scholar
[133] Ludmila, Chistoserdova. Modularity of methylotrophy, revisited. Environ. Microbiol., 13(10):2603–2622, 2011.Google Scholar
[134] L., Chistoserdova, M. G., Kalyuzhnaya, and M. E., Lidstrom. The expanding world of methylotrophic metabolism. Annu. Rev. Microbiol., 63:477–499, 2009.Google Scholar
[135] Ludmila, Chistoserdova, Julia A., Vorholt, Rudolf K., Thauer, and Mary E., Lidstrom. C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic archaea. Science, 281:99–102, 1998.Google Scholar
[136] Dylan, Chivian, Eoin L., Brodie, Eric J., Alm, David E., Culley, Paramvir S., Dehal, Todd Z., DeSantis, Thomas M., Gihring, Alla, Lapidus, Li-Hung, Lin, Stephen R., Lowry, Duane P., Moser, Paul M., Richardson, Gordon, Southam, Greg, Wanger, Lisa M., Pratt, Gary L., Andersen, Terry C., Hazen, Fred J., Brockman, Adam P., Arkin, and Tullis C., Onstott. Environmental genomics reveals a single-species ecosystem deep within earth. Science, 322:275–278, 2008.Google Scholar
[137] Ahmed S. U., Choughuley and Richard M., Lemmon. Production of cysteic acid, taurine and cystamine under primitive earth conditions. Nature, 210:628–629, 1966.Google Scholar
[138] Francesca D., Ciccarelli, Tobias, Doerks, Christian von, Mering, Christopher J., Creevey, Berend, Snel, and Peer, Bork. Toward automatic reconstruction of a highly resolved tree of life. Science, 311:1283–1287, 2006.Google Scholar
[139] Mark W., Claire, James F., Jasting, Shawn D., Domagal-Goldman, Eva E., Stüeken, Roger, Buick, and Victoria S., Meadows. Modeling the signature of sulfur massindependent fractionation produced in the Archean atmosphere. Geochim. Cosmochim. Acta, 141:365–380, 2014.Google Scholar
[140] R., Clausius. On the application of the theorem of the equivalence of transformations to interior work. In T. Archer, Hirst, editor, The Mechanical Theory of Heat, pages 215–250, Fourth Memoir. John van Voorst, London, 1865.
[141] Jean-Michel, Claverie. Viruses take center stage in cellular evolution. Genome Biol., 7:110, 2006.Google Scholar
[142] Donald D., Clayton. Principles of Stellar Evolution and Nucleosynthesis. University of Chicago Press, Chicago, IL, 1983.Google Scholar
[143] H. James, Cleaves and Stanley L., Miller. The nicotinamide biosynthetic pathway is a by-product of the RNA world. J. Mol. Evol., 52:73–77, 2001.Google Scholar
[144] George D., Cody, Bjorn, Mysen, Gotthard, Sághi-Szabó, and John A., Tosell. Silicate-phosphate interactions in silicate glasses and melts: I. A multinuclear (27Al, 29Si, 31P) MAS NMR and ab initio chemical shielding (31P) study of phosphorus speciation in silicate glasses. Geochim. Cosmochim. Acta, 65:2395–2411, 2001.Google Scholar
[145] G. D., Cody, N. Z., Boctor, J. A., Brandes, T. E., Filley, R. M., Hazen, and H. S. Jr., YoderAssaying the catalytic potential of transition metal sulfides for abiotic carbon fixation. Geochim. Cosmochim. Acta, 68:2185–2196, 2004.Google Scholar
[146] George D., Cody, Nabil Z., Boctor, Timothy R., Filley, Robert M., Hazen, James H., Scott, Anurag, Sharma, and Hatten S. Jr., YoderPrimordial carbonylated iron-sulfur compounds and the synthesis of pyruvate. Science, 289:1337–1340, 2000.Google Scholar
[147] G. D., Cody, N. Z., Boctor, R. M., Hazen, J. A., Brandes, H. J., Morowitz, and H. S. Jr., YoderGeochemical roots of autotrophic carbon fixation: hydrothermal experiments in the system citric acid, H2O-(±FeS) (±NiS). Geochim. Cosmochim. Acta, 65:3557–3576, 2001.Google Scholar
[148] Melvin, Cohn, N. Av, Mitchison, William E., Paul, Arthur M., Silverstein, David W., Talmage, and Martin, Weigert. Reflections on the clonal-selection theory. Nature Rev. Immunol., 7:823–830, 2007.Google Scholar
[149] Sidney, Coleman. Aspects of Symmetry. Cambridge University Press, Cambridge, 1985.Google Scholar
[150] The CMS Collaboration. Evidence for the direct decay of the 125 GeV Higgs boson to fermions. Nature Phys., 10:557–560, 2014.
[151] Matthew D., Collins and Dorothy, Jones. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol. Rev., 45(2):316–354, 1981.Google Scholar
[152] P. D. B., Collins, A. D., Martin, and E. J., Squires. Particle Physics and Cosmology. Wiley, New York, 1989.Google Scholar
[153] Creative Commons. Attribution-noncommercial-sharealike 3.0 unported, April 2015. http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode.
[154] R. C., Conant and W. R., Ashby. Every good regulator of a system must be a model of that system. Int. J. Syst. Sci., 1:89–97, 1970.Google Scholar
[155] Geoffrey M., Cooper. The Cell: A Molecular Approach. Sinauer Associates, Sunderland, MA, second edition, 2000.
[156] George, Cooper, Chris, Reed, Dang, Nguyen, Malika, Carter, and Yi, Wang. Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites. Proc. Natl. Acad. Sci. USA, 108:14015–14020, 2011.Google Scholar
[157] Shelley D., Copley. Enzymes with extra talents: moonlighting functions and catalytic promiscuity. Curr. Opin. Chem. Biol., 7:265–272, 2003.Google Scholar
[158] Shelley D., Copley, Eric, Smith, and Harold J., Morowitz. A mechanism for the association of amino acids with their codons and the origin of the genetic code. Proc. Natl. Acad. Sci. USA, 102:4442–4447, 2005. PMID: 15764708.Google Scholar
[159] Shelley D., Copley, Eric, Smith, and Harold J., Morowitz. The origin of the RNA world: co-evolution of genes and metabolism. Bioorg. Chem., 35:430–443, 2007. PMID: 17897696.Google Scholar
[160] Armando, Córdova, Magnus, Engqvist, Ismail, Ibrahem, Jesús, Casas, and Henrik, Sunden. Plausible origins of homochirality in the amino acid catalyzed neogenesis of carbohydrates. Chem. Commun., 2005:2047–2049, 2005.Google Scholar
[161] John B., Corliss, John A., Baross, and Sarah E., Hoffman. Submarine hydrothermal systems: a probable site for the origin of life. Oreg. State Univ. Sch. Oceanogr., 80-7:1–44, 1980.Google Scholar
[162] J. B., Corliss, J., Dymond, L. I., Gordon, J. M., Edmond, R. P. von, Herzen, R. D., Ballard, K., Green, D., Williams, A., Bainbridge, K., Crane, and T. H.van, Andel. Submarine thermal springs on the Galapagos rift. Science, 203:1073–1083, 1979.Google Scholar
[163] James B., Cotner and Bopaiah A., Biddanda. Small players, large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems, 5:105–121, 2002.Google Scholar
[164] Thomas M., Cover and Joy A., Thomas. Elements of Information Theory.Wiley, New York, 1991.Google Scholar
[165] F. H. C., Crick. Codon-antiodon pairing: the wobble hypothesis. J. Mol. Biol., 19:548–555, 1966.Google Scholar
[166] F. H. C., Crick. The origin of the genetic code. J. Mol. Biol., 38:367–379, 1968.Google Scholar
[167] Francis, Crick. Central dogma of molecular biology. Nature, 227:561–563, 1970.Google Scholar
[168] Francis, Crick. Life Itself: Its Origin and Nature. Simon and Schuster, New York, 1981.Google Scholar
[169] F. H. C., Crick and L. E., Orgel. Directed panspermia. Icarus, 19:341–346, 1973.Google Scholar
[170] Shane, Crotty, Craig E., Cameron, and Raul, Andino. RNA virus error catastrophe: direct molecular test by using ribavirin. Proc. Natl. Acad. Sci. USA, 98:6895–6900, 2001.Google Scholar
[171] Marie, Csete and John, Doyle. Bow ties, metabolism and disease. Trends Biotechnol., 22:446–450, 2004.Google Scholar
[172] Thomas P., Curtis, William T., Sloan, and Jack W., Scannell. Estimating prokaryotic diversity and its limits. Proc. Natl. Acad. Sci. USA, 99:10494–10499, 2002.Google Scholar
[173] S., Dagley and Donald E., Nicholson. An Introduction to Metabolic Pathways. Blackwell Scientific, Oxford, 1970.Google Scholar
[174] Vincent, Danos, Jérôme, Feret, Walter, Fontana, Russell, Harmer, and Jean, Krivine. Rule-based modelling, symmetries, refinements. Formal Methods in Systems Biology, Lecture Notes in Computer Science, volume 5054, pages 103–122. Springer, Berlin, 2008.Google Scholar
[175] M. J., Danson. Central metabolism of the archaea. In M., Kates, D. J., Kushner, and A. T., Matheson, editors, The Biochemistry of Archaea, pages 1–24. Elsevier, Amsterdam, 1993.Google Scholar
[176] Claudine, Darnault, Anne, Volbeda, Eun Jin, Kim, Pierre, Legrand, Xavier, Vernede, Paul A., Lindahl, and Juan C., Fontecilla-Camps. Ni-Zn-[Fe4-S4] and Ni-Ni-[Fe4-S4] clusters in closed and open a subunits of acetyl-CoA synthase/carbon monoxide dehydrogenase. Nature Struct. Mol. Biol., 10(4):271–279, 2003.Google Scholar
[177] Charles, Darwin. On the Origin of Species. John Murray, London, 1859.
[178] Charles, Darwin. The Life and Letters of Charles Darwin, including an Autobiographical Chapter, Vol. 3, Francis, Darwin, editor. John Murray, London, 1887.Google Scholar
[179] Eric H., Davidson. The Regulatory Genome: Gene Regulatory Networks in Development and Evolution. Academic Press, San Diego, CA, 2006.Google Scholar
[180] Eric H., Davidson and Douglas H., Erwin. Gene regulatory networks and the evolution of animal body plans. Science, 311:796–800, 2006.Google Scholar
[181] Richard C., Dawkins. The Selfish Gene. Oxford University Press, New York, 1976.Google Scholar
[182] M. A de, Angelis, M. D., Lilley, E. J., Olson, and J. A., Baross. Methane oxidation in deep-sea hydrothermal plumes of the Endeavour Segment of the Juan de Fuca Ridge. Deep-Sea Res., 40:1169–1186, 1993.Google Scholar
[183] Christian de, Duve. Blueprint for a Cell. Neil Patterson, Burlington, NC, 1991.Google Scholar
[184] David, Deamer. First Life: Discovering the Connections between Stars, Cells, and How Life Began. University of California Press, Los Angeles, CA, 2011.Google Scholar
[185] David, Deamer and Jack W., Szostak, editors. The Origins of Life. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2011.Google Scholar
[186] Gerard, Deckert, Patrick V., Warren, Terry, Gaasterland, William G., Young, Anna L., Lenox, David E., Graham, Ross, Overbeek, Marjory A., Snead, Martin, Keller, Monette, Aujay, Robert, Huber, Robert A., Feldman, Jay M., Short, Gary J., Olsen, and Ronald V., Swanson. The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature, 392:353–358, 1998.Google Scholar
[187] Veronica, DeGuzman, Wenonah, Vercoutere, Hossein, Shenasa, and David, Deamer. Generation of oligonucleotides under hydrothermal conditions by non-enzymatic polymerization. J. Mol. Evol., 78:251–262, 2014.Google Scholar
[188] J. R., Delaney, D. S., Kelley, M. D., Lilley, D. A., Butterfield, J. A., Baross, W. S. D., Wilcock, R. W., Embley, and M., Summit. The quantum event of oceanic crustal accretion: impacts of diking at mid-ocean ridges. Science, 281:222–230, 1998.Google Scholar
[189] Michael, Denton. The protein folds as platonic forms: new support for the pre-Darwinian conception of evolution by natural law. J. Theor. Biol., 219:325–342, 2002.Google Scholar
[190] Bernard, Derrida. Non equilibrium steady states: fluctuations and large deviations of the density and of the current. J. Stat. Mech., page P07023, 2007. arXiv:condmat/ 0703762v1.Google Scholar
[191] Á. S., Dias, R. A., Mills, I. Ribiero da, Costa, R., Costa, R. N., Taylor, M. J., Cooper, and F. J. A. S., Barriga. Tracing fluid-rock reaction and hydrothermal circulation at the Saldanha hydrothermal field. Chem. Geol., 273:168–179, 2010.Google Scholar
[192] Jeffrey M., Dick and Everett L., Shock. Calculations of the relative chemical stabilities of proteins as a function of temperature and redox chemistry in a hot spring. PLoS ONE, 6:e22782, 2011.Google Scholar
[193] Michael R., Dietric. The problem of the gene. Compt. Rend. Acad. Sci. Paris, 323:1139–1146, 2000.Google Scholar
[194] Kang, Ding, William E. Jr., Seyfried, Zhong, Zhang, Margaret K., Tivey, Karen L., Von Damm, and Albert M., Bradley. The in situ pH of hydrothermal fluids at midocean ridges. Earth Planet. Sci. Lett., 237:167–174, 2005.Google Scholar
[195] D. L., Distel, D. J., Lane, G. J., Olsen, S. J., Giovannoni, B., Pace, N. R., Pace, D. A., Stahl, and H., Felbeck. Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16S rRNA sequences. J. Bacteriol., 170:2506–2510, 1988.Google Scholar
[196] Mike, Dixon-Kennedy. Encyclopedia of Greco-Roman Mythology. ABC-Clio, New York, 1998.Google Scholar
[197] Holger, Dobbek, Vitali, Svetlitchnyi, Lothar, Gremer, Robert, Huber, and Ortwin, Meyer. Crystal structure of a carbon monoxide dehydrogenase reveals a [Ni-4Fe- 5S] cluster. Science, 293:1281–1285, 2001.Google Scholar
[198] Theodosius, Dobzhansky. Nothing in biology makes sense except in the light of evolution. Am. Biol. Teacher, 35:125–129, 1973.Google Scholar
[199] M., Doi. Second quantization representation for classical many-particle system. J. Phys. A, 9:1465–1478, 1976.Google Scholar
[200] M., Doi. Stochastic theory of diffusion-controlled reaction. J. Phys. A, 9:1479–1495, 1976.Google Scholar
[201] Shawn D., Domagal-Goldman, Victoria S., Meadows, Mark W., Claire, and James F., Kasting. Using biogenic sulfur gases as remotely detectable biosignatures on anoxic planets. Astrobiology, 11:419–441, 2011.Google Scholar
[202] Matina C., Donaldson-Matasci, Carl T., Bergstrom, and Michael, Lachmann. The fitness value of information. Oikos, 119:219–230, 2010.Google Scholar
[203] Alexander, Donath, Sven, Findei, Jana, Hertel, Manja, Marz, Wolfgang, Otto, Christine, Schulz, Peter F., Stadler, and Stefan, Wirth. Non-coding RNAs. In Gustavo, Caetano- Anollés, editor, Evolutionary Genomics and Systems Biology, pages 251–293. Wiley-Blackwell, Hoboken, NJ, 2010.Google Scholar
[204] David, Duncan. The Life and Letters of Herbert Spencer.D. Appleton, New York, 1908. Two volumes.Google Scholar
[205] Jennifer A., Dunne, Richard J., Williams, Neo D., Martinez, Rachel A., Wood, and Douglas H., Erwin. Compilation and network analyses of Cambrian food webs. PLoS Biology, 6:e102, 2008.Google Scholar
[206] Rick, Durrett. Essentials of Stochastic Processes.Springer, New York, 1999.Google Scholar
[207] M. I., Dykman, Eugenia, Mori, John, Ross, and P. M., Hunt. Large fluctuations and optimal paths in chemical kinetics. J. Chem. Phys., 100:5735–5750, 1994.Google Scholar
[208] F. Y., Edgeworth. An introductory lecture on political economy. Econ. J., 1(4):625–634.
[209] Deeanne B., Edwards and Douglas C., Nelson. DNA-DNA solution hybridization studies of the bacterial symbionts of hydrothermal vent tube worms (Riftia pachyptila and Tevnia jerichonana). Appl. Environ. Microbiol., 57:1082–1088, 1991.Google Scholar
[210] P., Ehrenfest. Phasenumwandlungen im ueblichen und erweiterten Sinn, classifiziert nach den entsprechenden Singularitaeten des thermodynamischen Potentiales. Verh. K. Akad. Wet. Amsterdam, 36:153–157, 1933.Google Scholar
[211] Manfred, Eigen. Steps Toward Life.Oxford University Press, Oxford, 1992.Google Scholar
[212] Manfred, Eigen. From Strange Simplicity to Complex Familiarity.Oxford University Press, London, 2013.Google Scholar
[213] Manfred, Eigen and Peter, Schuster. The hypercycle, Part A. The emergence of the hypercycle. Naturwissenschaften, 64:541–565, 1977.Google Scholar
[214] Manfred, Eigen and Peter, Schuster. The hypercycle, Part C. The realistic hypercycle. Naturwissenschaften, 65:341–369, 1978.Google Scholar
[215] Marion, Eisenhut, Shira, Kahlon, Dirk, Hasse, Ralph, Ewald, Judy, Lieman-Hurwitz, Teruo, Ogawa, Wolfgang, Ruth, Hermann, Bauwe, Aaron, Kaplan, and Martin, Hagemann. The plant-like C2 glycolate cycle and the bacterial-like glycerate pathway cooperate in phosphoglycolate metabolism in cyanobacteria. Plant Physiol., 142:333–342, 2006.Google Scholar
[216] Marion, Eisenhut, Wolfgang, Ruth, Maya, Haimovich, Hermann, Bauwe, Aaron, Kaplan, and Martin, Hagemann. The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants. Proc. Natl. Acad. Sci. USA, 105(44):17199–17204, 2008.Google Scholar
[217] Eric H., Ekland and David P., Bartel. RNA-catalyzed RNA polymerization using nucleoside triphosphates. Nature, 382:373–376, 1996.Google Scholar
[218] Basma El, Yacoubi, Shilah, Bonnett, Jessica N., Anderson, A., Swairjo Manal, Dirk, Iwata-Reuyl, and Valérie de, Crécy-Lagard. Discovery of a new prokaryotic type I GTP cyclohydrolase family. J. Biol. Chem., 281:37586–37593, 2006.Google Scholar
[219] Linda T., Elkins-Tanton. Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet. Sci. Lett., 271:181–191, 2008.Google Scholar
[220] Linda T., Elkins-Tanton. Formation of early water oceans on rocky planets. Astrophys. Space Sci., 332:359–364, 2011.Google Scholar
[221] Linda T., Elkins-Tanton. Magma oceans in the inner solar system. Annu. Rev. Earth Planet. Sci., 40:113–139, 2012.Google Scholar
[222] Linda T., Elkins-Tanton. Evolutionary dichotomy for rocky planets. Nature, 497:570–572, 2013.Google Scholar
[223] Andrew D., Ellington. Experimental testing of theories of an early RNA world. Methods Enzymol, 224:646–664, 1993.Google Scholar
[224] Richard S., Ellis. Entropy, Large Deviations, and Statistical Mechanics.Springer-Verlag, New York, 1985.Google Scholar
[225] Aaron E., Engelhart, Matthew W., Powner, and Jack W., Szostak. Functional RNAs exhibit tolerance for non-heritable 2′–5′ vs. 2′–5′ backbone heterogeneity. Nature Chem., 5:390–394, 2013.Google Scholar
[226] Douglas H., Erwin. Extinction: How Life on Earth Nearly Ended 250 Million Years Ago.Princeton University Press, Princeton, NJ, 2006.Google Scholar
[227] Douglas H., Erwin and Eric H., Davidson. The evolution of hierarchical gene regulatory networks. Nature Rev. Genet., 10:141–148, 2009.Google Scholar
[228] Douglas H., Erwin and James W., Valentine. The Cambrian Explosion: The Construction of Animal Biodiversity.Roberts and Company, Englewood, CO, 2013.Google Scholar
[229] Douglas H., Erwin, Marc, Laflamme, Sarah M., Tweedt, Erik A., Sperling, Davide, Pisani, and Kevin J., Peterson. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science, 334:1091–1097, 2011.Google Scholar
[230] Arthur Conan, Doyle. The Memoirs of Sherlock Holmes.Simon and Schuster, New York, 2014.Google Scholar
[231] Albert, Eschenmoser. On a hypothetical generational relationship between HCN and constituents of the reductive citric acid cycle. Chem. Biodivers., 4:554–573, 2007.Google Scholar
[232] Stewart N., Ethier and Thomas G., Kurtz. Markov Processes: Characterization and Convergence.Wiley, New York, 1986.Google Scholar
[233] Katharina F., Ettwig, Margaret K., Butler, Denis, Le Paslier, Eric, Pelletier, Sophie, Mangenot, Marcel M. M., Kuypers, Frank, Schreiber, Bas E., Dutilh, Johannes, Zedelius, Dirk de, Beer, Jolein, Gloerich, Hans J. C. T., Wessels, Theo van, Alen, Francisca, Luesken, Ming L. van de, Wu, Katinka T., Pas-Schoonen, Huub J. M., Op den Camp, Eva M., Janssen-Megens, Kees-Jan, Francoijs, Henk, Stunnenberg, Jean, Weissenbach, Mike S. M., Jetten, and Marc, Strous. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464:543–548, 2010.Google Scholar
[234] M. C. W., Evans, B. B., Buchanan, and D. I., Arnon. A new ferredoxin dependent carbon reduction cycle in photosynthetic bacterium. Proc. Natl. Acad. Sci. USA, 55:928–934, 1966.Google Scholar
[235] Paul G., Falkowski. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature, 387:272–275, 1997.Google Scholar
[236] Paul G., Falkowski, Tom, Fenchel, and Edward F., Delong. The microbial engines that drive Earth's biogeochemical cycles. Science, 320:1034–1039, 2008.Google Scholar
[237] James, Farquhar, Huiming, Bao, and Mark, Thiemens. Atmospheric influence of the Earth's earliest sulfur cycle. Science, 289:756–758, 2000.Google Scholar
[238] James, Farquhar, Marc, Peters, David T., Johnston, Harald, Strauss, Andrew, Masterson, Uwe, Wiechert, and Alan J., Kaufman. Isotopic evidence for Mesoarchean anoxia and changing atmospheric sulphur chemistry. Nature, 449:706–709, 2007.Google Scholar
[239] James, Farquhar, Joel, Savarino, Sabine, Airieau, and Mark H., Thiemes. Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO2 photolysis: implications for the early atmosphere. J. Geophys. Res., 106:32829–32839, 2001.Google Scholar
[240] Ole, Farver, Ernst, Greil, Bernd, Luwig, Hartmut, Michel, and Israel, Pecht. Rates and equilibrium of CuA to heme a electron transfer in Paracoccus denitrificans cytochrome c oxidase. Biophys. J., 90:2131–2137, 2006.Google Scholar
[241] Ole, Farver, Peter M. H., Kroneck, Walter G., Zumft, and Israel, Pecht. Intramolecular electron transfer in cytochrome cd(1) nitrite reductase from Pseudomonas stutzeri; kinetics and thermodynamics. Biophys. Chem., 98:27–34, 2002.Google Scholar
[242] Adam M., Feist, Christopher S., Henry, Jennifer L., Reed, Markus, Krummenacker, Andrew, R. Joyce, Peter D., Karp, Linda J., Broadmelt, Vassily, Hatzimanikatis, and Berhard O., Palsson. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol., 3:121:1–18, 2007.Google Scholar
[243] E., Fermi. Versuch einer theorie der ß-strahlen. i. Z. Phys., 88:161–177, 1934.Google Scholar
[244] Enrico, Fermi. Thermodynamics.Dover, New York, 1956.Google Scholar
[245] James P., Ferris. Mineral catalysis and prebiotic synthesis: montmorillonitecatalyzed formation of RNA. Elements, 1:145–149, 2005.Google Scholar
[246] J. P., Ferris and L. E., Orgel. An unusual photochemical re-arrangement in the synthesis of adenine from hydrogen cyanide. J. Am. Chem. Soc., 88:1074, 1966.Google Scholar
[247] J. P., Ferris, P. C., Joshi, K.-J., Wang, S., Miyakawa, and W., Huang. Catalysis in prebiotic chemistry: application to the synthesis of RNA oligomers. Adv. Space Res., 33:100–105, 2004.Google Scholar
[248] James P., Ferris, Robert A., Sanchez, and Leslie E., Orgel. Studies in prebiotic synthesis: III. Synthesis of pyrimidines from cyanoacetylene and cyanate. J. Mol. Biol., 33:693–704, 1968.Google Scholar
[249] James G., Ferry and Christopher H., House. The stepwise evolution of early life driven by energy conservation. Mol. Biol. Evol., 23:1286–1292, 2006.Google Scholar
[250] Martin, Ferus, David, Nesvorný, Jiří, Šponer, Petr, Kubelík, Regina, Michalčíková, Violetta, Shestivská, Judit D., Šponer, and Svatopluk, Civiš. High-energy chemistry of formamide: a unified mechanism of nucleobase formation. Proc. Natl. Acad. Sci. USA, early edition:1412072111, 2014.Google Scholar
[251] Georg, Feulner. The faint young sun problem. Rev. Geophys., 50:RG2006, 2012.Google Scholar
[252] Richard P., Feynman. Space-time approach to quantum electrodynamics. Phys. Rev., 76:769–789, 1949.Google Scholar
[253] Eliane, Fischer and Uwe, Sauer. A novel metabolic cycle catalyzes glucose oxidation and anaplerosis in hungry Escherichia coli. J. Biol. Chem., 278(47):46446–46451, 2003.Google Scholar
[254] Julia D., Fischer, Gemma L., Holliday, Syed A., Rahman, and Janet M., Thornton. The structures and physicochemical properties of organic cofactors in biocatalysis. J. Mol. Biol., 403:803–824, 2010.Google Scholar
[255] K. H., Fischer and J. A., Hertz. Spin Glasses.Cambridge University Press, New York, 1991.Google Scholar
[256] R. A., Fisher. The Genetical Theory of Natural Selection.Oxford University Press, London, 2000.Google Scholar
[257] Cyrus H., Fiske and Y., Subbarow. Phosphorus compounds of muscle and liver. Science, 70:381–382, 1929.Google Scholar
[258] W., Fontana. Modeling ‘Evo-Devo’ with RNA. Bioessays, 24:1164–1177, 2002.Google Scholar
[259] Walter, Fontana and Leo W., Buss. The barrier of objects: from dynamical systems to bounded organizations. In John, Casti and Anders, Karlqvist, editors, Boundaries and Barriers, pages 56–116. Addison-Wesley, New York, 1996.Google Scholar
[260] Walter, Fontana, Günter, Wagner, and Leo W., Buss. Beyond digital naturalism. Artificial Life, 1:211–227, 1994.Google Scholar
[261] Juan C., Fontecilla-Camps, Patricia, Amara, Christine, Cavazza, Yvain, Nicolet, and Anne, Volbeda. Structure-function relationships of anaerobic gas-processing metalloenzymes. Nature, 460:814–822, 2009.Google Scholar
[262] Juan C., Fontecilla-Camps, Anne, Volbeda, Christine, Cavazza, and Yvain, Nicolet. Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem. Rev., 107:4273–4303, 2007.Google Scholar
[263] Patrick, Forterre. Defining life: the virus viewpoint. Orig. Life Evol. Biosphere, 40:151–160, 2010.Google Scholar
[264] Yves, Fouquet, Pierre, Camboun, Joël, Etoubleau, Jean Luc, Charlou, Hélène, Ondréas, Fernando J. A. S., Barriga, Georgy, Cherkashov, Tatiana, Semkova, Irina, Poroshina, M., Bohn, Jean Pierre, Donval, Katell, Henry, Pamela, Murphy, and Olivier, Rouxel. Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge and ultramafic-hosted mineralization: a new type of oceanic Cu-Zn-Co- Au volcanogenic massive sulfide deposit. Geophys. Monogr. Ser., 188:321–367, 2010.Google Scholar
[265] G. P., Fournier and E. J., Alm. Ancestral reconstruction of a pre-LUCA aminoacyltRNA synthetase ancestor supports the late addition of Trp to the genetic code. J. Mol. Evol., 80:171–185, 2015.Google Scholar
[266] Gregory P., Fournier, Cheryl P., Andam, Eric J., Alm, and J., Peter Gogarten. Molecular evolution of aminoacyl tRNA synthetase proteins in the early history of life. Orig. Life Evol. Biosphere, 41:621–632, 2011.Google Scholar
[267] Dionysis I., Foustoukos and William E., Seyfried Jr. Hydrocarbons in hydrothermal vent fluids: the role of chrome-bearing catalysts. Science, 304:1002–1005, 2004.Google Scholar
[268] Dionysis I., Foustoukos, Ivan P., Savov, and David R., Janecky. Chemical and isotopic constraints on water/rock interactions at the Lost City hydrothermal field, 30° N Mid-Atlantic Ridge. Geochim. Cosmochim. Acta, 72:5457–5474, 2008.Google Scholar
[269] George E., Fox. Origin and evolution of the ribosome. Cold Spring Harb. Perspect. Biol., 2:a003483, 2010.Google Scholar
[270] George E., Fox and Ashwinikumar K., Naik. The evolutionary history of the ribosome. In Lluís Ribas de, Pouplana, editor, The Genetic Code and the Origin of Life, pages 92–105. Kluwer Academic/Plenum, New York, 2004.Google Scholar
[271] George E., Fox and Ashwinikumar K., Naik. The evolutionary history of the translation machinery. In Lluís Ribas de, Pouplana, editor, The Genetic Code and the Origin of Life, pages 680–682. Kluwer Academic/Plenum, New York, 2004.Google Scholar
[272] Christine H., Foyer, Arnold J., Bloom, Guillaume, Queval, and Graham, Noctor. Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. Annu. Rev. Plant Biol., 60:455–484, 2009.Google Scholar
[273] Steven A., Frank. The Price equation, Fisher's fundamental theorem, kin selection, and causal analysis. Evolution, 51:1712–1729, 1997.Google Scholar
[274] Steven A., Frank and Montgomery, Slatkin. Fisher's fundamental theorem of natural selection. Trends Ecol. Evol., 7:92–95, 1992.Google Scholar
[275] Rosalind E., Franklin and R. G., Gosling. Molecular configuration in sodium thymonucleate. Nature, 171:740–741, 1953.Google Scholar
[276] Steven J., Freeland and Laurence D., Hurst. The genetic code is one in a million. J. Mol. Evol., 47:238–248, 1998.Google Scholar
[277] Steven J., Freeland, Robin D., Knight, Laura F., Landweber, and Laurence D., Hurst. Early fixation of an optimal genetic code. Mol. Biol. Evol., 17:511–518, 2000.Google Scholar
[278] M. I., Freidlin and A. D., Wentzell. Random Perturbations in Dynamical Systems.Springer, New York, second edition, 1998.Google Scholar
[279] Daniel J., Frost and Catherine A., McCammon. The redox state of Earth's mantle. Annu. Rev. Earth. Planet. Sci., 36:389–420, 2008.Google Scholar
[280] Iris, Fry. The Emergence of Life on Earth: A Historical and Scientific Overview.Rutgers University Press, New Brunswick, NJ, 2000.Google Scholar
[281] Georg, Fuchs. CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiol. Lett., 38:181–213, 1986.Google Scholar
[282] Georg, Fuchs. Alternative pathways of carbon dioxide fixation: insights into the early evolution of life?Annu. Rev. Microbiol., 65(1):631–658, 2011.Google Scholar
[283] W. D., Fuller, R. A., Sanchez, and L. E., Orgel. Studies in prebiotic synthesis: VII. Solid-state synthesis of purine nucleosides. J. Mol. Evol., 1:249–257, 1972.Google Scholar
[284] Astrid, Gerhardt, Irfan, Çinkaya, Dietmar, Linder, Gjalt, Hulsman, and Wolfgang, Buckel. Fermentation of 4-aminobutyrate by Clostridium aminobytyricum: cloning of two genes involved in the formation and dehydration of 4-hydroxybutyryl-CoA. Arch. Microbiol., 174:189–199, 2000.Google Scholar
[285] S., Garlick, A., Oren, and E., Padan. Occurrence of facultative anoxygenic photosynthesis among filamentous and unicellular cyanobacteria. J. Bacteriol., 129:623–629, 1977.Google Scholar
[286] G. F., Gause. The Struggle for Existence.Williams and Wilkins, Baltimore, MD, 1934.Google Scholar
[287] Gerald L., Geison. The Private Science of Louis Pasteur.Princeton University Press, Princeton, NJ, 1995.Google Scholar
[288] Murray, Gell-Mann. The Quark and the Jaguar: Adventures in the Simple and the Complex.Freeman, New York, 1994.Google Scholar
[289] Murray, Gell-Mann and Seth, Lloyd. Information measures, effective complexity, and total information. Complexity, 2:44–52, 1996.Google Scholar
[290] Murray, Gell-Mann and Francis, Low. Quantum electrodynamics at small distances. Phys. Rev., 95:1300–1312, 1954.Google Scholar
[291] Andrew, Gelman and Cosma, Rohilla Shalizi. Philosophy and the practice of Bayesian statistics. Br. J. Math. Stat. Psychol., 66:8–38, 2013. arXiv:1006.3868.Google Scholar
[292] Anja C., Gemperli, Peter, Dimroth, and Julia, Steuber. Sodium ion cycling mediates energy coupling between complex I and ATP synthase. Proc. Natl. Acad. Sci. USA, 100:839–844, 2003.Google Scholar
[293] Howard, Georgi. Lie Algebras in Particle Physics.Perseus, New York, second edition, 1999.Google Scholar
[294] M. M., Georgiadis, H., Komiya, P., Chakrabarti, D., Woo, J. J., Kornuc, and D. C., Rees. Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii. Science, 257(5077):1653–1659, 1992.Google Scholar
[295] John, Gerhart and Marc, Kirschner. Cells, Embryos, and Evolution.Wiley, New York, 1997.Google Scholar
[296] John, Gerhart and Marc, Kirschner. The theory of facilitated variation. Proc. Natl. Acad. Sci. USA, 104:8582–8589, 2007.Google Scholar
[297] Raymond F., Gesteland, Thomas R., Cech, and John F., Atkins, editors. The RNA World.Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2006.Google Scholar
[298] Wieland, Gevers, Horst, Kleinkauf, and Fritz, Lipmann. Peptidyl transfers in gramicidin S biosynthesis from enzyme-bound thioester intermediates. Proc. Natl. Acad. Sci. USA, 63:1335–1342, 1969.Google Scholar
[299] Wieland, Gevers, Horst, Kleinkauf, and Fritz, Lipmann. Erratum: Peptidyl transfers in gramicidin S biosynthesis from enzyme-bound thioester intermediates. Proc. Natl. Acad. Sci. USA, 65:249, 1970.Google Scholar
[300] Arun, Ghosh and Marvin J., Miller. Synthesis of novel citrate-based siderophores and siderophore-ß-lactam conjugates. Iron transport-mediated drug delivery systems. J. Org. Chem., 58:7652–7659, 1993.Google Scholar
[301] Kingshuk, Ghosh, Ken A., Dill, Mandar M., Inamdar, Effrosyni, Seitaridou, and Rob, Phillips. Teaching the principles of statistical dynamics. Am. J. Phys., 74:123–133, 2006.Google Scholar
[302] Walter, Gilbert. The RNA world.Nature, 319:618, 1986.
[303] P., Glansdorff and I., Prigogine. Thermodynamic Theory of Structure, Stability, and Fluctuations.Wiley, New York, 1971.Google Scholar
[304] S., Glasstone, K. J., Laidler, and H., Eyring. The Theory of Rate Processes.McGraw Hill, New York, 1941.Google Scholar
[305] K., Glazyrin, T., Boffa Ballaran, D. J., Frost, C., McCammon, A., Kantor, M., Merlini, M., Hanfland, and L., Dubrovinsky. Magnesium silicate perovskite and effect of iron oxidation state on its bulk sound velocity at the conditions of the lower mantle. Earth Planet. Sci. Lett., 393:182–186, 2014.Google Scholar
[306] J., Peter Gogarten, W., Ford Doolittle, and Jeffrey G., Lawrence. Prokaryotic evolution in light of gene transfer. Mol. Biol. Evol., 19:2226–2238, 2002.Google Scholar
[307] Nigel, Goldenfeld. Lectures on Phase Transitions and the Renormalization Group.Westview Press, Boulder, CO, 1992.Google Scholar
[308] Nigel, Goldenfeld and Carl, Woese. Life is physics: evolution as a collective phenomenon far from equilibrium. Annu. Rev. Condens. Matter Phys., 2:375–399, 2011.Google Scholar
[309] Herbert, Goldstein, Charles P., Poole, and John L., Safko. Classical Mechanics.Addison Wesley, New York, third edition, 2001.Google Scholar
[310] Benjamin, Gompertz. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos. Trans. R. Soc. London, 115:513–585, 1825.Google Scholar
[311] Stephen Jay, Gould. Wonderful Life.Norton, New York, 1989.Google Scholar
[312] Stephen Jay, Gould. The Structure of Evolutionary Theory.Harvard University Press, Cambridge, MA, 2002.Google Scholar
[313] Stephen Jay, Gould and Elisabeth S., Vrba. Exaptation – a missing term in the science of form. Paleobiology, 8:4–15, 1982.Google Scholar
[314] Harry B., Gray. Chemical Bonds: An Introduction to Atomic and Molecular Structure.University Science Press, Sausalito, CA, 1994.Google Scholar
[315] D. C., Grenoble, M. M., Estadt, and D. F., Ollis. The chemistry and catalysis of the water gas shift reaction. J. Catal., 67:90–102, 1981.Google Scholar
[316] Laura L., Grochowski, Huimin, Xu, Kabo, Leung, and Robert H., White. Characterization of an Fe2+-dependent archaeal-specific GTP cyclohydrolase, MptA, from Methanocaldococcus jannaschii. Biochemistry, 46:6658–6667, 2007.Google Scholar
[317] Megan J., Gruer, Peter J., Artymiuk, and John R., Guest. The aconitase family: three structural variations on a common theme. Trends Biochem. Sci., 22:3–6, 1997.Google Scholar
[318] C., Guerrier-Takada, K., Gardiner, T., Marsh, N., Pace, and S., Altman. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell, 35:849–857, 1983.Google Scholar
[319] Victor, Guillemin and Alan, Pollack. Differential Topology.Prentice Hall, New York, 1974.Google Scholar
[320] Marianne, Guiral, Laurence, Prunetti, Clément, Aussignargues, Alexandre, Ciaccafava, Pascale, Infossi, Marianne, Llbert, Elisabeth, Lojou, and Marie-Thérèse, Giudici-Orticoni. The hyperthermophilic bacterium Aquifex aeolicus: from respiratory pathways to extremely resistant enzymes and biotechnological applications. Adv. Microb. Physiol., 61:125–194, 2012.Google Scholar
[321] Marianne, Guiral, Pascale, Tron, Corinne, Aubert, Alexandre, Gloter, Chantal, Iobbi-Nivol, and Marie-Thérès, Giuici-Orticoni. A membrane-bound multienzyme, hydrogen-oxidizing, and sulfur-reducing complex from the hyperthermophilic bacterium Aquifex aeolicus. J. Biol. Chem., 280:42004–42015, 2005.Google Scholar
[322] Addison, Gulick. Phosphorus as a factor in the origin of life. Am. Sci., 43:479–489, 1955.Google Scholar
[323] Alex, Gutteridge and Janet M., Thornton. Understanding nature's catalytic toolkit. Trends Biochem. Sci., 30:622–629, 2005.Google Scholar
[324] Louis, Guttman. The basis for scalogram analysis. In Samuel A., Stouffer, Louis, Guttman, Edward A., Suchman, Paul F., Lazarsfeld, Shirley A., Star, and John A., Clausen, editors, Studies in Social Psychology in World War II Volume IV: Measurement and Prediction, pages 60–90. Wiley, New York, 1950.Google Scholar
[325] Marcelo I., Guzman and Scot T., Martin. Photo-production of lactate from glyoxylate: how minerals can facilitate energy storage in a prebiotic world. Chem. Commun., 46:2265–2267, 2010.Google Scholar
[326] Ernst, Haeckel. Generelle Morphologie der Organismen. Allgemeine Grundzüge der organischen Form-Wissenschaft, Mechanisch begründet durch die von Charles Darwin reformirte Descendenz-Theorie.G. Reimer, Berlin, 1866.Google Scholar
[327] David, Haig and Laurence D., Hurst. A quantitative measure of error minimization in the genetic code. J. Mol. Evol., 33:412–417, 1991.Google Scholar
[328] J. B. S., Haldane. The origin of life. Rationalist Animal, page 148, 1929. Reprinted as [329].Google Scholar
[329] J. B. S., Haldane. The origin of life. In J. D., Bernal, editor, The Origin of Life, pages 242–249. Weidenfeld and Nicolson, London, 1967.Google Scholar
[330] Carl H., Hamann, Andrew, Hamnett, and Wolf, Vielstich. Electrochemistry.Wiley, New York, completely revised and updated edition, 2007.Google Scholar
[331] Keiko, Hamano, Yutaka, Abe, and Hidenori, Genda. Emergence of two types of terrestrial planet on solidification of magma ocean. Nature, 497:607–610, 2013.Google Scholar
[332] William D., Hamilton. The genetical evolution of social behavior IJ. Theor. Biol., 7:1–16, 1964.Google Scholar
[333] William D., Hamilton. The genetical evolution of social behavior. II. J. Theor. Biol., 7:17–52, 1964.Google Scholar
[334] William D., Hamilton. Selfish and spiteful behavior in an evolutionary model. Nature, 228:1218–1220, 1970.Google Scholar
[335] Thomas, Handorf, Oliver, Ebenhöh, and Reinhart, Heinrich. Expanding metabolic networks: scopes of compounds, robustness, and evolution. J. Mol. Evol., 61:498–512, 2005.Google Scholar
[336] Chris, Hankin. Lambda Calculi: A Guide for Computer Scientists.Oxford University Press, New York, 1994.Google Scholar
[337] Ajith, Harish and Gustavo, Caetano-Anollés. Ribosomal history reveals origins of modern protein synthesis. PLoS ONE, 7:e32776, 2012.Google Scholar
[338] G. F., Hatfull and W. R. Jr., Jacobs, editors. Molecular Genetics of Mycobacteria, ASM Press, Washington, DC, 2000.Google Scholar
[339] Shuhei, Hattori, Johan A., Schmidt, Matthew S., Johnson, Sebastian O., Danielache, Akinori, Yamada, Yuichiro, Ueno, and Naohiro, Yoshida. SO2 photoexcitation mechanism links mass-independent sulfur isotopic fractionation in cryospheric sulfate to climate impacting volcanism. Proc. Natl. Acad. Sci. USA, 110:17656–17661, 2013.Google Scholar
[340] Mary E., Hawkins, Wolfgang, Pfleiderer, Oliver, Jungmann, and Frank M., Balis. Synthesis and fluorescence characterization of pteridine adenosine nucleoside analogs for DNA incorporation. Anal. Biochem., 298:231–240, 2001.Google Scholar
[341] Robert M., Hazen. Chiral crystal faces of common rock-forming minerals. In G., Palyi, C., Zucchi, and L., Cagglioti, editors, Progress in Biological Chirality, Chapter 11, pages 137–151. Elsevier, New York, 2004.Google Scholar
[342] Robert M., Hazen. Mineral surfaces and the prebiotic selection and organization of biomolecules (Presidential address to the Mineralogical Society of America). Am. Mineral., 91:1715–1729, 2006.Google Scholar
[343] Robert M., Hazen. Paleomineralogy of the Hadean eon: a preliminary species list. Am. J. Sci., 313:807–843, 2006.Google Scholar
[344] Robert M., Hazen and David W., Deamer. Hydrothermal reactions of pyruvic acid: synthesis, selection, and self-assembly of amphiphilic molecules. Orig. Life Evol. Biosphere, 37:143–152, 2007.Google Scholar
[345] Robert M., Hazen and John M., Ferry. Mineral evolution: mineralogy in the fourth dimension. Elements, 6:9–12, 2010.Google Scholar
[346] Robert M., Hazen and Dimitri A., Sverjensky. Mineral surfaces, geochemical complexities, and the origins of life. Cold Spring Harb. Perspect. Biol., 2:a002162, 2010.Google Scholar
[347] Robert M., Hazen, Edward S., Grew, Robert T., Downs, Joshua, Golden, and Grethe, Hystad. Mineral ecology: chance and necessity in the mineral diversity of terrestrial planets. Can. Mineral., in press, 2015.
[348] Robert M., Hazen, Dominic, Papineau, Wouter, Bleeker, Robert T., Downs, John M., Ferry, Timothy J., McCoy, Dimitri A., Sverjensky, and Heixiong, Yang. Mineral evolution. Am. Mineral., 93:1693–1720, 2008.Google Scholar
[349] Steffen, Heim, Andreas, Künkel, Rudolf K., Thauer, and Reiner, Hedderich. Thiol:fumarate reductase (Tfr) from Methanobacterium thermoautotrophicum identification of the catalytic sites for fumarate reduction and thiol oxidation. Eur. J. Biochem., 253:292–299, 1998.Google Scholar
[350] Wolfgang, Heinen and Anne Marie, Lauwers. Organic sulfur compounds resulting from the interaction of iron sulfide, hydrogen sulfide and carbon dioxide in an anaerobic aqueous environment. Orig. Life Evol. Biosphere, 26:131–150, 1996.Google Scholar
[351] Bettina, Heinz, Walter, Ried, and Klaus, Dose. Thermal generation of pteridines and flavines from amino acid mixtures. Angew. Chem. Int. Ed. Engl., 8:478–483, 1979.Google Scholar
[352] Eric, Herbst. Chemistry of star-forming regions. J. Phys. Chem., 109:4017–4029, 2005.Google Scholar
[353] Gloria, Herrmann, Elamparithi, Jayamani, Galina, Mai, and Wolfgang, Buckel. Energy conservation via electron-transferring flavoprotein in anaerobic bacteria. J. Bacteriol., 190:784–791, 2008.Google Scholar
[354] Matthew D., Herron, Armin, Rashidi, Deborah E., Shelton, and William W., Driscoll. Cellular differentiation and individuality in the ‘minor’ multicellular taxa. Biol. Rev., 88:844–861, 2013.Google Scholar
[355] Takeru, Higuchi, Lennart, Eberson, and Allen K., Herd. The intramolecular facilitated hydrolytic rates of methyl-substituted succinanilic acids. J. Am. Chem. Soc., 88:3805–3808, 1966.Google Scholar
[356] A., Hill and L. E., Orgel. Synthesis of adenine from HCN tetramer and ammonium formate. Orig. Life Evol. Biosphere, 32:99–102, 2002.Google Scholar
[357] T., Archer Hirst, editor. The Mechanical Theory of Heat.John van Voorst, London, 1865.Google Scholar
[358] Martin F., Hohmann-Marriott and Robert E., Blankenship. Evolution of photosynthesis. Annu. Rev. Plant Biol., 62:515–548, 2011.Google Scholar
[359] James F., Holden and Roy M., Daniel. The upper temperature limit for life based on hyperthermophile culture experiments and field observations. In William S. D., Wilcock, Edward F., DeLong, Deborah S., Kelley, John A., Baross, and S., Craig Cary, editors, The Subseafloor Biosphere at Mid-Ocean Ridges, pages 13–24. American Geophysical Soceity, vol. 144, Washington DC, 2004.Google Scholar
[360] James F., Holden, Melanie, Summit, and John A., Baross. Thermophilic and hyperthermophilic microorganisms in 3–30°C hydrothermal fluids following a deep-sea volcanic eruption. FEMS Microbiol. Ecol., 25:33–41, 1998.Google Scholar
[361] Nils G., Holm. Glasses as sources of condensed phosphates on the early earth. Geochem. Trans., 15:8, 2014.Google Scholar
[362] W. H., Holmes, I. D., Hamilton, and A. G., Robertson. The rate of turnover of the adenosine triphosphate pool of Escherichia coli growing aerobically in simple defined media. Arch. Microbiol., 83:95–109, 1972.Google Scholar
[363] Helge, Holo. Chloroflexus aurantiacus secretes 3-hydroxypropionate, a possible intermediate in the assimilation of CO2 and acetate. Arch. Microbiol., 151:252–256, 1989.Google Scholar
[364] H., Holo and D., Grace. Polyglucose synthesis in Chloroflexus aurantiacus studied by 13C-NMR. Evidence for acetate metabolism by a new metabolic pathway in autotrophically grown cells. Arch. Microbiol., 148:292–297, 1987.Google Scholar
[365] Michelle D., Hopkins, T., Mark Harrison, and Craig E., Manning. Constraints on Hadean geodynamics from mineral inclusions in >4 Ga zircons. Earth Planet. Sci. Lett., 298:367–376, 2010.Google Scholar
[366] Wim, Hordijk and Mike, Steel. Detecting autocatalytic, self-sustaining sets in chemical reaction systems. J. Theor. Biol., 227:451–461, 2004.Google Scholar
[367] Wim, Hordijk, Stuart A., Kauffman, and Mike, Steel. Required levels of catalysis for emergence of autocatalytic sets in models of chemical reaction systems. Int. J. Mol. Sci., 12:3085–3101, 2011.Google Scholar
[368] Wim, Hordijk, Mike, Steel, and Stuart, Kauffman. The structure of autocatalytic sets: evolvability, enablement, and emergence. Acta Biotheor., 60:379–392, 2012. arXiv:1205.0584v2.Google Scholar
[369] Juske, Horita and Michael E., Berndt. Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science, 285:1055–1057, 1999.Google Scholar
[370] N. H., Horowitz. On the evolution of biochemical synthesis. Proc. Natl. Acad. Sci. USA, 31:153–157, 1945.Google Scholar
[371] Chiaolong, Hsiao, I.-Chun, Chou, C., Denise Okafor, Jessica C., Bowman, Eric B., O'Neill, Shreyas S., Athavale, Anton S., Petrov, Nicholas V., Hud, Roger M., Wartell, Stephen C., Harvey, and Loren Dean, Williams. Iron(II) plus RNA can catalyze electron transfer. Nature Chem., 5:525–528, 2013.Google Scholar
[372] Chiaolong, Hsiao, Srividya, Mohan, Benson K., Kalahar, and Loren Dean, Williams. Peeling the onion: establishing a chronology of early ribosome evolution. Mol. Biol. Evol., 26:2415–2425, 2009.Google Scholar
[373] Kerson, Huang. Statistical Mechanics.Wiley, New York, 1987.Google Scholar
[374] Teng, Huang and Verne, Schirch. Mechanism for the coupling of ATP hydrolysis to the conversion of 5-formyltetrahydrofolate to 5,10-methenyltetrahydrofolate. J. Biol. Chem., 270(38):22296–22300, 1995.Google Scholar
[375] Wenhua, Huang and James P., Ferris. Synthesis of 35–40mers of RNA oligomers from unblocked monomers. A simple approach to the RNA world. Chem. Commun., 2003:1458–1459, 2003.Google Scholar
[376] Zhimin, Huang, Liang, Zhu, Yan, Cao, Geng, Wu, Xinyi, Liu, Yingyi, Chen, Qi, Wang, Ting, Shi, Yaxue, Zhao, Yuefei, Wang, Weihua, Li, Yixue, Li, Haifeng, Chen, Chen, Guoqiang, and Jian, Zhang. ASD: a comprehensive database of allosteric proteins and modulators. Nucleic Acids Res., 39:D663–D669, 2011.Google Scholar
[377] Claudia, Huber and Günter, Wächtershäuser. Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions. Science, 276:245–247, 1997.Google Scholar
[378] Claudia, Huber and Günter, Wächtershäuser. Primordial reductive amination revisited. Tetrahedron Lett., 44:1695–1697, 2003.Google Scholar
[379] Harald, Huber, Martin, Gallenberger, Ulrike, Jahn, Eva, Eylert, Ivan A., Berg, Daniel, Kockelkorn, Wolfgang, Eisenreich, and Georg, Fuchs. A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic archaeum Ignicoccus hospitalis. Proc. Natl. Acad. Sci. USA, 105:7851–7856, 2008.Google Scholar
[380] Philip, Hugenholtz, Brett M., Goebel, and Norman R., Pace. Impact of cultureindependent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol., 180:4765–4774, 1998.Google Scholar
[381] Michael, Hügler and S. M., Seivert. Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. Annu. Rev. Marine Sci., 3:261–289, 2011.Google Scholar
[382] Michael, Hügler, Harald, Huber, Stephen J., Molyneaux, Costantino, Vetriani, and Stefan M., Seivert. Autotrophic CO2 fixation via the reductive tricarboxylic acid cycle in different lineages within the phylum Aquificae: evidence for two ways of citrate cleavage. Env. Microbiol., 9:81–92, 2007.Google Scholar
[383] J. R., Hulston and H. G., Thode. Variations in the S33, S34, and S33 contents of meteorites and their relation to chemical and nuclear effects. J. Geophys. Res., 70:3475–3484, 1965.Google Scholar
[384] Donald M., Hunten. Thermal and non-thermal escape mechanisms for terrestrial bodies. Planet. Space Sci., 30:773, 1982.Google Scholar
[385] James, Hury, Uma, Nagaswamy, Maia, Larios-Sanz, and George E., Fox. Ribosome origins: the relative age of 23S rRNA domains. Orig. Life Evol. Biosphere, 36:421–429, 2006.Google Scholar
[386] Aldous, Huxley. Literature and Science.Ox Bow Press, Woodbridge, CT, 1991.Google Scholar
[387] Abdul-Aziz, Ingar, Richard W. A., Luke, Barry R., Hayter, and John D., Sutherland. Synthesis of cytidine ribonucleotides by stepwise assembly of the heterocycle on a sugar phosphate. ChemBioChem, 4:504–507, 2003.Google Scholar
[388] Naoki, Irie and Shigeru, Kuratani. Comparative transcriptome analysis reveals vertebrate phylotipic period during organogenesis. Nature Commun., 2:248, 2011.Google Scholar
[389] F., Jacob and J., Monod. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol., 3:318–356, 1961.Google Scholar
[390] Kenneth D., James and Andrew D., Ellington. The fidelity of template-directed oligonucleotide ligation and the inevitability of polymerase function. Orig. Life Evol. Biosphere, 29:375–390, 1999.Google Scholar
[391] E. T., Jaynes. Information theory and statistical mechanics. Phys. Rev., 106:620–630, 1957. Reprinted in [680].Google Scholar
[392] E. T., Jaynes. Information theory and statistical mechanics. II. Phys. Rev., 108:171–190, 1957. Reprinted in [680].Google Scholar
[393] E. T., Jaynes. The minimum entropy production principle. Annu. Rev. Phys. Chem., 31:579–601, 1980.Google Scholar
[394] E. T., Jaynes. Probability Theory: The Logic of Science.Cambridge University Press, New York, 2003.Google Scholar
[395] James, Jeans. Dynamical Theory of Gases.Cambridge University Press, London, fourth edition, 2009. Original edition, 1916.Google Scholar
[396] Harold, Jeffreys. An invariant form for the prior probability in estimation problems. Proc. R. Soc. London, Ser. A, 186:453–461, 1946.Google Scholar
[397] Harold, Jeffreys. Scientific Inference.Cambridge University Press, London, second edition, 1957.Google Scholar
[398] W. J., Jenkins, J. M., Edmond, and J. B., Corliss. Excess 3He and 4He in Galapagos submarine hydrothermal waters. Nature, 272:156–158, 1978.Google Scholar
[399] Roy A., Jensen. Enzyme recruitment in evolution of new function. Annu. Rev. Microbiol., 30:409–425, 1976.Google Scholar
[400] Ying, Ji and Henri-Claude, Nataf. Detection of mantle plumes in the lower mantle by diffraction tomography: Hawaii. Earth Planet. Sci. Lett., 159:99–115, 1998.Google Scholar
[401] Haixia, Jia, Cris, Moore, and Bart, Selman. From spin glasses to hard satisfiable formulas. In Holger H., Hoos and David G., Mitchell, editors, Theory and Applications of Satisfiability Testing, Lecture Notes in Computer Science, volume 3542, pages 199–210. Springer, New York, 2005.Google Scholar
[402] Fatima D., Jones and Scott A., Strobel. Ionization of a critical adenosine residue in the Neurospora Varkud satellite ribozyme active site. Biochem., 42:4265–4276, 2003.Google Scholar
[403] Gerald F., Joyce. Foreword. In David W., Deamer and Gail R., Fleischaker, editors, Origins of Life: The Central Concepts, pages xi–xii. Jones and Bartlett, Boston, MA, 1994.Google Scholar
[404] Martin, Jung. Polymerisation in Bilayers. PhD Thesis, Technische Universiteit Eindhoven, 2000.Google Scholar
[405] Christopher T., Jurgenson, Tadhg P., Begley, and Steven E., Ealick. The structural and biochemical foundations of thiamin biosynthesis. Annu. Rev. Biochem., 78(1):569–603, 2009.Google Scholar
[406] Ville R. I., Kaila, Michael I., Verkhovsky, and Mårten, Wikström. Proton-coupled electron transfer in cytochrome oxidase. Chem. Rev., 110:7062–7081, 2010.Google Scholar
[407] Roland G., Kallen and William P., Jencks. The dissociation constants of tetrahydrofolic acid. J. Biol. Chem., 241:5845–5850, 1966.Google Scholar
[408] Alex, Kamenev. Keldysh and Doi–Peliti techniques for out-of-equilibrium systems. In I. V., Lerner, B. L, Althsuler, V. I., Fal′ko, and T., Giamarchi, editors, Strongly Correlated Fermions and Bosons in Low-Dimensional Disordered Systems, pages 313–340. Springer-Verlag, Heidelberg, 2002.Google Scholar
[409] Masafumi, Kameya, Hiroyuki, Arai, Masaharu, Ishii, and Yasuo, Igarashi. Purification of three aminotransferases from Hydrogenobacter thermophilus TK-6 – novel types of alanine or glycine aminotransferase: enzymes and catalysis. FEBS J., 277:1876–1885, 2010. PMID: 20214682.Google Scholar
[410] Anastassia, Kanavarioti, Pierre-Alain, Monnard, and David W., Deamer. Eutectic phases in ice facilitate nonenzymatic nucleic acid synthesis. Astrobiology, 1:271–281, 2001.Google Scholar
[411] M., Kanehisa. The KEGG database. Novartis Found. Symp., 247:91–101, 2002. www.genome.ad.jp/kegg/.Google Scholar
[412] Peter D., Karp, Monica, Riley, Suzanne M., Paley, and Alida, Pellegrini-Toole. The MetaCyc database. Nucleic Acids Res., 30:59–61, 2002. http://ecocyc.org/ecocyc/metacyc.html.Google Scholar
[413] L., Karp-Boss and P. A., Jumars. Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion. Oceanogr. Marine Biol. Annu. Rev., 34:71–107, 1996.Google Scholar
[414] Lee, Karp-Boss and Peter A., Jumars. Motion of diatom chains in a steady shear flow. Limnol. Oceanogr., 43:1767–1773, 1998.Google Scholar
[415] Anne-Kristin, Kaster, Johanna, Moll, Kristian, Parey, and Rudolf K., Thauer. Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea. Proc. Natl. Acad. Sci. USA, 108:2981–2986, 2012.Google Scholar
[416] J. F., Kasting and T. P., Ackerman. Climatic consequences of very high CO2 levels in the early Earth's atmosphere. Science, 234:1383–1385, 1986.Google Scholar
[417] James F., Kasting and David, Catling. Evolution of a habitable planet. Annu. Rev. Astron. Astrophys., 41:429–463, 2003.Google Scholar
[418] James F., Kasting and M., Tazewell Howard. Atmosphere composition and climate on the early Earth. Philos. Trans. R. Soc. London, Ser. B, 361:1733–1742, 2006.Google Scholar
[419] James F., Kasting and James B., Pollack. Loss of water from Venus. I Hydrodynamic escape of hydrogen. Icarus, 53:479–508, 1983.Google Scholar
[420] J. F., Kasting, K. J., Zahnle, and J. C. G., Walker. Photochemistry of methane in the Earth's early atmosphere. Precambrian Res., 20:121–148, 1983.Google Scholar
[421] Richard F., Katz, Marc, Spiegelman, and Charles H., Langmuir. A new parameterization of hydrous mantle melting. Geochem. Geophys. Geosyst., 4:1073, 2003. doi:10.1029/2002GC000433.Google Scholar
[422] Stuart A., Kauffman. Autocatalytic sets of proteins. J. Theor. Biol., 119:1–24, 1986.Google Scholar
[423] Alan J., Kaufman, David T., Johnston, James, Farquhar, Andrew L., Masterson, Timothy W., Lyons, Steve, Bates, Ariel D., Anbar, Gail L., Arnold, Jessica, Garvin, and Roger, Buick. Late Archean biospheric oxygenation and atmospheric evolution. Science, 317:1900–1903, 2007.Google Scholar
[424] Jonathan Z., Kaye and John A., Baross. High incidence of halotolerant bacteria in Pacific hydrothermal vent and pelagic environments. FEMS Microbiol. Ecol., 32:429–460, 2000.Google Scholar
[425] Patrick J., Keeling and Jeffrey D., Palmer. Horizontal gene transfer in eukaryotic evolution. Nature Rev. Genet., 9:605–628, 2008.Google Scholar
[426] Deborah S., Kelley. From the mantle to microbes: the Lost City hydrothermal field. Oceanography, 18:32–45, 2005.Google Scholar
[427] Deborah S., Kelley, John A., Baross, and John R., Delaney. Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annu. Rev. Earth Planet. Sci., 30:385–491, 2002.Google Scholar
[428] Deborah S., Kelley, Jeffrey A., Karson, Donna K., Blackman, Gretchen L., Früh-Green, David A, Butterfield, Marvin D., Lilley, Eric J., Olson, Matthew O., Schrenk, Kevin K., Roe, Geoff T., Lebon, Pete, Rivizzigno, and the AT3-60 Shipboard Party. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N. Nature, 412:145–149, 2001.Google Scholar
[429] Deborah S., Kelley, Jeffrey A., Karson, Gretchen L., Früh-Green, Dana R., Yoerger, Timothy M., Shank, David A., Butterfield, John M., Hayes, Matthew O., Schrenk, Eric J., Olson, Giora, Proskurowski, Mike, Jakuba, Al, Bradley, Ben, Larson, Kristin, Ludwig, Deborah, Glickson, Kate, Buckman, Alexander S., Bradley, William J., Brazelton, Kevin, Roe, Mitch J., Elend, Ad'elie, Delacour, Stefano M., Bernasconi, Marvin D., Lilley, John A., Baross, Roger E., Summons, and Sean P., Sylva. A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science, 307:1428–1434, 2005.Google Scholar
[430] J. M., Keynes. A Treatise on Probability.MacMillan, London, 1921.Google Scholar
[431] John Maynard, Keynes. The Collected Writings of John Maynard Keynes: Volume 4, A Tract on Monetary Reform.Cambridge University Press, London, 2012.Google Scholar
[432] P., Kharecha, J., Kasting, and J., Seifert. A coupled atmosphere-ecosystem model of the early Archean Earth. Geobiology, 3:53–76, 2005.Google Scholar
[433] Olga, Khersonsky and Dan S., Tawfik. Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu. Rev. Biochem., 79:471–505, 2010.Google Scholar
[434] Olga, Khersonsky, Sergey, Malitsky, Ilana, Rogachev, and Dan S., Tawfik. Role of chemistry versus substrate binding in recruiting promiscuous enzyme functions. Biochemistry, 50:2683–2690, 2011.Google Scholar
[435] Goro, Kikuchi. The glycine cleavage system: composition, reaction mechanism, and physiological significance. Mol. Cell. Biochem., 1:169–187, 1973.Google Scholar
[436] J., Dongun Kim, Augustina, Rodriguez-Granillo, David A., Case, Vikas, Nanda, and Paul G., Falkowski. Energetic selection of topology in ferredoxins. PLoS Comp. Biol., 8:e1002463, 2012.Google Scholar
[437] Jonsun, Kim and D. C., Rees. Structural models for the metal centers in the nitrogenase molybdenum-iron protein. Science, 257(5077):1677–1682, 1992.Google Scholar
[438] Juhan, Kim, Jamie P., Kershner, Yehor, Novikov, Richard K., Shoemaker, and Shelley D., Copley. Three serendipitous pathways in E. coli can bypass a block in pyridoxal-5′-phosphate synthesis. Mol. Syst. Biol., 6:436:1–13, 2010.Google Scholar
[439] Mark, Kirkpatrick, Toby, Johnson, and Nick, Barton. General models of multilocus evolution. Genetics, 161:1727–1750, 2002.Google Scholar
[440] Marc, Kirschner and John, Gerhart. Evolvability. Proc. Natl. Acad. Sci. USA, 95(15):8420–8427, 1998.Google Scholar
[441] Charles, Kittel and Herbert, Kroemer. Thermal Physics.Freeman, New York, second edition, 1980.Google Scholar
[442] Robin D., Knight, Steven J., Freeland, and Laura F., Landweber. Selection, history and chemistry: the three faces of the genetic code. Trends Biochem. Sci., 24:241–247, 1999.Google Scholar
[443] Robin D., Knight, Steven J., Freeland, and Laura F., Landweber. Rewiring the keyboard: evolvability of the genetic code. Nature. Rev. Genet., 2:49–58, 2001.Google Scholar
[444] Andrew H., Knoll. Life on a Young Planet.Princeton University Press, Princeton, NJ, 2003.Google Scholar
[445] Martin, Kochmański, Tadeusz, Paszkiewicz, and Slawomir, Wolski. Curie–Weiss magnet – a simple model of phase transition. Eur. J. Phys., 34:1555–1573, 2013.Google Scholar
[446] John B., Kogut and Mikhail A., Stephanov. The Phases of Quantum Chromodynamics: From Confinement to Extreme Environments.Cambridge University Press, Cambridge, 2004.Google Scholar
[447] A. N., Kolmogorov. New metric invariant of transitive dynamical systems and endomorphisms of Lebesgue spaces. Dokl. Akad. Nauk SSSR, 119:861–864, 1958.Google Scholar
[448] A. N., Kolmogorov. Entropy per unit time as a metric invariant of automorphism. Dokl. Akad. Nauk SSSR, 124:754–755, 1959.Google Scholar
[449] Andrey, Kolmogorov. On tables of random numbers. Sankhyā Ser. A, 25:369–375, 1963. Reprinted in [450].Google Scholar
[450] Andrey, Kolmogorov. On tables of random numbers. Theor. Comput. Sci., 207:387–395, 1998.Google Scholar
[451] Dilip, Kondepudi and Ilya, Prigogine. Modern Thermodynamics: From Heat Engines to Dissipative Structures.Wiley, New York, 1998.Google Scholar
[452] Eugene V., Koonin and William, Martin. On the origin of genomes and cells within inorganic compartments. Trends Genet., 21:647–654, 2005.Google Scholar
[453] Jun, Korenaga. Initiation and evolution of plate tectonics on Earth: theories and observations. Annu. Rev. Earth Planet. Sci., 41:117–151, 2013.Google Scholar
[454] Arthur, Kornberg, Narayana N., Rao, and Dana, Ault-Riché. Inorganic polyphosphate: a molecule of many functions. Annu. Rev. Biochem., 68:89–125, 1999.Google Scholar
[455] David C., Krakauer and Joshua B., Plotkin. Redundancy, antiredundancy, and the robustness of genomes. Proc. Natl. Acad. Sci. USA, 99:1405–1409, 2002.Google Scholar
[456] H. A., Krebs and W. A., Johnson. The role of citric acid in intermediate metabolism in animal tissues. Enzymologia, 4:148–156, 1937.Google Scholar
[457] Supriya, Krishnamurthy, Eric, Smith, David C., Krakauer, and Walter, Fontana. The stochastic behavior of a molecular switching circuit with feedback. Biol. Direct, 2:13, 2007. PMID: 17540019.Google Scholar
[458] K., Kruger, P. J., Grabowski, A. J., Zaug, J., Sands, D. E., Gottschling, and T. R., Cech. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell, 31:147–157, 1982.Google Scholar
[459] Thomas S., Kuhn. The Structure of Scientific Revolutions.University of Chicago Press, Chicago, IL, 1962.Google Scholar
[460] A., Kuki and P. G., Wolynes. Electron tunneling paths in proteins. Science, 236:1647–1652, 2000.Google Scholar
[461] I. S., Kulaev. Biochemistry of inorganic polyphosphates. Rev. Physiol. Biochem. Pharmacol., 73:131–158, 1975.Google Scholar
[462] I. S., Kulaev, V. M., Vagabov, and T. V., Kulakovskaya. The Biochemistry of Inorganic Polyphosphates.Wiley, New York, second edition, 2004.Google Scholar
[463] Lee R., Kump and William E. Jr, Seyfried. Hydrothermal Fe fluxes during the Precambrian: effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers. Earth Planet. Sci. Lett., 235:654–662, 2005.Google Scholar
[464] Chi-Horng, Kuo and Howard, Ochman. Inferring clocks when lacking rocks: the variable rates of molecular evolution in bacteria. Biol. Direct, 4:35, 2009.Google Scholar
[465] Jorge, Kurchan. Six out of equilibrium lectures. In Thierry, Dauxois, Stefano, Ruffo, and Leticia F., Cugliandolo, editors, Long-range interacting Systems, Chapter 2. Oxford University Press, Oxford, 2010.Google Scholar
[466] Noam, Lahav. Biogenesis: Theories of Life's Origin.Oxford University Press, London, 1999.Google Scholar
[467] Jean-Baptiste, Lamarck. Philosophie Zoologique ou Exposition des Considérations Relatives à l'Histoire Naturelle des Animaux.Cambridge University Press, London, 2011. Original edition, 1809.CrossRefGoogle Scholar
[468] L. D., Landau. Theory of phase transformations. Zh. Eksp. Teor. Fiz., 7:19–32, 1937.Google Scholar
[469] R., Landauer. Irreversibility and heat generation in the computing process. IBM J. Res. Dev., 3:183–191, 1961.Google Scholar
[470] Nick, Lane. Power, Sex, Suicide: Mitochondria and the Meaning of Life.Oxford University Press, Oxford, 2005.Google Scholar
[471] Nick, Lane. Why are cells powered by proton gradients?Nature Ed., 3:18, 2010.Google Scholar
[472] Nick, Lane and William, Martin. The energetics of genome complexity. Nature, 467:929–934, 2010.Google Scholar
[473] Nick, Lane and William F., Martin. The origin of membrane bioenergetics. Cell, 151:1406–1416, 2012.Google Scholar
[474] Nick, Lane, John F., Allen, and William, Martin. How did LUCA make a living? Chemiosmosis in the origin of life. Bioessays, 32:271–280, 2010.Google Scholar
[475] Nick, Lane, William F., Martin, John A., Raven, and John F., Allen. Energy, genes, and evolution: introduction to an evolutionary synthesis. Philos. Trans. R. Soc. London, Ser. B, 368:1–5, 2013.Google Scholar
[476] Susan Q., Lang, David A., Butterfield, Mitch, Schulte, Deborah S., Kelley, and Marvin D., Lilley. Elevated concentrations of formate, acetate, and dissolved organic carbon found at the Lost City hydrothermal field. Geochim. Cosmochim. Acta, 74:941–952, 2010.Google Scholar
[477] Charles H., Langmuir and Donald W., Forsyth. Mantle melting beneath mid-ocean ridges. Oceanography, 20:78–89, 2007.Google Scholar
[478] Pierre Simon, Laplace. Mémoire sur la probabilité des causes par les évènements. Mém. Acad. Sci. Paris, 6:621–656, 1774.Google Scholar
[479] Pierre Simon, Laplace. Mémoire sur les approximations des formules qui sont fonctions de très grands nombres et sur leur application aux probabilités. Mém. Acad. R. Sci. Paris, année 1809:353–415, 1810.Google Scholar
[480] Yanm, Lei, Shuang, Zhang, Peng, Chen, Hetao, Liu, Huanhuan, Yin, and Hongyu, Li. Magnetotactic bacteria, magnetosomes and their application. Microbiol. Res., 167:507–519, 2012.Google Scholar
[481] Joseph W., Lengeler, Gerhart, Drews, and Hans G., Schlegel. Biology of the Prokaryotes.Blackwell Science, New York, 1999.Google Scholar
[482] Richard C., Lewontin. The units of selection. Annu. Rev. Ecol. System., 1:1–18, 1970.Google Scholar
[483] Richard C., Lewontin. The Genetic Basis of Evolutionary Change.Columbia University Press, New York, 1974.Google Scholar
[484] Fuli, Li, Julia, Hinderberger, Henning, Seedorf, Jin, Zhang, Wolfgang, Buckel, and Rudolf K., Thauer. Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri. J. Bacteriol., 190:843–850, 2008.Google Scholar
[485] Ming, Li and Paul, Vitányi. An Introduction to Kolmogorov Complexity and its Applications.Springer, Heidelberg, third edition, 2008.Google Scholar
[486] Zheng-Xue, Anser Li and Cin-Ty, Aeolus Lee. The constancy of upper mantle fO2 through time inferred from V/Sc ratios in basalts. Earth Planet. Sci. Lett., 228:483–493, 2004.Google Scholar
[487] Li-Hung, Lin, Pei-Ling, Wang, Douglas, Rumble, Johanna, Lippmann-Pipke, Erik, Boice, Lisa M., Pratt, Barbara Sherwood, Lollar, Eoin L., Brodie, Terry C., Hazen, Gary L., Andersen, Todd Z., DeSantis, Duane P., Moser, Dave, Kershaw, and T. C., Onstott. Long-term sustainability of a high-energy, low-diversity crustal biome. Science, 314:479–482, 2006.Google Scholar
[488] Tracy A., Lincoln and Gerald F., Joyce. Self-sustained replication of an RNA enzyme. Science, 323:1229–1232, 2009.Google Scholar
[489] Andrea J., Liu and Sidney R., Nagel. Nonlinear dynamics: jamming is not just cool any more. Nature, 396:21–22, 1998.Google Scholar
[490] Yongqing, Liu, Jizhong, Zhou, Marina V., Omelchenko, Alex S., Beliaev, Amudhan, Venkateswaran, Julia, Stair, Liyou, Wu, Dorothea K., Thompson, Dong, Xu, Igor B., Rogozin, Elena K., Gaidamakova, Min, Zhai, Kira S., Makarova, Eugene V., Koonin, and Michael J., Daly. Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation. Proc. Natl. Acad. Sci. USA, 100:4191–4196, 2003.Google Scholar
[491] L., Ljungdahl and H. G., Wood. Incorporation of C14 from carbon dioxide into sugar phosphates, carboxylic acids, and amino acids by Clostridium thermoaceticum. J. Bacteriol., 89:1055–1064, 1965.Google Scholar
[492] L., Ljungdahl, E., Irion, and H. G., Wood. Total synthesis of acetate from CO2. I. CO-methylcobyric acid and CO-(methyl)-5-methoxybenzimidazolylcobamide as intermediates with Clostridium thermoaceticum. Biochemistry, 4:2771–2780, 1965.Google Scholar
[493] Elisabeth A., Lloyd. The Structure and Confirmation of Evolutionary Theory.Princeton University Press, Princeton, NJ, 1994.Google Scholar
[494] S. J., Lloyd, H., Lauble, G. S., Prasad, and C. D., Stout. The mechanism of aconitase: 1.8 Å resolution crystal structure of the S642A:citrate complex. Protein Sci., 8:2655–2662, 1999.Google Scholar
[495] Jonathan, Lombard and David, Moreira. Early evolution of the biotin-dependent carboxylase family. BMC Evol. Biol., 11:232:1–22, 2011.Google Scholar
[496] Purificación, López-García, David, Moreira, and Juli, Peretó. Origin and evolution of compartments. In Muriel, Gargaud, Phillippe, Claeys, Purificación, López-García, Hervé, Martin, Thierry, Montmerle, Robert, Pascal, and Jacques, Reisse, editors, From Suns to Life: a Chronological Approach to the History of Life on Earth, pages 171–174. Springer, Dordrecht, 2006.Google Scholar
[497] James, Lovelock. Gaia: A New Look at Life on Earth.Oxford University Press, London, 2000.Google Scholar
[498] Donald R., Lowe and Michael M., Tice. Geologic evidence for Archean atmospheric and climatic CO2, CH4, and O2 with an overriding tectonic control. Geology, 36:493–496, 2004.Google Scholar
[499] Robert P., Lowell, Peter A., Rona, and Richard P., Von Herzen. Seafloor hydrothermal systems. J. Geophys. Res., 100:327–352, 1995.Google Scholar
[500] Kristin A., Ludwig, Chuan-Chou, Shen, Deborah S., Kelley, Hai, Cheng, and R., Lawrence Edwards. U–Th systematics and 230Th ages of carbonate chimneys at the Lost City hydrothermal field. Geochim. Cosmochim. Acta, 75:1869–1888, 2011.Google Scholar
[501] Pier Luigi, Luisi. The Emergence of Life: From Chemical Origins to Synthetic Biology.Cambridge University Press, London, 2006.Google Scholar
[502] Pier Luigi, Luisi, Peter, Walde, and Thomas, Oberholzer. Lipid vesicles as possible intermediates in the origin of life. Curr. Op. Colloids Interface Sci., 4:33–39, 1999.Google Scholar
[503] John E., Lupton, Edward T., Baker, and Gary J., Massoth. Helium, heat, and the generation of hydrothermal event plumes at mid-ocean ridges. Earth Planet. Sci. Lett., 171:343–350, 1999.Google Scholar
[504] Richard A., Lutz, Timothy M., Shank, Daniel J., Fornari, Rachel M., Haymon, Marvin D., Lilley, Karen L., Von Damm, and Daniel, Desbruyeres. Rapid growth at deep-sea vents. Nature, 371:663–664, 1994.Google Scholar
[505] Vittorio, Luzzati and A., Tardieu. Lipid phases: structure and structural transitions. Annu. Rev. Phys. Chem., 25:79–94, 1974.Google Scholar
[506] Shang-Keng, Ma. Modern Theory of Critical Phenomena.Perseus, New York, 1976.Google Scholar
[507] Robert E., MacKenzie. Biogenesis and interconversion of substituted tetrahydrofolates. In Raymond L., Blakely and Stephen J., Benkovic, editors, Folates and Pterins, vol. 1: Chemistry and Biochemistry of Folates, pages 255–306. John Wiley & Sons, New York, 1984.Google Scholar
[508] David W. C., MacMillan. The advent and development of organocatalysis. Nature, 455:304–308, 2008.Google Scholar
[509] B. Edward, H. Maden. Tetrahydrofolate and tetrahydromethanopterin compared: functionally distinct carriers in C1 metabolism. Biochem. J., 350:609–629, 2000.Google Scholar
[510] Robert S., Maier and D. L., Stein. Effect of focusing and caustics on exit phenomena in systems lacking detailed balance. Phys. Rev. Lett., 71:1783–1786, 1993.Google Scholar
[511] Robert S., Maier and D. L., Stein. Oscillatory behavior of the rate of escape through an unstable limit cycle. Phys. Rev. Lett., 77:4860–4863, 1996.Google Scholar
[512] Stephen, Maitzen. Stop asking why there's anything. Erkenntnis, 77:51–63, 2012.Google Scholar
[513] Thomas Robert, Malthus. An Essay on the Principle of Population.Cosimo, New York, 2007. Original edition, 1798.Google Scholar
[514] I., Mamajanov and J., Herzfeld. HCN polymers characterized by SSNMR: solid state reaction of crystalline tetramer (diaminomaleonitrile). J. Chem. Phys., 130:134504, 2009.Google Scholar
[515] Michael L., Manapat, Irene A., Chen, and Martin A., Nowak. The basic reproductive ratio of life. J. Theor. Biol., 263:317–327, 2010.Google Scholar
[516] Benoit, Mandelbrot. The role of sufficiency and of estimation in thermodynamics. Ann. Math. Stat., 33:1021–1038, 1962.Google Scholar
[517] Craig E., Manning, Stephen J., Mojzsis, and T., Mark Harrison. Geology, age and origin of supracrustal rocks at Akilia, West Greenland. Am. J. Sci., 306:303–366, 2006.Google Scholar
[518] Lynn, Margulis and Karlene V., Schwartz. Five Kingdoms: An Illustrated Guide to the Phyla of Life on Earth.W. H. Freeman, New York, 1998.Google Scholar
[519] Stephanie, Markert, Cordelia, Arndt, Horst, Felbeck, Dörte, Becher, Stefan M., Sievert, Michael, Hügler, Dirk, Albrecht, Julie, Robidart, Shellie, Bench, Robert A., Feldman, Michael, Hecker, and Thomas, Schweder. Physiological proteomics of the uncultured endosymbiont of Riftia pachyptila. Science, 315:247–250, 2007.Google Scholar
[520] Ana Filipa A., Marques, Fernando J. A. S., Barriga, Valerie, Chavagnac, and Yves, Fouquet. Mineralogy, geochemistry, and Nd isotope composition of the Rainbow hydrothermal field, Mid-Atlantic Ridge. Miner. Deposita, 41:52–67, 2006.Google Scholar
[521] Pablo A., Marquet, Andrew P., Allen, James H., Brown, Jennifer A., Dunne, Brian J., Enquist, James F., Gillooly, Patricia A., Gowaty, Jessica L., Green, John, Harte, Steve P., Hubbell, James, O'Dwyer, Jordan G., Okie, Annette, Ostling, Mark, Ritchie, David, Storch, and Geoffrey B., West. On theory in ecology. BioScience, 64(8):701–710, 2014.Google Scholar
[522] P. C., Martin, E. D., Siggia, and H. A., Rose. Statistical dynamics of classical systems. Phys. Rev. A, 8:423–437, 1973.Google Scholar
[523] William F., Martin. Hydrogen, metals, bifurcating electrons, and proton gradients: the early evolution of biological energy conservation. FEBS Lett., 586:485–493, 2012.Google Scholar
[524] William, Martin and Michael J., Russell. On the origin of cells: an hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos. Trans. R. Soc. London, Ser. B, 358:27–85, 2003.Google Scholar
[525] William, Martin and Michael J., Russell. On the origin of biochemistry at an alkaline hydrothermal vent. Philos. Trans. R. Soc. London, Ser. B, 362:1887–1926, 2007.Google Scholar
[526] William, Martin, John, Baross, Deborah, Kelley, and Michael J., Russell. Hydrothermal vents and the origin of life. Nature Rev. Microbiol., 6:805–814, 2008.Google Scholar
[527] William F., Martin, Filipa L., Fousa, and Nick, Lane. Energy at life's origin. Science, 344:1092–1093, 2014.Google Scholar
[528] Berta M., Martins, Holger, Dobbek, Irfan, Cinkaya, Wolfgang, Buckel, and Albrecht, Messerschmidt. Crystal structure of 4-hydroxybutyryl-CoA dehydratase: radical catalysis involving a [4Fe-4S] cluster and flavin. Proc. Natl. Acad. Sci. USA, 101(44):15645–15649, 2004.Google Scholar
[529] C. N., Matthews and R. D., Minnard. Hydrogen cyanide polymers, comets and the origin of life. Faraday Discuss., 133:393–401, 2006.Google Scholar
[530] John S., Mattick and Michael J., Gagen. The evolution of controlled multitasked gene networks: the role of introns and other noncoding RNAs in the development of complex organisms. Mol. Biol. Evol., 18:1611–1630, 2004.Google Scholar
[531] Daniel C., Mattis and M., Lawrence Glasser. The uses of quantum field theory in diffusion-limited reactions. Rev. Mod. Phys, 70:979–1001, 1998.Google Scholar
[532] Fabio, Mavelli and Pier L., Luisi. Autopoietic self-reproducing vesicles: a simplified kinetic model. J. Phys. Chem., 100:16600–16607, 1998.Google Scholar
[533] Ernst, Mayr. Where are we? Cold Spring Harbor Symp. Quant. Biol., 24:1–14, 1959.Google Scholar
[534] Ernst, Mayr. The Growth of Biological Thought: Diversity, Evolution, and Inheritance.Harvard University Press, Cambridge, MA, 1985.Google Scholar
[535] Ernst, Mayr. A natural system of organisms. Nature, 348:491, 1990.Google Scholar
[536] Ernst, Mayr. More natural classification. Nature, 353:122, 1991.Google Scholar
[537] Ernst, Mayr. The objects of selection. Proc. Natl. Acad. Sci. USA, 94:2091–2094, 1997.Google Scholar
[538] Ernst, Mayr. Two empires or three?Proc. Natl. Acad. Sci. USA, 95:9720–9723, 1998.Google Scholar
[539] Catherine A., McCammon. Mantle oxidation state and oxygen fugacity: constraints on mantle chemistry, structure, and dynamics. In R. D., Van Der Hilst, J. D., Bass, J., Mates, and J., Trampert, editors, Earth's Deep Mantle: Structure, Composition, and Evolution, pages 219–240. American Geophysical Union, Washington, DC, 2005.Google Scholar
[540] Gordon, McCleod, Christopher, McKeown, Allan J., Hall, and Michael J., Russell. Hydrothermal and oceanic pH conditions of possible relevance to the origin of life. Orig. Life Evol. Biosphere, 24:19–41, 1994.Google Scholar
[541] Thomas M., McCollom. Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa. J. Geophys. Res., 104:30729–30742, 1999.Google Scholar
[542] Thomas M., McCollom. Laboratory simulations of abiotic hydrocarbon formation in Earth's deep subsurface. Rev. Mineral. Geochem., 75:467–494, 2013.Google Scholar
[543] Thomas M., McCollom and Jeffrey S., Seewald. A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine. Geochim. Cosmochim. Acta, 65:3769–3778, 2001.Google Scholar
[544] Thomas M., McCollom and Jeffrey S., Seewald. Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions. Earth Planet. Sci. Lett., 243:74–84, 2006.Google Scholar
[545] Thomas M., McCollom and Everett L., Shock. Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. Geochim. Cosmochim. Acta, 61:4375–4391, 1997.Google Scholar
[546] Thomas M., McCollom, Barbara Sherwood, Lollar, Georges, Lacrampe-Couloume, and Jeffrey S., Seewald. The influence of carbon source on abiotic organic synthesis and carbon isotope fractionation under hydrothermal conditions. Geochim. Cosmochim. Acta, 74:2717–2740, 2010.Google Scholar
[547] W. F., McDonough and S.-S., Sun. The composition of the Earth. Chem. Geol., 120:223–253, 1995.Google Scholar
[548] James D., McGhee and Peter H., von Hippel. Formaldehyde as a probe of DNA structure. I. Reaction with exocyclic amino groups of DNA bases. Biochemistry, 14:1281–1296, 1975.Google Scholar
[549] Kathleen E., McGinness and Gerald F., Joyce. In search of an RNA replicase ribozyme. Chem. Biol., 10:5–14, 2003.Google Scholar
[550] Christopher P., McKay, Carolyn C., Porco, Travis, Altheide, Wanda L., Davis, and Timothy A., Kral. The possible origin and persistence of life on Enceladus and detection of biomarkers in the plume. Astrobiology, 8:909–919, 2008.Google Scholar
[551] Donald L., Melchior, Harold J., Morowitz, Julian M., Sturtevant, and Tian Yow, Tsong. Characterization of the plasma membrane of Mycoplasma Laidlawii. Biochim. Biophys. Acta, 219:114–122, 1970.Google Scholar
[552] Herman, Melville. Moby-Dick; or, The Whale.Modern Library, New York, 1992.Google Scholar
[553] Gregor, Mendel. Experiments on plant hybridization. J. R. Hortic. Soc., 26:1–32, 1901. English translation.Google Scholar
[554] César, Menor-Salván and Margarita R., Marin-Yaseli. Prebiotic chemistry in eutectic solutions at the water-ice matrix. Chem. Soc. Rev., 41:5404–5415, 2012.Google Scholar
[555] John W., Merck. Volcanism I: sources and composition of magma. GEOL212: planetary geology lecture notes, 2014. www.geol.umd.edu/~jmerck/geol212/lectures/13.html.
[556] Marc, Mezard, Giorgio, Parisi, and Miguel Angel, Virasoro. Spin Glass Theory and Beyond.World Scientific, Singapore, 1987.Google Scholar
[557] S. L., Miller. Production of amino acids under possible primitive Earth conditions. Science, 117:528–529, 1953.Google Scholar
[558] S. L., Miller and D., Smith-Magowan. The thermodynamics of the Krebs cycle and related compounds. J. Phys. Chem. Ref. Data, 19:1049–1073, 1990.Google Scholar
[559] Peter, Mitchell. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature, 191:144–148, 1961.Google Scholar
[560] S. J., Mojzsis, G., Arrhenius, K. D., McKeegan, T. M., Harrison, A. P., Nutman, and C. R. L., Friend. Evidence of life on Earth before 3,800 million years ago. Nature, 384:55–59, 1996.Google Scholar
[561] Jacques, Monod. Chance and Necessity.Knopf, New York, 1971.Google Scholar
[562] Jacques, Monod, Jean-Pierre, Changeux, and Francois, Jacob. Allosteric proteins and cellular control systems. J. Mol. Biol., 6(4):306–329, 1963.Google Scholar
[563] Thierry, Montmerle and Sylvia, Exström. Hertzsprung–Russell diagram. Encyclopedia of Astrobiology, pages 749–754. Springer, Berlin, 2011.Google Scholar
[564] S., Moorbath. Evolution of Precambrian crust from strontium isotopic evidence. Nature, 254:395–398, 1975.Google Scholar
[565] Cristopher, Moore and Stephan, Mertens. The Nature of Computation.Oxford University Press, London, 2011.Google Scholar
[566] Camilo, Mora, Derek P., Titensor, Sina, Adl, Alistair G. B., Simpson, and Boris, Worm. How many species are there on earth and in the ocean. PLoS Biol., 9:e1001127, 2011.Google Scholar
[567] Eduardo, Moreno and Christa, Rhiner. Darwin's multicellularity: from neurotrophic theories and cell competition to fitness fingerprints. Curr. Opin. Cell Biol., 31:16–22, 2014.Google Scholar
[568] W. J., Morgan. Convection plumes in the lower mantle. Nature, 230:42–43, 1971.Google Scholar
[569] Harold J., Morowitz. Proton semiconductors and energy transduction in biological systems. Am. J. Physiol., 235:R99–R114, 1978.Google Scholar
[570] Harold J., Morowitz. Energy Flow in Biology.Ox Bow Press, Woodbridge, CT, 1979.Google Scholar
[571] Harold J., Morowitz. Foundations of Bioenergetics.Academic Press, New York, 1987.Google Scholar
[572] Harold J., Morowitz. Beginnings of Cellular Life. Yale University Press, New Haven, CT, 1992.Google Scholar
[573] Harold J., Morowitz. Phenetics, a born-again science. Complexity, 8:12–13, 2003.Google Scholar
[574] H. J., Morowitz, J. D., Kostelnik, J., Yang, and G. D., Cody. The origin of intermediary metabolism. Proc. Natl. Acad. Sci. USA, 97:7704–7708, 2000.Google Scholar
[575] Michael R., Morrow, John P., Whitehead, and Dalian, Lu. Chain-length dependence of lipid bilayer properties near the liquid crystal to gel transition. Biophys. J., 63:18–27, 1992.Google Scholar
[576] Daniel, Mueller, Stefan, Pitsch, Atsushi, Kittaka, Ernst, Wagner, Claude E., Wintner, and Albert, Eschenmoser. Chemistry of alpha aminonitriles: aldomerization of glycolaldehyde phosphate to racemic hexose 2,4,6-triphosphates and (in presence of formaldehyde) racemic pentose 2,4-diphosphates: rac-allose 2,4,6-triphosphate and racemic ribose 2,4-diphosphate are the main reaction products. Helv. Chim. Acta, 73:1410–1468, 1990.Google Scholar
[577] Ute, Müh, Irfan, Cinkaya, Simon P. J., Albracht, and Wolfgang, Buckel. 4-hydroxybutyryl-CoA dehydratase from Clostridium aminobutyricum: characterization of FAD and iron–sulfur clusters involved in an overall non-redox reaction. Biochemistry, 35(36):11710–11718, 1996.Google Scholar
[578] Armen Y., Mulkidjanian, Pavel, Dibrov, and Michael Y., Galperin. The past and present of the sodium energetics: may the sodium-motive force be with you. Biochim. Biophys. Acta, 1777:985–992, 2008.Google Scholar
[579] Armen Y., Mulkidjanian, Michael Y., Galperin, and Eugene V., Koonin. Co-evolution of primordial membranes and membrane proteins. Trends. Biochem. Sci., 34:206–215, 2009.Google Scholar
[580] Armen Y., Mulkidjanian, Michael Y., Galperin, Kira S., Makarova, Yuri I., Wolf, and Eugene V., Koonin. Evolutionary primacy of sodium bioenergetics. Biol. Direct, 3:13, 2008.Google Scholar
[581] H. J., Muller. The relation of recombination to mutational advance. Mutat. Res., 1:1–9, 1964.Google Scholar
[582] Ursula, Munro, John A., Munro, John B., Phillips, and Wolfgang, Wiltschko. Effects of wavelength of light and pulse magnetism on different magnetoreception systems in a migratory bird. Aust. J. Zool., 45:189–198, 1997.Google Scholar
[583] Bjorn O., Mysen. An experimental study of phosphorus and aluminosilicate speciation in and partitioning between aqueous fluids and silicate melts determined in-situ at high temperature and pressure. Am. Mineral. 96:1636–1649, 2011.Google Scholar
[584] Bjorn O., Mysen and George D., Cody. Silicate-phosphate interactions in silicate glasses and melts: II. Quantitative, high-temperature structure of P-bearing alkali aluminosilicate melts. Geochim. Cosmochim. Acta, 65:2413–2431, 2001.Google Scholar
[585] John F., Nagle. Theory of the main lipid bilayer phase transition. Annu. Rev. Phys. Chem., 31:157–195, 1980.Google Scholar
[586] Shu-ichi, Nakano, Durga M., Chadalavada, and Philip C., Bevilacqua. General acidbase catalysis in the mechanism of a hepatitis delta virus ribozyme. Science, 287:1493–1497, 2000.Google Scholar
[587] David L., Nelson and Michael M., Cox. Lehninger Principles of Biochemistry.W. H. Freeman, New York, fourth edition, 2004.Google Scholar
[588] Anna, Neubeck, Nguyen Thanh, Duc, David, Bastviken, Patrick, Crill, and Nils G., Holm. Formation of H2 and CH4 by weathering of olivine at temperatures between 30 and 70°C. Geochem. Trans., 12:6:1–10, 2011.Google Scholar
[589] Marc, Neveu, Hyo-Joong, Kim, and Steven A., Benner. The “strong” RNA World hypothesis: fifty years old. Astrobiology, 13:391–403, 2013.Google Scholar
[590] Friedrich, Nietzsche. The Will to Power.C. G. Naumann, Leipzig, 1901.Google Scholar
[591] Poul, Nissen, Joseph A., Ippolito, Nenad, Ban, Peter B., Moore, and Thomas A., Steitz. RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc. Natl. Acad. Sci. USA, 98:4899–4903, 2001.Google Scholar
[592] Wolfgang, Nitschke and Michael J., Russell. Hydrothermal focusingof chemical and chemiosmotic energy, supported by delivery of catalytic Fe, Ni, Mo/W, Co, S and Se, forced life to emerge. J. Mol. Evol., 69:481–498, 2009.Google Scholar
[593] Wolfgang, Nitschke and Michael J., Russell. Beating the acetyl coenzyme A-pathway to the origin of life. Philos. Trans. R. Soc. London, Ser. B, 368:20120258, 2013.Google Scholar
[594] W., Nitscke, D. M., Kramer, A., Riedel, and U., Liebl. From naptho- to benzoquinones – (r)evolutionary reorganizations of electron transfer chains. In P., Mathis, editor, Photosynthesis: from Light to the Biosphere, vol. 1, pages 945–950. Kluwer Academic Press, Dordrecht, 1995.Google Scholar
[595] Harry F., Noller. On the origin of the ribosome: co-evolution of sub-domains of tRNA and rRNA. In Raymond F., Gesteland and John F., Atkins, editors, The RNA World, pages 137–156. Cold Spring Harbor Laboratory Press, Plainview, New York, 1993.Google Scholar
[596] Harry F., Noller. On the origin of the ribosome: co-evolution of sub-domains of tRNA and rRNA. In Raymond F., Gesteland and John F., Atkins, editors, The RNA World, pages 197–219. Cold Spring Harbor Laboratory Press, Plainview, New York, 1999.Google Scholar
[597] Yehor, Novikov and Shelley D., Copley. Reactivity landscape of pyruvate unde r simulated hydrothermal vent conditions. Proc. Natl. Acad. Sci. USA, 110:13283–13288, 2013.Google Scholar
[598] Martin A., Nowak and Hisashi, Ohtsuki. Prevolutionary dynamics and the origin of evolution. Proc. Natl. Acad. Sci. USA, 105:14924–14927, 2008.Google Scholar
[599] Allen P., Nutman, Vickie C., Benett, Clark. R. L., Friend, Frances, Jenner, and Yusheng, Wan. Eoarchaean crustal growth in West Greenland (Itsaq Gneiss Complex) and in northeastern China (Anshan area): review and synthesis. Earth Accret. Syst. Space Time, 318:127–154, 2009.Google Scholar
[600] Thomas, Nyström. A bacterial kind of aging. PLoS Genet., 3:2355–2357, 2007.Google Scholar
[601] Patrick J., O'Brien and Daniel, Herschlag. Catalytic promiscuity and the evolution of new enzymatic activities. Chem. Biol., 6:R91–R105, 1999.Google Scholar
[602] F. John, Odling-Smee, Kevin N., Laland, and Marcus W., Feldman. Niche Construction: The Neglected Process in Evolution. Princeton University Press, Princeton, NJ, 2003.Google Scholar
[603] Howard T., Odum and Richard C., Pinkerton. Time's speed regulator: the optimum efficiency for maximum output in physical and biological systems. Am. Sci., 43:331–343, 1955.Google Scholar
[604] Katsuhiko, Ogata. Modern Control Engineering. Prentice-Hall, New York, fifth edition, 2010.Google Scholar
[605] Gary J., Olsen and Carl R., Woese. Ribosomal RNA: a key to phylogeny. FASEB J., 7:113–123, 1993.Google Scholar
[606] Jonathan, O'Neil, Richard W., Carlson, Don, Francis, and Ross K., Stevenson. Neodymium-142 evidence for Hadean mafic crust. Science, 321:1828–1831, 2008.Google Scholar
[607] Lars, Onsager. Reciprocal relations in irreversible processes. I. Phys. Rev., 37:405–426, 1931.Google Scholar
[608] Lars, Onsager. Reciprocal relations in irreversible processes. II. Phys. Rev., 38:2265–2279, 1931.Google Scholar
[609] L., Onsager and S., Machlup. Fluctuations and irreversible processes. Phys. Rev., 91:1505, 1953.Google Scholar
[610] A. I., Oparin. Proiskhozhdenie zhizy. Moskovski Rabochii, Moscow, 1924. In Russian.Google Scholar
[611] Alexander I., Oparin. The origin of life. In J. D., Bernal, editor, The Origin of Life, pages 199–234. Weidenfeld and Nicolson, London, 1967.Google Scholar
[612] Aharon, Oren. Microbial life at high salt concentration: phylogenetic and metabolic diversity. Saline Syst., 4:2:1–13, 2008.Google Scholar
[613] Leslie E., Orgel. Prebiotic chemistry and the origin of the RNA world. Crit. Rev. Biochem. Mol. Biol., 39:99–123, 2004.CrossRefGoogle Scholar
[614] Leslie E., Orgel. The implausibility of metabolic cycles on the early Earth. PLoS Biology, 6:e18, 2008.Google Scholar
[615] J., Oró. Mechanisms of synthesis of adenine from hydrogen cyanide under possible primitive Earth conditions. Nature, 191:1193–1194, 1961.Google Scholar
[616] J., Oró and A., Kimball. Synthesis of adenine from ammonium cyanide. Biochem. Biophys. Res. Commun., 2:407–412, 1960.Google Scholar
[617] J., Oró and A., Kimball. Synthesis of purines under possible primitive Earth conditions I: adenine from hydrogen cyanide. Arch. Biochem. Biophys., 94:217–227, 1961.Google Scholar
[618] J., Oró and A., Kimball. Synthesis of purines under possible primitive Earth conditions II: purine intermediates from hydrogen cyanide. Arch. Biochem. Biophys., 96:293–313, 1962.Google Scholar
[619] Sijbren, Otto, Jan B. F. N., Engberts, and Jan C. T., Kwak. Million-fold acceleration of a Diels–Alder reaction due to combined Lewis acid and micellar catalysis in water. J. Am. Chem. Soc., 120:9517–9525, 1998.Google Scholar
[620] M., Paecht-Horowitz, J., Berger, and A., Katchalsky. Prebiotic synthesis of polypeptides by heterogeneous polycondensation of amino-acid adenylates. Nature, 228:636–639, 1970.Google Scholar
[621] Bernhard O., Palsson. Systems Biology. Cambridge University Press, Cambridge, MA, 2006.Google Scholar
[622] Eric T., Parker, H. James, Cleaves, Michael P., Callahan, Jason P., Dworkin, Daniel P., Glavin, Antonio, Lazcano, and Jeffrey L., Bada. Prebiotic synthesis of methionine and other sulfur-containing organic compounds on the primitive Earth: a contemporary reassessment based on an unpublished 1958 Stanley Miller experiment. Orig. Life Evol. Biosphere, 41:201–212, 2011.Google Scholar
[623] Robert, Pascal, Addy, Pross, and John D., Sutherland. Towards an evolutionary theory of the origin of life based on kinetics and thermodynamics. Open Biol., 3:130156, 2013.Google Scholar
[624] Matthew A., Pasek and Dante S., Lauretta. Aqueous corrosion of phosphide minerals from iron meteorites: a highly reactive source of prebiotic phosphorus on the surface of the early Earth. Astrobiology, 5:515–535, 2005.Google Scholar
[625] Matthew A., Paseka, Jelte P., Harnmeijerb, Roger, Buick, Maheen, Gulla, and Zachary, Atlas. Evidence for reactive reduced phosphorus species in the early Archean ocean. Proc. Natl. Acad. Sci. USA, 110:10089–11194, 2013.Google Scholar
[626] Matthew A., Pasek, Jacqueline M., Sampson, and Zachary, Atlas. Redox chemistry in the phosphorus biogeochemical cycle. Proc. Natl. Acad. Sci. USA, 43:15468–15473, 2014.Google Scholar
[627] A. A., Pavlov and J. F., Kasting. Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology, 2:27–41, 2002.Google Scholar
[628] Alexander A., Pavlov, Lisa L., Brown, and James F., Kasting. UV shielding of NH3 and O2 by organic hazes in the Archean atmosphere. J. Geophys. Res., 106:23267–23287, 2001.Google Scholar
[629] A. A., Pavlov, M. J., Mills, and O. B., Toon. Mystery of the volcanic massindependent sulfur isotope fractionation signature in the Antarctic ice core. J. Geophys. Res., 32:L12816, 2005.Google Scholar
[630] L., Peliti. Path-integral approach to birth-death processes on a lattice. J. Phys. (Paris), 46:1469, 1985.Google Scholar
[631] L., Peliti. Renormalization of fluctuation effects in a + a → a reaction. J. Phys. A, 19:L365, 1986.Google Scholar
[632] Juli, Peretó. Out of fuzzy chemistry: from prebiotic chemistry to metabolic networks. Chem. Soc. Rev., 41:5394–5403, 2012.Google Scholar
[633] S., Petersen, K., Kuhn, T., Kuhn, N., Augustin, R., Hékinian, L., Franz, and C., Borowski. The geological setting of the ultramafic-hosted Logatchev hydrothermal field (14°45′N, Mid - AtlanticRidge) and its influence on massive sulfide formation. Lithos, 112:40–56, 2009.Google Scholar
[634] Anton S., Petrov, Chad R., Bernier, Eli, Hershkovitz, Yuzhen, Xue, Chris C., Waterbury, Chiaolong, Hsiao, Victor G., Stepanov, Eric A., Gaucher, Martha A., Grover, Steven C., Harvey, Nicholas V., Hud, Roger M., Wartell, George E., Fox, and Loren D., Williams. Secondary structure and domain architecture of the 23S and 5S rRNAs. Nucleic Acids Res., 14:7522–7535, 2013.Google Scholar
[635] Anton S., Petrov, Chad R., Bernier, Chiaolong, Hsiao, Ashlyn M., Norris, Nicholas A., Kovacs, Chris C., Waterbury, Victor G., Stepanov, Stephen C., Harvey, George E., Fox, Roger M., Wartell, Nicholas V., Hud, and Loren D., Williams. Evolution of the ribosome at atomic resolution. Proc. Natl. Acad. Sci. USA, 2014.Google Scholar
[636] Susan M., Pfiffner, James M., Cantu, Amanda, Smithgall, Aaron D., Peacock, and David C., White. Deep subsurface microbial biomass and community structure in Witwatersrand basin mines. Geomicrobiol. J., 23:431–442, 2006.
[637] S., Pilgram, A. N., Jordan, E. V., Sukhorukov, and M., Büttiker. Stochastic path integral formulation of full counting statistics. Phys. Rev. Lett., 90:206801, 2003.Google Scholar
[638] Sandra, Pizzarello and Arthur L., Weber. Prebiotic amino acids as asymmetric catalysts. Science, 303:1151, 2004.Google Scholar
[639] Andrey V., Plyasunov and Everett L., Shock. Thermodynamic functions of hydration of hydrocarbons at 298.15 K and 0.1 MPa. Geochim. Cosmochim. Acta, 64:439–468, 2000.Google Scholar
[640] Anja, Poehlein, Silke, Schmidt, Anne-Kristin, Kaster, Meike, Goenrich, John, Vollmers, Andrea, Thürmer, Johannes, Bertsch, Kai, Schuchmann, Birgit, Voigt, Michael, Hecker, Rolf, Daniel, Rudolf K., Thauer, Gerhard, Gottschalk, and Volker, Müller. An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium iongradient for ATP synthesis. PLoS ONE, 7:e33439, 2012.Google Scholar
[641] Andrew, Pohorille, Karl, Schweighofer, and Michael A., Wilson. The origin and early evolution of membrane channels. Astrobiology, 5:1–17, 2005.Google Scholar
[642] Andrew, Pohorille, Michael A., Wilson, and Christophe, Chipot. Membrane peptides and their role in protobiological evolution. Orig. Life Evol. Biosphere, 33:173–197, 2003.Google Scholar
[643] Joseph G., Polchinski. Renormalization group and effective lagrangians. Nucl. Phys. B, 231:269–295, 1984.Google Scholar
[644] Anthony M., Poole, Daniel C., Jeffares, and David, Penny. The path from the RNA world. J. Mol. Evol., 46:1–17, 1998.Google Scholar
[645] Karl R., Popper. Logik der Forschung. Julius Springer Verlag, Vienna, 1935.Google Scholar
[646] Karl R., Popper. The Logic of Scientific Discovery. Hutchinson, London, 1959. Translation of [645].Google Scholar
[647] Matthew W., Powner, Béatrice, Gerland, and John D., Sutherland. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature, 459:239–242, 2009.Google Scholar
[648] Matthew W., Powner, John D., Sutherland, and Jack W., Szostak. The origins of nucleotides. SYNLETT, 14:1956–1964, 2011.Google Scholar
[649] Steve, Pressé, Kingshuk, Ghosh, Julian, Lee, and Ken A., Dill. The principles of maximum entropy and maximum caliber in statistical physics. Rev. Mod. Phys, 85:1115–1141, 2013.Google Scholar
[650] G. R., Price. Fisher's ‘fundamental theorem’ made clear. Ann. Hum. Genet., 36:129–140, 1972.Google Scholar
[651] Giora, Proskurowski, Marvin D., Lilley, Jeffery S., Seewald, Gretchen L., Früh-Green, Eric J., Olson, John E., Lupton, Sean P., Sylva, and Deborah S., Kelley. Abiogenic hydrocarbon production at Lost City hydrothermal field. Science, 319:604–607, 2008.
[652] William B., Provine. The Origins of Theoretical Population Genetics. University of Chicago Press, Chicago, IL, 2001.Google Scholar
[653] E. M., Purcell. Life at low Reynolds number. Am. J. Phys., 45:3–11, 1973.Google Scholar
[654] Henry, Quastler. The Emergence of Biological Organization. Yale University Press, New Haven, CT, 1964.Google Scholar
[655] John M., Quick. Statistical Analysis withR. Packt Publishing, Birmingham, 2010.Google Scholar
[656] Efraim, Racker and Walther, Stoeckenius. Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation. J. Biol. Chem., 249:662–663, 1974.Google Scholar
[657] Petronella C., Raemakers-Franken, Roy, Bongaerts, Roel, Fokkens, Chris van der, Drift, and Godfried D., Vogels. Characterization of two pterin derivatives isolated from Methanoculleus thermophilicum. Eur. J. Biochem., 200:783–787, 1991.Google Scholar
[658] Petronella C., Raemakers-Franken, Frank G., Voncken, Jaap, Korteland, Jan T., Keltjens, Chris van der, Drift, and Godfried D., Vogels. Structural characterization of tatiopterin, a novel pterin isolated from Methanogenium tationis. Biofactors, 2:117–122, 1989.Google Scholar
[659] Stephen W., Ragsdale. Enzymology of the Wood–Ljungdahl pathway of acetogenesis. Ann. N Y Acad. Sci., 1125:129–136, 2008.Google Scholar
[660] Stephen W., Ragsdale and Manoj, Kumar. Nickel-containing carbon monoxide dehydrogenase/acetyl-CoA synthase. Chem. Rev., 96:2515–2540, 1996.Google Scholar
[661] Stephen W., Ragsdale and Harland G., Wood. Enzymology of the acetyl-CoA pathway of CO2 fixation. Crit. Rev. Biochem. Mol. Biol., 26:261–300, 1991.Google Scholar
[662] S.W., Ragsdale, J. E., Clark, L. G., Ljungdahl, L. L., Lundie, and H. L., Drake. Properties of purified carbon monoxide dehydrogenase from Clostridium thermoaceticum, a nickel, iron-sulfur protein. J. Biol. Chem., 258(4):2364–2369, 1983.Google Scholar
[663] Burki, Rajendar, Arivazhagan, Rajendran, Zhiqiang, Ye, Erko, Kanai, Yusuke, Sato, Seiichi, Nishizawa, Marek, Sikorski, and Norio, Teramae. Effect of substituents of alloxazine derivatives on the selectivity and affinity for adenine in AP-sitecontaining DNA duplexes. Org. Biomol. Chem., 8:4949–4959, 2010.Google Scholar
[664] Kalervo, Rankama and Thure Georg, Sahama. Geochemistry. University of Chicago Press, Chicago, IL, 1950.Google Scholar
[665] Jason, Raymond, Janet L., Seifert, Christopher R., Staples, and Robert E., Blankenship. The natural history of nitrogen fixation. Mol. Biol. Evol., 21:541–554, 2004.Google Scholar
[666] Eoghan P., Reeves, Jill M., McDermott, and Jeffrey S., Seewald. The origin of methanethiol in midocean ridge hydrothermal fluids. Proc. Natl. Acad. Sci. USA, 111:5474–5479, 2014.Google Scholar
[667] Howard M., Reid. Introduction to Statistics: Fundamental Concepts and Procedures of Data Analysis. SAGE publications, Washington DC, 2014.Google Scholar
[668] Anna-Louise, Reysenbach and Everett, Shock. Merging genomes with geochemistry in hydrothermal ecosystems. Science, 296:1077–1082, 2002.Google Scholar
[669] J. M., Rhodes. Mantle melting and origin of basaltic magma. Notes: GEO-321. Igneous & Metamorphic Petrology, March 2005. www.geo.umass.edu/courses/ geo321/Lecture.
[670] Ignasi, Ribas. The sun and stars as the primary energy input in planetary atmospheres. In A. G., Kosovichev, A. H., Andrei, and J.-P., Rozelot, editors, Proc. International Astronomical Union Symposium No. 264, 2009, pages 3–18. Cambridge University Press, Cambridge, 2010.Google Scholar
[671] A., Ricardo, M. A., Carrigan, A. N., Olcott, and S. A., Benner. Borate minerals stabilize ribose. Science, 303:196, 2004.Google Scholar
[672] William J., Riehl, Paul L., Krapivsky, Sidney, Redner, and Daniel, Segrè. Signatures of arithmetic simplicity in metabolic network architecture. PLoS Comput. Biol., 6:e1000725, 2010.Google Scholar
[673] G., Rieley, C. L., Van Dover, D. B., Hedrick, and G., Eglinton. Trophic ecology of Rimicaris exoculata: a combined lipid abundance stable isotope approach. Mar. Biol., 133:495–499, 1999.Google Scholar
[674] Jorma, Rissanen. Stochastic Complexity in Statistical Inquiry. World Scientific, Teaneck, NJ, 1989.Google Scholar
[675] Michael P., Robertson and Gerald F., Joyce. The origins of the RNA world. Cold Spring Harb. Perspect. Biol., 4:a003608, 2010.Google Scholar
[676] Michael P., Robertson and William G., Scott. The structural basis of ribozymecatalyzed RNA assembly. Science, 315:1549–1553, 2007.Google Scholar
[677] João F., Matias Rodrigues and Andreas, Wagner. Evolutionary plasticity and innovations in complex metabolic reaction networks. PLoS Comput. Biol., 5:e1000613:1–11, 2009.Google Scholar
[678] Rajat, Rohatgi, David P., Bartel, and Jack W., Szostak. Kinetic and mechanistic analysis of nonenzymatic, template-directed oligoribonucleotide ligation. J. Am. Chem. Soc., 118:3332–3339, 1996.Google Scholar
[679] Rajat, Rohatgi, David P., Bartel, and Jack W., Szostak. Nonenzymatic, templatedirected ligation of oligoribonucleotides is highly regioselective for the formation of 3′–5′ phosphodiester bonds. J. Am. Chem. Soc., 118:3340–3344, 1996.Google Scholar
[680] R. D., Rosenkrantz, editor. Jaynes, E. T.: Papers on Probability, Statistics and Statistical Physics. D. Reidel, Dordrecht, 1983.Google Scholar
[681] Paul J., Rothwell and Gabriel, Waksman. Structure and mechanism of DNA polymerases. Adv. Protein Chem., 71:401–440, 2005.Google Scholar
[682] Bertand, Russell. A History of Western Philosophy. Simon & Schuster, New York, 1967.Google Scholar
[683] Michael J., Russell. Downward-excavating hydrothermal cells and Irish-type ore deposits: importance of an underlying thick Caledonian prism. Trans. Inst. Min. Metall., B87:168–171, 1978.Google Scholar
[684] Michael J., Russell. Mining, metallurgy and the origin of life. Miner. Indust. Int., 1009:4–8, 1993.Google Scholar
[685] Michael J., Russell. First life. Am. Sci., 94:32–39, 2006.Google Scholar
[686] Michael J., Russell. The alkaline solution to the emergence of life: energy, entropy, and early evolution. Acta Biotheor., 55:133–179, 2007.Google Scholar
[687] Michael J., Russell and A. J., Hall. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J. Geol. Soc. London, 154:377–402, 1997.Google Scholar
[688] Michael J., Russell and Allan J., Hall. The onset and early evolution of life. Geol. Soc. Am. Memoir, 198:1–32, 2006.Google Scholar
[689] Michael J., Russell and William, Martin. The rocky roots of the acetyl-CoA pathway. Trends Biochem. Sci., 29:358–363, 2004.Google Scholar
[690] Michael J., Russell, Laura M., Barge, Rohit, Bhartia, Dylan, Bocanegra, Paul J., Bracher, Elbert, Branscomb, Richard, Kidd, Shawn, McGlynn, David H., Meier,Wolfgang, Nitschke, Takazo, Shibuya, Steve, Vance, Lauren, White, and Isik, Kanik. The drive to life on wet and icy worlds. Astrobiology, 14:308–343, 2014.Google Scholar
[691] Michael J., Russell, Roy M., Daniel, and Allan J., Hall. On the emergence of life via catalytic iron-sulphide membranes. Terra Nova, 5:343–347, 1993.Google Scholar
[692] Michael J., Russell, Allan J., Hall, Adrian J., Boyce, and Anthony E., Fallick. On hydrothermal convection systems and the emergence of life. Econ. Geol., 100:419–438, 2005.Google Scholar
[693] M. J., Russell, A. J., Hall, A. G., Cairns-Smith, and P. S., Braterman. Submarine hot springs and the origin of life. Nature, 336:117, 1988.Google Scholar
[694] M. J., Russell, A. J., Hall, and W., Martin. Serpentinization as a source of energy at the origin of life. Geobiology, 8:355–371, 2010.Google Scholar
[695] W. J., Rutter. Evolution of aldolase. Fed. Proc., 23:1248–1257, 1964.Google Scholar
[696] Carl, Sagan and Christopher, Chyba. The early faint young sun paradox: organic shielding of ultraviolet-labile greenhouse gases. Science, 276:1217–1221, 1997.Google Scholar
[697] Carl, Sagan and George, Mullen. Earth and Mars: evolution of atmospheres and surface temperatures. Science, New Series, 177:52–56, 1972.Google Scholar
[698] Raffaele, Saladino, Giorgia, Botta, Samanta, Pino, Giovanna, Costanzo, and Ernesto Di, Mauro. From the one-carbon amide formamide to RNA all the steps are prebiotically possible. Biochimie, 94:1451–1456, 2012.Google Scholar
[699] Raffaele, Saladino, Giorgia, Botta, Samanta, Pino, Giovanna, Costanzo, and Ernesto Di, Mauro. Materials for the onset: a story of necessity and chance. Frontiers Biosci., 18:1275–1289, 2013.Google Scholar
[700] Maria do, Céu Santos and Manuel A. S., Santos. Structural and molecular features of non-standard genetic codes. In Gina, M. Cannarozzi, and Adrian, Schneider, editors, Codon Evolution: Mechanisms and Models, pages 258–270, Oxford University Press, New York, 2012.Google Scholar
[701] Takaaki, Sato, Hiroyuki, Imanaka, Naeem, Rashid, Toshiaki, Fukui, Haruyuki, Atomi, and Tadayuki, Imanaka. Genetic evidence identifying the true gluconeogenic fructose-1,6-bisphosphatase in Thermococcus kodakaraensis and other hyperthermophiles. J. Bacteriol., 186:5799–5807, 2004.Google Scholar
[702] Brandon, Schmandt, Kenneth, Dueker, Eugene, Humphreys, and Steven, Hansen. Hot mantle upwelling across the 660 beneath Yellowstone. Earth Planet. Sci. Lett., 331:224–236, 2012.Google Scholar
[703] Johan A., Schmidt, Matthew S., Johnson, and Reinhard, Schinke. Carbon dioxide photolysis from 150 to 210 nm: singlet and triplet channel dynamics, UV-spectrum, and isotope effects. Proc. Natl. Acad. Sci. USA, 110:17691–17696, 2013.Google Scholar
[704] Philippe, Schmitt-Kopplin, Zelimir, Gabelica, Régis D., Gougeon, Agnes, Fekete, Basem, Kanawati, Mourad, Harir, Istvan, Gebefuegi, Gerhard, Eckel, and Norbert, Hertkorn. High molecular diversity of extraterrestrial organic matter in Murchisonmeteorite revealed 40 years after its fall. Proc. Natl. Acad. Sci. USA, 107:2763–2768, 2010.Google Scholar
[705] Thomas D., Schneider. Theory of molecular machines I: channel capacity of molecular machines. J. Theor. Biol., 148:83–123, 1991.Google Scholar
[706] Thomas D., Schneider. Theory of molecular machines II: energy dissipation from molecular machines. J. Theor. Biol., 148:125–137, 1991.Google Scholar
[707] Barbara, Schoepp-Cothenet, Clément, Lieutaud, Frauke, Baymann, André, Verméglio, Thorsten, Friedrich, David M., Kramer, and Wolfgang, Nitschke. Menaquinone as a pool quinone in a purple bacterium. Proc. Natl. Acad. Sci. USA, 106:8549–8554, 2005.Google Scholar
[708] J. William, Schopf. Microfossils of the early Archaean apex chert: new evidence of the antiquity of life. Science, 260:640–646, 1993.Google Scholar
[709] Laurier L., Schramm. Emulsions, Foams, and Suspensions: Fundamentals and Applications. Wiley, New York, 2005.Google Scholar
[710] Matthew O., Schrenk, John R., Kelley, Deborah S., anf Delaney, and John A., Baross. Incidence and diversity of microorganisms within the walls of an active deep-sea sulfide chimney. Appl. Environ. Microbiol., 69:3580–3592, 2003.Google Scholar
[711] E., Schrödinger. What is Life? The Physical Aspect of the Living Cell. Cambridge University Press, New York, 1992.Google Scholar
[712] Mitch, Schulte, David, Blake, Tori, Hoehler, and Thomas, McCollom. Serpentinization and its implications for life on the early Earth and Mars. Astrobiology, 6:364–376, 2006.Google Scholar
[713] Gerrit J., Schut and Michael W. W., Adams. The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J. Bacteriol., 191:4451–4457, 2009.Google Scholar
[714] Michael, Schutz, Barbara, Schoepp-Cothenet, Elisabeth, Lojou, Mireille, Woodstra, Doris, Lexa, Pascale, Tron, Alain, Dolla, Marie-Claire, Durand, Karl Otto, Stetter, and Frauke, Baymann. The naphthoquinol oxidizing cytochrome bc1 complex of the hyperthermophilic knallgasbacterium Aquifex aeolicus: properties and phylogenetic relationships. Biochemistry, 42:10800–10808, 2003.Google Scholar
[715] Alan W., Schwartz. Phosphorus in prebiotic chemistry. Philos. Trans. R. Soc. London, Ser. B, 361:1743–1749, 2006.Google Scholar
[716] Gideon E., Schwarz. Estimating the dimension of a model. Ann. Stat., 6:461–464, 1978.Google Scholar
[717] Esther M., Schwarzenbach, Gretchen L., Früh-Green, Stefano M., Bernasconi, Jeffrey C., Alt, and Alessio, Plas. Serpentinization and carbon sequestration: a study of two ancient peridotite-hosted hydrothermal systems. Chem. Geol., 351:115–133, 2013.Google Scholar
[718] Anja, Schwögler and Thomas, Carell. Toward catalytically active oligonucleotides: synthesis of a flavin nucleotide and its incorporation into DNA. Org. Lett., 2:1415–1418, 2000.Google Scholar
[719] John R., Searle. The Mystery of Consciousness. New York Review of Books, New York, 1997.Google Scholar
[720] Henning, Seedorf, W. Florian, Fricke, Birgit, Veith, HolgerBr, üggemann, Heiko, Liesegang, Axel, Strittmatter, Marcus, Miethke, Wolfgang, Buckel, Julia, Hinderberger, Fuli, Li, Christoph, Hagemeier, Rudolf K., Thauer, and Gerhard, Gottschalk. The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proc. Natl. Acad. Sci. USA, 105:2128–2133, 2008.Google Scholar
[721] Daniel, Segré, Dafna, Ben-Ali, and Doron, Lancet. Compositional genomes: prebiotic information transfer in mutually catalytic noncovalent assemblies. Proc. Natl. Acad. Sci. USA, 97:4112–4117, 2000.Google Scholar
[722] Daniel, Segré, Doron, Lancet, Ora, Kedem, and Yitzhak, Pilpel. Graded autocatalysis replication domain (GARD): kinetic analysis of self-replication in mutually catalytic sets. Orig. Life Evol. Biosphere, 28:501–514, 1998.Google Scholar
[723] Daniel, Segré, Barak, Shenhav, Ron, Kafri, and Doron, Lancet. The molecular roots of compositional inheritance. J. Theor. Biol., 213:481–491, 2001.Google Scholar
[724] Teddy, Seidenfeld. Why I am not an objective Bayesian: some reflections prompted by Rosenkrantz. Theory Decision, 11:413–440, 1979.Google Scholar
[725] Teddy, Seidenfeld. Entropy and uncertainty. In I. B., MacNeill and G. J., Umphrey, editors, Foundations of Statistical Inference, pages 259–287. Reidel, Boston, MA, 1987.Google Scholar
[726] Javier, Seravalli, Yuming, Xiao, Weiwei, Gu, Stephen P., Cramer, William E., Antholine, Vladimir, Krymov, Gary J., Gerfen, and Stephen W., Ragsdale. Evidence that NiNi acetyl-CoA synthase is active and that the CuNi enzyme is not. Biochemistry, 43(13):3944–3955, 2004.Google Scholar
[727] W. E. Jr., Seyfried and Kang, Ding. Phase equilibria in subseafloor hydrothermal systems: a review of the role of redox, temperature, pH and dissolved Cl on the chemistry of hot spring fluids at mid-ocean ridges. In Susan E., Humphris, Robert A., Zierenberg, Lauren S., Mullineaux, and Richard E., Thomson, editors, Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, pages 248–272. Geophysical Monograph. American Geophysical Union, Washington, DC, 1995.
[728] W. E. Jr., Seyfried, Kang, Ding, and M. E., Berndt. Phase equilibria constraints on the chemistry of hot spring fluids at mid-ocean ridges. Geochim. Cosmochim. Acta, 55:3559–3580, 1991.Google Scholar
[729] Cosma Rohilla, Shalizi. Dynamics of Bayesian updating with dependent data and misspecified models. Electron. J. Stat., 3:1039–1074, 2009.Google Scholar
[730] Timothy M., Shank, Daniel J., Fornari, Karen L., Von Damm, Marvin D., Lilley, Rachel M., Haymon, and Richard A., Lutz. Temporal and spatial patterns of biological community development at nascent deep-sea hydrothermal vents (9°50′N, East Pacific Rise). Deep-Sea Res. II, 45:465–515, 1998.Google Scholar
[731] Claude E., Shannon. Communication in the presence of noise. Proc. IEEE, 86:447–457, 1949.Google Scholar
[732] Claude Elwood, Shannon and Warren, Weaver. The Mathematical Theory of Communication. University of Illinois Press, Urbana, IL, 1949.Google Scholar
[733] Robert, Shapiro. Small molecule interactions were central to the origin of life. Q. Rev. Biol., 81:105–125, 2006.Google Scholar
[734] Anurag, Sharma, George D., Cody, and Russell J., Hemley. In situ diamond-anvil cell observations of methanogenesis at high pressures and temperatures. Energy Fuels, 23:5572–5579, 2009.Google Scholar
[735] Jia, Sheng, Li, Li, Aaron E., Engelhart, Jianhua, Gan, Jiawei, Wang, and Jack W., Szostak. Structural insights into the effects of 2′–5′ linkages on the RNA duplex. Proc. Natl. Acad. Sci. USA, 111:3050–3055, 2014.Google Scholar
[736] Peter P., Sheridan, Katherine H., Freeman, and Jean E., Brenchley. Estimated minimal divergence times of the major bacterial and archaeal phyla. Geomicrobiol. J., 20:1–14, 2003.Google Scholar
[737] B. Sherwood, Lollar, G., Lacrampe-Couloume, G. F., Slater, J., Ward, D. P., Moser, T. M., Gihring, L.-H., Lin, and T. C., Onstott. Unravelling abiogenic and biogenic sources of methane in the Earth's deep subsurface. Chem. Geol., 226:328–339, 2006.Google Scholar
[738] B. Sherwood, Lollar, T. D., Westgate, J. A., Ward, G. F., Slater, and G., Lacrampe-Couloume. Abiogenic formation of gaseous alkanes in the Earth's crust as a minor source of global hydrocarbon reservoirs. Nature, 416:522–524, 2002.Google Scholar
[739] Takazo, Shibuya, Tsuyoshi, Komiya, Kentaro, Nakamura, Ken, Takai, and Shigenori, Maruyama. Highly, alkaline, high-temperature hydrothermal fluids in the early Archean ocean. Precambrian Res., 182:230–238, 2010.Google Scholar
[740] Takazo, Shibuya, Miyuki, Tahata, Kouki, Kitajima, Yuichiro, Ueno, Tsuyoshi, Komiya, Shinji, Yamamoto, Motoko, Igisu, Masaru, Terabayashi, Yusuke, Sawaki, Ken, Takai, Naohiro, Yoshida, and Shigenori, Maruyama. Depth variation of carbon and oxygen isotopes of calcites in Archean altered upper oceanic crust: implications for the CO2 flux from ocean to oceanic crust in the Archean. Earth Planet. Sci. Lett., 321:64–73, 2012.Google Scholar
[741] Takazo, Shibuya, Miyuki, Tahata, Yuichiro, Ueno, Tsuyoshi, Komiya, Ken, Takai, Naohiro, Yoshida, Shigenori, Maruyama, and Micheal J., Russell. Decrease of seawater CO2 concentration in the Late Archean: an implication from 2.6 Ga seafloor hydrothermal alteration. Precambrian Res., 236:59–64, 2013.Google Scholar
[742] Takazo, Shibuya, Motoko, Yoshizaki, Yuka, Masaki, Katsuhiko, Suzuki, Ken, Takai, and Michael J., Russell. Reactions between basalt and CO2-rich seawater at 250 and 350?C, 500 bars: implications for CO2 sequestration into the modern oceanic crust and the composition of hydrothermal vent fluid in the CO2-rich early ocean. Chem. Geol., 359:1–9, 2013.Google Scholar
[743] Graham, Shields-Zhou and Lawrence, Och. The case for a neoproterozoic oxygenation event: chemical evidence and biological consequences. GSA Today, 21:4–11, 2011.Google Scholar
[744] Cristal, Shih, Anna Katrine, Museth, Malin, Abrahamsson, Ana Maria, Blanco-Rodriguez, Angel J., Di Bilio, Jawahar, Sudhamsu, Brian R., Crane, Kate L., Ronayne, Mike Jr., Towrie, Antonn, Vlček, John H., Richards, Jay R., Winkler, and Harry B., Gray. Tryptophan-accelerated electron flow through proteins. Science, 320:1760–1762, 2008.Google Scholar
[745] Everett L., Shock and Harold C., Helgeson. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: standard partial molal properties of organic species. Geochim. Cosmochim. Acta, 54:915–945, 1990.Google Scholar
[746] Everett L., Shock and Mitchell D., Schulte. Organic synthesis during fluid mixing in hydrothermal systems. J. Geophys. Res., 103:28513–28527, 1998.Google Scholar
[747] Everett L., Shock, Harold C., Helgeson, and Dimitry A., Sverjensky. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of inorganic neutral species. Geochim. Cosmochim. Acta, 53:2157–2183, 1989.Google Scholar
[748] Everett L., Shock, Melanie, Holland, D Arcy, Meyer-Dombard, Jan P., Amend, G. R., Osburn, and Tobias P., Fischer. Quantifying inorganic sources of geochemical energy in hydrothermal ecosystems, Yellowstone National Park, USA. Geochim. Cosmochim. Acta, 74:4005–4043, 2010.Google Scholar
[749] Everett L., Shock, Thomas, McCollom, and Mitchell D., Schulte. The emergence of metabolism from within hydrothermal systems. In Juergen, Wiegel and Michael W. W., Adams, editors, Thermophiles: The Keys to Molecular Evolution and the Origin of Life, pages 59–76. Taylor and Francis, London, 1998.Google Scholar
[750] J. William, Shopf, editor. Life's Origin: the Beginnings of Biological Evolution. University of California Press, Berkeley, CA, 2002.Google Scholar
[751] Brian J., Shuter, J. E., Thomas, William D., Taylor, and A. M., Zimmerman. Phenotypic correlates of genomic DNA content in unicellular eukaryotes. Am. Nat., 122:26–44, 1983.Google Scholar
[752] V., Shuvalov. Atmospheric erosion induced by oblique impacts. Meteoritics Planet. Sci., 44:1095–1105, 2009.Google Scholar
[753] Bettina, Siebers, Henner, Brinkmann, Christine, Dörr, Britta, Tjaden, Hauke, Lilie, John van der, Oost, and Corné H., Verhees. Archaeal fructose-1,6-bisphosphate aldolases constitute a new family of archaeal type class I aldolase. J. Biol. Chem., 276:28710–28718, 2001.Google Scholar
[754] Herbert A., Simon. The architecture of complexity. Proc. Am. Philos. Soc., 106:467–482, 1962.Google Scholar
[755] Herbert A., Simon. The organization of complex systems. In Howard H., Pattee, editor, Hierarchy Theory: The Challenge of Complex Systems, pages 3–27. George Braziller, New York, 1973.Google Scholar
[756] Herbert A., Simon. The Sciences of the Artificial. MIT Press, Cambridge, MA, third edition, 1996.Google Scholar
[757] Kai, Simons and Julio L., Sampaio. Membrane organization and lipid rafts. Cold Spring Harb. Perspect. Biol., 3:a004697, 2011.Google Scholar
[758] Y., Sinai. On the notion of entropy of a dynamical system. Dokl. Akad. Nauk SSSR, 124:768–771, 1959.Google Scholar
[759] N. A., Sinitsyn and Ilya, Nemenman. Universal geometric theory of mesoscopic stochastic pumps and reversible ratchets. Phys. Rev. Lett., 99:220408, 2007.Google Scholar
[760] N. H., Sleep, A., Meibom, Th., Fridriksson, R. G., Coleman, and D. K., Bird. H2-rich fluids from serpentinization: geochemical and biotic implications. Proc. Natl. Acad. Sci. USA, 101:12818–12823, 2004.Google Scholar
[761] Alexander, Smirnov, Douglas, Hausner, Richard, Laffers, Daniel R., Strongin, and Martin A. A., Schoonen. Abiotic ammonium formation in the presence of Ni-Fe metals and alloys and its implications for the Hadean nitrogen cycle. Geochem. Trans., 9:5, 2008.Google Scholar
[762] Eric, Smith. Self-organization from structural refrigeration.Phys. Rev. E, 68:046114, 2003.Google Scholar
[763] Eric, Smith. Thermodynamic dual structure of linearly dissipative driven systems. Phys. Rev. E, 72:36130, 2005.Google Scholar
[764] Eric, Smith. Thermodynamics of natural selection I: energy and entropy flows through non-equilibrium ensembles. J. Theor. Biol., 252:185–197, 2008.Google Scholar
[765] Eric, Smith. Thermodynamics of natural selection II: chemical Carnot cycles. J. Theor. Biol., 252:198–212, 2008.Google Scholar
[766] Eric, Smith. Thermodynamics of natural selection III: Landauer's principle in chemistry and computation. J. Theor. Biol., 252:213–220, 2008.Google Scholar
[767] Eric, Smith. Large-deviation principles, stochastic effective actions, path entropies, and the structure and meaning of thermodynamic descriptions. Rep. Prog. Phys., 74:046601, 2011.Google Scholar
[768] Eric, Smith and Supriya, Krishnamurthy. Symmetry and Collective Fluctuations in Evolutionary Games. IOP Press, Bristol, 2015.Google Scholar
[769] Eric, Smith and Harold J., Morowitz. Universality in intermediary metabolism. Proc. Natl. Acad. Sci. USA, 101:13168–13173, 2004.Google Scholar
[770] Eric, Smith, Supriya, Krishnamurthy, Walter, Fontana, and David C., Krakauer. Nonequilibrium phase transitions in biomolecular signal transduction. Phys. Rev. E, 84:051917, 2011.Google Scholar
[771] Lee, Smolin. The Life of the Cosmos. Phoenix, London, 1997.Google Scholar
[772] Theodore P., Snow and Benjamin J., McCall. Diffuse atomic and molecular clouds. Annu. Rev. Astron. Astrophys., 44:367–414, 2006.Google Scholar
[773] Filipa L., Sousa and William F., Martin. Biochemical fossils of the ancient transition from geoenergetics to bioenergetics in prokaryotic one carbon compound metabolism. Biochem. Biophys. Acta, 1837:964–981, 2014.Google Scholar
[774] Roger W., Sperry. Mind, brain and humanist values. In John R., Platt, editor, New Views on the Nature of Man, pages 71–92. University of Chicago Press, Chicago, IL, 1965.Google Scholar
[775] Alexander S., Spirin. Energetics and dynamics of the protein synthesizing machinery. In Horst, Kleinkauf, Hans von, Dören, and Lothar, Jaenicke, editors, The Roots of Modern Biochemistry: Fritz Lippmann's Squiggle and its Consequences, pages 511–533. Walter de Gruyter, Berlin, 1988.Google Scholar
[776] Vijayasarathy, Srinivasan and Harold J., Morowitz. Analysis of the intermediary metabolism of a reductive chemoautotroph. Biol. Bull., 217:222–232, 2009.Google Scholar
[777] Vijayasarathy, Srinivasan and Harold J., Morowitz. The canonical network of autotrophic intermediary metabolism: minimal metabolome of a reductive chemoautotroph. Biol. Bull., 216:126–130, 2009.Google Scholar
[778] P. F., Stadler, S. J., Prohaska, C. V., Forst, and D. C., Krakauer. Defining genes: a computational framework. Theory Biosci., 128:165–170, 2009.Google Scholar
[779] Robert W., Sterner and James J., Elser. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton, NJ, 2002.Google Scholar
[780] Patrick, Stover and Verne, Schirch. The metabolic role of leucovorin. Trends Biochem. Sci., 18(3):102–106, 1993.Google Scholar
[781] William E., Strawderman. Sufficient statistics: theoretical background. Wiley Stats- Ref, 2014.Google Scholar
[782] Bernard L., Strehler and Albert S., Mildvan. General theory of mortality and aging. Science, 132:14–21, 1960.Google Scholar
[783] Lubert, Stryer. Biochemistry. Freeman, San Francisco, CA, second edition, 1981.Google Scholar
[784] David P., Summers and Sherwood, Chang. Prebiotic ammonia from reduction of nitrite by iron(II) on the early Earth. Nature, 365:630–633, 1993.
[785] Melanie, Summit and John A., Baross. Thermophilic subseafloor microorganisms from the 1996 North Gorda Ridge eruption. Deep-Sea Res. II, 45:2751–2766, 1998.Google Scholar
[786] Melanie, Summit and John A., Baross. A novel microbial habitat in the mid-ocean ridge subsurface. Proc. Natl. Acad. Sci. USA, 98:2158–1263, 2001.Google Scholar
[787] Roger E., Summons, Linda L., Jahnke, Janet M., Hope, and Graham A., Logan. 2-methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature, 400:554–557, 1999.Google Scholar
[788] Shunryu, Suzuki. Zen Mind, Beginner's Mind. Weatherhill, New York, 1973.Google Scholar
[789] Vitali, Svetlitchnyi, Holger, Dobbek, Wolfram, Meyer-Klaucke, Thomas, Meins, Bärbel, Thiele, Piero, Römer, Robert, Huber, and Ortwin, Meyer. A functionalNi-Ni-[4Fe-4S] cluster in the monomeric acetyl-CoA synthase from Carboxydothermus hydrogenoformans. Proc. Natl. Acad. Sci. USA, 101(2):446–451, 2004.Google Scholar
[790] Eörs, Szathmáry and John Maynard, Smith. The Major Transitions in Evolution. Oxford University Press, London, 1995.Google Scholar
[791] Jack W., Szostak. The eightfold path to non-enzymatic RNA replication. J. Syst. Chem., 3:2, 2012.
[792] F. A., Tabita. Research on carbon dioxide fixation in photosynthetic microorganisms (1971–present). Photosynth. Res., 80:315–332, 2004.Google Scholar
[793] F. A., Tabita, T. E., Hanson, H., Li, S., Satagopan, J., Singh, and S., Chan. Function, structure, and evolution of the RubisCO-like proteins and their RubisCO homologs. Microbiol. Mol. Biol. Rev., 71:576–599, 2007.Google Scholar
[794] Ken, Takai, Tetsushi, Komatsu, Fumio, Inagaki, and Koki, Horikoshi. Distribution of archaea in a black smoker chimney structure. Appl. Env. Microbiol., 67:3618, 2001.Google Scholar
[795] Ken, Takai, Duane P., Moser, Tullis C., Onstott, Nico, Spoelstra, Susan M., Pfiffner, Alice, Dohnalkova, and Jim K., Fredrickson. Alkaliphilus transvaalensis gen. nov., sp. nov., an extremely alkaliphilic bacterium isolated from a deep South African gold mine. Int. J. Syst. Evol. Microbiol., 51:1245–1256, 2001.Google Scholar
[796] Dan S., Tawfik. Messy biology and the origins of evolutionary innovation. Nature Chem. Biol., 6:692–696, 2010.Google Scholar
[797] F. J. R., Taylor and D., Coates. The code within the codons. Biosystems, 22:177–187, 1989.Google Scholar
[798] Maureen E., Taylor and Kurt, Drickamer. Introduction to Glycobiology. Oxford University Press, London, third edition, 2011.Google Scholar
[799] Robin, Teufel, Johannes W., Jung, Daniel, Kockelkorn, Birgit E., Alber, and Georg, Fuchs. 3-Hydroxypropionyl-coenzyme A dehydratase and acroloyl-coenzyme A reductase, enzymes of the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle in the Sulfolobales. J. Bacteriol., 191:4572–4581, 2009.Google Scholar
[800] Rudolf K., Thauer, Kurt, Jungermann, and Karl, Decker. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev., 41:100–180, 1977.Google Scholar
[801] Rudolf K., Thauer, Anne-Kristin, Kaster, Henning, Seedorf, Wolfgang, Buckel, and Reiner, Hedderich. Methanogenic archaea: ecologically relevant differences in energy conservation. Nature Rev. Microbiol., 6:579–591, 2008.Google Scholar
[802] D'Arcy Wentworth, Thompson. On Growth and Form. Dover, New York, complete revised edition, 1992.Google Scholar
[803] G., Thompson, M. K., Tivey, and S. E., Humphris. Deducing patterns of fluid flow and mixing within the TAG active hydrothermal mound using mineralogical and geochemical data. J. Geophys. Res., 100:12527–12555, 1995.Google Scholar
[804] Feng, Tian, Owen B., Toon, Alexander A., Pavlov, and H. De, Sterck. Transonic hydrodynamic escape of hydrogen from extrasolar planetary atmospheres. Astrophys. J., 621:1049–1060, 2005.Google Scholar
[805] Jing, Tian, Ruslana, Bryk, Manabu, Itoh, Makoto, Suematsu, and Carl, Nathan. Variant tricarboxylic acid cycle in Mycobacterium tuberculosis: identification of a-ketoglutarate decarboxylase. Proc. Natl. Acad. Sci. USA, 102:10670–10675, 2005.Google Scholar
[806] Michael, Tinkham. Introduction to Superconductivity. Dover, New York, second edition, 2004.Google Scholar
[807] Margaret, Tivey. How to build a black smoker chimney. Oceanus, 41, 1998.Google Scholar
[808] Margaret Kingston, Tivey. Generation of seafloor hydrothermal vent fluid and associated mineral deposits. Oceanography, 20:50–65, 2007.Google Scholar
[809] Margaret Kingston, Tivey, Debra S., Stakes, Terri L., Cook, Mark D., Hannington, and Sven, Petersen. A model for growth of steep-sided vent structures on the Endeavour Segment of the Juan de Fuca Ridge: results of a petrologic and geochemical study. J. Geophys. Res., 104:22859–22883, 1999.Google Scholar
[810] Count Lyof N., Tolstoy. Anna Karénina. Thomas Y. Crowell, New York, 1914. Translated by Nathan Haskell Dole.Google Scholar
[811] Hugo, Touchette. The large deviation approach to statistical mechanics. phys. rep., 478:1–69, 2009.Google Scholar
[812] Edward N., Trifonov. The triplet code from first principles. J. Biomol. Struct. Dyn., 22:1–11, 2004.Google Scholar
[813] Rebecca M., Turk, Nataliya V., Chumachenko, and Michael, Yarus. Multiple traslational products from a five-nucleotide ribozyme. Proc. Natl. Acad. Sci. USA, 107:4585–4589, 2010.Google Scholar
[814] Yuichiro, Ueno, Matthew S., Johnson, Sebastian O., Danielache, Carsten, Eskebjerg, Antra, Pandey, and Naohiro, Yoshida. Geological sulfur isotopes indicate elevated OCS in the Archean atmosphere, solving faint young sun paradox. Proc. Natl. Acad. Sci. USA, 106:14784–14789, 2009.Google Scholar
[815] Yuichiro, Ueno, Shuhei, Ono, Douglas, Rumble, and Shigenori, Maruyama. Quadruple sulfur isotope analysis of ca. 3.5 Ga Dresser Formation: new evidence for microbial sulfate reduction in the early Archean. Geochim. Cosmochim. Acta, 72:5675–5691, 2008.Google Scholar
[816] Jos, Uffink. Can the maximum entropy principle be explained as a consistency requirement? Studies Hist. Philos. Mod. Phys., 26B:223–261, 1995.Google Scholar
[817] Jos, Uffink. The constraint rule of the maximum entropy principle. Studies Hist. Philos. Mod. Phys., 27:47–79, 1996.Google Scholar
[818] H. Edwin, Umbarger and Barbara, Brown. Threonine deamination in Escherichia coli II: evidence for two L-threonine deaminases. J. Bacteriol., 73(1):105–112, 1957.Google Scholar
[819] The UniProt Consortium. Ongoing and future developments at the universal protein resource. Nucleic Acids Res., 39(suppl 1):D214–D219, 2011.
[820] D. A., Usher and A. H., McHale. Hydrolytic stability of helical RNA: a selective advantage for the natural 3′,5′- bond. Proc. Natl. Acad. Sci. USA, 73:1149–1153, 1976.Google Scholar
[821] M. F., Utter and H. G., Wood. Mechanisms of fixation of carbon dioxide by heterotrophs and autotrophs. Adv. Enzymol. Relat. Areas Mol. Biol., 12:41–151, 1951.Google Scholar
[822] Kaimars, Vafiya. Duality, Bosonic Particle Systems and Some Exactly Solvable Models of Non-Equilibrium. PhD Thesis, Universiteit Leiden, 2011.
[823] Nilesh, Vaidya, Michael L., Manapar, Irene A., Chen, Ramon, Xulvi-Brunet, Eric J., Hayden, and Niles, Lehman. Spontaneous network formation among coperative RNA replicators. Nature, 491:72–77, 2012.Google Scholar
[824] Patrick van, Beelen, Joannes F. A., Labro, Jan T., Keltjens, Wim J., Geertz, Godfried D., Vogels, Wim H., Laarhoven, Wim, Guijt, and A. G., Haasnoot. Derivatives of methanopterin, a coenzyme involved in methanogenesis. Eur. J. Biochem., 139:359–365, 1984.Google Scholar
[825] Cindy Lee, Van Dover and Brian, Fry. Microorganisms as food resources at deep-sea hydrothermal vents. Limnol. Oceanogr., 39:51–57, 1994.Google Scholar
[826] David A., Vanko and Debra S., Stakes. Fluids in oceanic layer 3: evidence from veined rocks, hole 735B, Southwest Indian Ridge. In Richard P., Von Herzen, Jeff, Fox, Amanda, Palmer-Julson, and Paul T., Robinson, editors, Proceedings of the Oceanic Drilling Program, Scientific Results, Vol. 118, pages 181–215. Texas A & M University, Houston, TX, 1991.
[827] Gabriele, Varani and William H., McClain. The G-U wobble base pair: a fundamental building block of RNA structure crucial to RNA function in diverse biological systems. EMBO Rep., 1:18–23, 2000.Google Scholar
[828] Vera, Vasas, Eörs, Szathmary, and Mauros, Santos. Lack of evolvability in selfsustaining autocatalytic networks: a constraint on metabolism-first path to the origin of life. Proc. Natl. Acad. Sci. USA, 107:1470–1475, 2010.Google Scholar
[829] Krassimir, Vassilev, Marina, Dimitrova, and Sevdalina, Turmanova. Catalytic activity of histidine-metal complexes in oxidation reactions. Synth. React. Inorg. Met.-org. Nano-met. Chem., 43:243–249, 2013.Google Scholar
[830] J. Craig, Venter, Karin, Remington, John F., Heidelberg, Aaron L., Halpern, Doug, Rusch, Jonathan A., Eisen, Dongying, Wu, Ian, Paulsen, Karen E., Nelson, William, Nelson, Derrick E., Fouts, Samuel, Levy, Anthony H., Knap, Michael W., Lomas, Ken, Nealson, Owen, White, Jeremy, Peterson, Jeff, Hoffman, Rachel, Parsons, Holly, Baden-Tillson, Cynthia, Pfannkoch, Yu-Hui, Rogers, and Hamilton O., Smith. Environmental genome shotgun sequencing of the Sargasso Sea. Science, 304:66–74, 2004.Google Scholar
[831] Sergio, Verdú. Fifty years of Shannon theory. IEEE Trans. Inf. Theory, 44:2057–2078, 1998.Google Scholar
[832] Vladimir I., Vernadsky. Geochemistry and the Biosphere. Synergetic Press, Santa Fe, NM, 2007.Google Scholar
[833] Kalin, Vetsigian, Carl, Woese, and Nigel, Goldenfeld. Collective evolution and the genetic code. Proc. Natl. Acad. Sci. USA, 103:10696–10701, 2006.Google Scholar
[834] Ann M., Vickery and H., Jay Melosh. Atmospheric erosion and impactor retention in large impacts with application to mass extinctions. In V. L., Sharpton and P. D., Ward, editors, Global Catastrophes in Earth History, pages 289–300. Geological Society of America, Boulder, CO, 1990.Google Scholar
[835] Alexander V., Vlassov, Sergei A., Kazakov, Brian H., Johnston, and Laura F., Landweber. The RNA world on ice: a new scenario for the emergence of RNA information. J. Mol. Evol., 61:264–273, 2005.Google Scholar
[836] Alexey N., Volkov, Robert E., Johnson, Orenthal J., Tucker, and Justin T., Erwin. Thermally-driven atmospheric escape: transition from hydrodynamic to Jeans escape. Astrophys. J. Lett., 729:L24, 2011.
[837] K. L., von Damm. Seafloor hydrothermal activity: black smoker chemistry and chimneys. Annu. Rev. Earth Planet. Sci., 18:173–204, 1990.Google Scholar
[838] J., von Neumann. Probabilistic logics and the synthesis of reliable organisms from unreliable components. Automata Stud., 34:43–98, 1956.Google Scholar
[839] Diter von, Wettstein, Simon, Gough, and C. Gaminis, Kannangara. Chlorophyll biosynthesis. Plant Cell Online, 7(7):1039–1057, 1995.Google Scholar
[840] Julia A., Vorholt, Ludmila, Chistoserdova, Sergei M., Stolyar, Rudolf K., Thauer, and Mary E., Lidstrom. Distribution of tetrahydromethanopterin-dependent enzymes in methylotrophic bacteria and phylogeny of methenyl tetrahydromethanopterin cyclohydrolases. J. Bacteriol., 181:5750–5757, 1999.Google Scholar
[841] Julia M., Vraspir and Alison, Butler. Chemistry of marine ligands and siderophores. Annu. Rev. Marine Sci., 1:43–63, 2009.Google Scholar
[842] L. J., Waber and H. G., Wood. Mechanism of acetate synthesis from CO2 by Clostridium acidi-urici. J. Bacteriol., 140(2):468–478, 1979.Google Scholar
[843] Günter, Wächtershäuser. Before enzymes and templates: a theory of surface metabolism. Microbiol. Rev., 52:452–484, 1988.Google Scholar
[844] Günter, Wächtershäuser. Pyrite formation, the first energy source for life: a hypothesis. Syst. Appl. Microbiol., 10:207–210, 1988.Google Scholar
[845] Günter, Wächtershäuser. Evolution of the first metabolic cycles. Proc. Natl. Acad. Sci. USA, 87:200–204, 1990.Google Scholar
[846] C. H., Waddington. Canalization of development and the inheritance of acquired characters. Nature, 150:563–565, 1942.Google Scholar
[847] H., Wakamatsu, Y., Yamada, T., Saito, I., Kumashiro, and T., Takenishi. Synthesis of adenine by oligomerization of hydrogen cyanide. J. Org. Chem., 31:2035–2036, 1966.Google Scholar
[848] George, Wald. Life in the second and third periods: or why phosphorus and sulfur for high-energy bonds. In M., Kasha and B., Pullman, editors, Horizons in Biochemistry, pages 127–142. Academic Press, New York, 1962.
[849] P., Walde, R., Wick, M., Fresta, A., Mangone, and P. L., Luisi. Autopoietic selfreproduction of fatty acid vesicles. J. Am. Chem. Soc., 116:11649–11654, 1994.Google Scholar
[850] Sara Imari, Walker, Martha A., Grover, and Nicholas V., Hud. Universal sequence replication, reversible polymerization and early functional biopolymers: a model for the initiation of prebiotic sequence evolution. PLoS ONE, 7:e34166, 2012.Google Scholar
[851] Shuning, Wang, Haiyan, Huang, Johanna, Moll, and Rudolf K., Thauer. NADP+ reduction with reduced ferredoxin and NADP+ reduction with NADH are coupled via an electron-bifurcating enzyme complex in Clostridium kluyveri. J. Bacteriol., 192:5115–5123, 2010.Google Scholar
[852] Shinya, Watanabe, Michael, Zimmermann, Michael B., Goodwin, Uwe, Sauer, Clifton E., Barry 3rd, and Helena I., Boshoff. Fumarate reductase activity maintains an energized membrane in anaerobic Mycobacterium tuberculosis. PLoS Pathogens, 7:e1002287, 2011.Google Scholar
[853] J. D., Watson and F. H. C., Crick. A structure for deoxyribose nucleic acid. Nature, 171:737–738, 1953.Google Scholar
[854] James D., Watson, Tania A., Baker, Stephen P., Bell, Alexander, Gann, Michael, Levine, and Richard, Losick. Molecular Biology of the Gene. Pearson, New York, seventh edition, 2014.Google Scholar
[855] Duncan J., Watts. Everything is Obvious: How Common Sense Fails Us. Crown Business, New York, 2012.
[856] Arthur L., Weber. Energy from redox disproportionation of sugar carbon drives biotic and abiotic synthesis. J. Mol. Evol., 44:354–360, 1997.Google Scholar
[857] Arthur L., Weber. Sugars as the optimal biosynthetic carbon substrate of aqueous life throughout the universe. Orig. Life Evol. Biosphere, 30:33–43, 2000.Google Scholar
[858] Arthur L., Weber. Chemical constraints governing the origin of metabolism: the thermodynamic landscape of carbon group transformations under mild aqueous conditions. Orig. Life Evol. Biosphere, 32:333–357, 2002.Google Scholar
[859] Arthur L., Weber. Kinetics of organic transformations under mild aqueous conditions: implications for the origin of life and its metabolism. Orig. Life Evol. Biosphere, 34:473–495, 2004.Google Scholar
[860] Arthur L., Weber and Sandra, Pizzarello. The peptide-catalyzed stereospecific synthesis of tetroses: a possible model for prebiotic molecular evolution. Proc. Natl. Acad. Sci. USA, 103:12713–12717, 2006.Google Scholar
[861] Steven, Weinberg. Phenomenological Lagrangians. Physica A, 96:327–340, 1979.Google Scholar
[862] Steven, Weinberg. The First Three Minutes.Basic Books, New York, second edition, 1993.Google Scholar
[863] Steven, Weinberg. The Quantum Theory of Fields, Vol. I: Foundations.Cambridge University Press, Cambridge, 1995.Google Scholar
[864] P. P., Weiner, editor. Leibniz Selections.Charles Scribner, New York, 1951.Google Scholar
[865] Joshua S., Weinger, K. Mark, Parnell, Silke, Dorner, Rachel, Green, and Scott A., Strobel. Substrate-assisted catalysis of peptide bond formation by the ribosome. Nature Struct. Mol. Biol., 11:1101–1106, 2004.Google Scholar
[866] Pierre, Weiss. L'hypothèse du champ moléculaire et la propriété ferromagnétique. J. Phys. Theor. Appl., 6:661–690, 1907.Google Scholar
[867] Geoffrey B., West and James H., Brown. The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J. Exp. Biol., 208:1575–1592, 2005.Google Scholar
[868] Geoffrey B., West, James H., Brown, and Brian J., Enquist. A general model for ontogenetic growth. Nature, 413:628–631, 2001.Google Scholar
[869] Geoffrey B., West, William H., Woodruff, and James H., Brown. Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. Proc. Natl. Acad. Sci. USA, 99:2473–2478, 2002.Google Scholar
[870] Frank H., Westheimer. Why nature chose phosphates. Science, 235:1173–1178, 1987.Google Scholar
[871] Laura Reiser, Wetzel and Everett L., Shock. Distinguishing ultramafic-from basalthosted submarine hydrothermal systems by comparing vent fluid compositions. J. Geophys. Res., 105:8319–8340, 2000.Google Scholar
[872] Harold B., White. Coenzymes as fossils of an earlier metabolic state. J. Mol. Evol., 7:101–104, 1976.Google Scholar
[873] Robert H., White. Structures of the modified folates in the extremely thermophilic archaebacterium Thermococcus litoralis. J. Bacteriol., 175:3661–3663, 1993.Google Scholar
[874] Robert H., White. Structures of the modified folates in the thermophilic archaebacteria Pyrococcus furiosus. Biochemistry, 32:745–753, 1993.Google Scholar
[875] William, White. Geochemistry.Wiley, New York, 2013.Google Scholar
[876] Andrew R., Whitehill, Changjian, Xie, Xixi, Hu, Daiqian, Xie, Hua, Guo, and Shuhei, Ono. Vibronic origin of sulfur mass-independent isotope effect in photoexcitation of SO2 and the implications to the early Earth's atmosphere. Proc. Natl. Acad. Sci. USA, 110:17697–17702, 2013.Google Scholar
[877] Herbert S., Wilf. Generating Functionology.A. K. Peters, Wellesley, MA, third edition, 2006.Google Scholar
[878] David A., Williams. Gas and dust in the interstellar medium. J. Phys., Conf. Ser., 6:1–17, 2005.Google Scholar
[879] George C., Williams. Pleiotropy, natural selection, and the evolution of senescence. Evolution, 11:398–411, 1957.Google Scholar
[880] George C., Williams. Adaptation and Natural Selection.Princeton University Press, Princeton, NJ, 1966.Google Scholar
[881] R. J. P., Williams. The fundamental nature of life as a chemical system: the part played by inorganic elements. J. Inorg. Biochem., 88:241–250, 2002.Google Scholar
[882] R. J. P., Williams and J. J. R. Fraústo Da, Silva. Evolution was chemically constrained. J. Theor. Biol., 220:323–343, 2003.Google Scholar
[883] Edmund Beecher, Wilson. The Cell in Development and Inheritance.Macmillan, New York, third edition, 1925.Google Scholar
[884] J. Tuzo, Wilson. A possible origin of the Hawaiian islands. J. Phys., 41:863–868, 1963.Google Scholar
[885] K. G., Wilson and J., Kogut. The renormalization group and the e expansion. Phys. Rep., Phys. Lett., 12C:75–200, 1974.Google Scholar
[886] Ludwig, Wittgenstein. Tractatus Logico-Philosophicus.Routledge & Kegan Paul, London, 1922. Translated by C. K., Ogden.Google Scholar
[887] Carl R., Woese. The Genetic Code: The Molecular Basis for Genetic Expression.Harper and Row, New York, 1967.Google Scholar
[888] Carl R., Woese. There must be a prokaryote somewhere: microbiology's search for itself. Microbiol. Rev., 58:1–9, 1994.Google Scholar
[889] Carl R., Woese. Default taxonomy: Ernst Mayr's view of the microbial world. Proc. Natl. Acad. Sci. USA, 95:11043–11046, 1998.Google Scholar
[890] Carl R., Woese. The universal ancestor. Proc. Natl. Acad. Sci. USA, 95:6854–6859, 1998.Google Scholar
[891] C. R., Woese. Interpreting the universal phylogenetic tree. Proc. Natl. Acad. Sci. USA, 97:8392–8396, 2000.Google Scholar
[892] C. R., Woese. On the evolution of cells. Proc. Natl. Acad. Sci. USA, 99:8742–8747, 2002.Google Scholar
[893] Carl R., Woese and George E., Fox. The concept of cellular evolution. J. Mol. Evol., 10:1–6, 1977.Google Scholar
[894] Carl R., Woese and George E., Fox. Phylogenetic structure of the prokaryotic domain: the three primary kingdoms. Proc. Natl. A cad. Sci. USA, 74:5088–5090, 1977.Google Scholar
[895] C. R., Woese, D. H., Dugre, W. C., Saxinger, and S. A., Dugre. The molecular basis for the genetic code. Proc. Natl. Acad. Sci. USA, 55:966–974, 1966.Google Scholar
[896] Carl R., Woese, Otto, Kandler, and Mark L., Wheelis. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA, 87:4576–4579, 1990.Google Scholar
[897] Carl R., Woese, Otto, Kandler, and Mark L., Wheelis. A natural classification. Nature, 351:528–529, 1991.Google Scholar
[898] Carl R., Woese, Gary J., Olsen, Michael, Ibba, and Dieter, Söll. Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol. Mol. Biol. Rev., 64:202–236, 2000.Google Scholar
[899] Friedrich, Wöhler. Über künstkliche Bildung des Harnstoffs. Ann. Phys. Chem., 88:253–256, 1828.Google Scholar
[900] Yuri I., Wolf, L., Aravind, Nick V., Grishin, and Eugene V., Koonin. Evolution of aminoacyl-tRNA synthetases – analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. Genome Res., 9:689–710, 1999.Google Scholar
[901] J. Tze-Fei, Wong. A co-evolution theory of the genetic code. Proc. Natl. Acad. Sci. USA, 72:1909–1912, 1975.Google Scholar
[902] David, Wu, Kingshuk, Ghosh, Mandar, Inamdar, Heun Jin, Lee, Scott, Fraser, Ken, Dill, and Rob, Phillips. Trajectory approach to two-state kinetics of single particles on sculpted energy landscapes. Phys. Rev. Lett., 103:050603, 2009.Google Scholar
[903] Hai, Xu, Yuzhen, Zhang, Xiaokui, Guo, Shuangxi, Ren, Andreas A., Staempfli, Juishen, Chiao, Weihong, Jiang, and Guoping, Zhao. Isoleucine biosynthesis in Leptospira interrogans serotype lai strain 56601 proceeds via a threonine-independent pathway. J. Bacteriol., 186(16):5400–5409, 2004.Google Scholar
[904] Michael, Yarus. Getting past the RNA world: the initial Darwinian ancestor. In John, Atkins, Ray, Gesteland, and Tom, Cech, editors, Cold Spring Harbor Perspect. Biol., pages 1–8. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2011.Google Scholar
[905] Yuk, Yung, M., Allen, and J. P., Pinto. Photochemistry of the atmosphere of Titan: comparison between model and observations. Astrophys. J. Suppl. Ser., 55:465–506, 1984.Google Scholar
[906] Kevin J., Zahnle. Photochemistry of methane and the formation of hydrocyanic acid (HCN) in the Earth's early atmosphere. J. Geophys. Res., 91:2819–2834, 1986.Google Scholar
[907] Kevin, Zahnle and James F., Kasting. Mass fractionation during transonic escape and implications for loss of water from Mars and Venus. Icarus, 68:462–480, 1986.Google Scholar
[908] Jan, Zarzycki, Volker, Brecht, Michael, Müller, and Georg, Fuchs. Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus. Proc. Natl. Acad. Sci. USA, 106:21317–21322, 2009.Google Scholar
[909] Jing, Zhao, Lin, Tao, Hong, Yu, JianHua, Luo, ZhiWei, Cao, and YiXue, Li. Bow-tie topological features of metabolic networks and the functional significance. Chin. Sci. Bull., 52:1036–1045, 2007.Google Scholar
[910] D., Zhou and Robert H., White. 5-(p-aminophenyl)-1,2,3,4-tetrahydroxypentane, a structural componentof the modified folate in Sulfolobus solfataricus. J. Bacteriol., 174:4576–4582, 1992.Google Scholar
[911] Weibiao, Zou, Ismail, Ibrahim, Pawel, Dziedzic, Hendrik, Sundén, and Armando, Córdova. Small peptides as modular catalysts for the direct asymmetric aldol reaction: ancient peptides with aldolase enzyme activity. Chem. Commun., 2005:4946–4948, 2005.Google Scholar
[912] G., Zubai and T., Mui. Prebiotic synthesis of nucleotides. Orig. Life Evol. Biosphere, 31:87–102, 2001.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Eric Smith, Tokyo Institute of Technology, Harold J. Morowitz, George Mason University, Virginia
  • Book: The Origin and Nature of Life on Earth
  • Online publication: 05 June 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316348772.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Eric Smith, Tokyo Institute of Technology, Harold J. Morowitz, George Mason University, Virginia
  • Book: The Origin and Nature of Life on Earth
  • Online publication: 05 June 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316348772.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Eric Smith, Tokyo Institute of Technology, Harold J. Morowitz, George Mason University, Virginia
  • Book: The Origin and Nature of Life on Earth
  • Online publication: 05 June 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316348772.011
Available formats
×