Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-18T03:42:16.275Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 September 2015

J. Eggers
Affiliation:
University of Bristol
M. A. Fontelos
Affiliation:
Universidad Autónoma de Madrid
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] M., Abramowitz and I. A., Stegun. Handbook of Mathematical Functions. Dover, 1968.Google Scholar
[2] D. J., Acheson. Elementary Fluid Dynamics. Clarendon Press, 1990.Google Scholar
[3] M., Aguareles and I., Baldomà. Structure and Gevrey asymptotics of solutions representing topological defects to some partial differential equations. Nonlinearity, 24:2813, 2011.Google Scholar
[4] M., Aguareles, S. J., Chapman, and T., Witelski. Motion of spiral waves in the complex Ginzburg–Landau equation. Physica D, 239:348, 2010.Google Scholar
[5] S., Altschuler, S., Angenent, and Y., Giga. Mean curvature flow through singularities for surfaces of rotation. J. Geom. Anal., 5:293, 1995.Google Scholar
[6] S. B., Angenent and J. J. L., Velázquez. Degenerate neckpinches in mean curvature flow. J. Reine Angew. Math., 482:15, 1997.Google Scholar
[7] S. L., Anna and G. H., McKinley. Elasto-capillary thinning and breakup of model elastic liquids. J. Rheol., 45:115, 2001.Google Scholar
[8] V. I., Arnol'd. Mathematical Methods of Classical Mechanics, Second Edition. Springer, 1989.
[9] V. I., Arnol'd, V. A., Vasil'ev, V. V., Goryunov, and O. V., Lyashko. Singularity theory I: Local and global theory. In Dynamical Systems VI. Springer, 1993.Google Scholar
[10] V. I., Arnol'd, V. A., Vasil'ev, V. V., Goryunov, and O. V., Lyashko. Singularity theory II: Classification and applications. In Dynamical Syatems VIII. Springer, 1993.Google Scholar
[11] M., Arrayás, M. A., Fontelos, and J. L., Trueba. Ionization fronts in negative corona discharges. Phys. Rev. E, 71:037401, 2005.Google Scholar
[12] H., Ashley and M., Landahl. Aerodynamics of Wings and Bodies. Addison-Wesley, 1965.Google Scholar
[13] G. I., Barenblatt. On one class of the one-dimensional problem of non-stationary filtration of a gas in a porous medium. Prikl. Mat. i Mekh., 17:739, 1953.Google Scholar
[14] G. I., Barenblatt. Similarity, Self-Similarity and Intermediate Asymptotics. Cambridge University Press, 1996.Google Scholar
[15] G. I., Barenblatt and Y. B., Zel'dovich. Self-similar solutions as intermediate asymptotics. Ann. Rev. Fluid Mech., 4:285, 1972.Google Scholar
[16] O. A., Basaran. Small-scale free surface flows with breakup: drop formation and emerging applications. AICHE, 48:1842, 2002.Google Scholar
[17] G. K., Batchelor. An Introduction to Fluid Dynamics. Cambridge University Press, 1967.Google Scholar
[18] C. M., Bender and S. A., Orszag. Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill, 1978.Google Scholar
[19] A. J., Bernoff, A. L., Bertozzi, and T. P., Witelski. Axisymmetric surface diffusion: dynamics and stability of self-similar pinch-off. J. Stat. Phys., 93:725, 1998.
[20] M. V., Berry. Singularities in waves and rays. In R., Balian, M., Kleman, and J.-P., Poirier, editors, Les Houches, Session XXXV, pp. 453–543. North-Holland, 1981.Google Scholar
[21] M. V., Berry. Rays, wavefronts and phase: a picture book of cusps. In H., Blok, H. A., Ferwerda, and H. K., Kuiken, editors, Huygens’ Principle 1690–1990: Theory and Applications, pp. 97–111. Elsevier, 1992.Google Scholar
[22] M. V., Berry. Asymptotics, singularities and the reduction of theories. In D., Prawitz, B., Skyrms, and D., Westerståhl, editors, Proc. 9th Int. Cong. Logic, Method., and Phil. of Sci. IX, pp. 597–607. Elsevier, 1994.Google Scholar
[23] M. V., Berry and J., Goldberg. Renormalisation of curlicues. Nonlinearity, 1:1, 1988.
[24] S. I., Betelu and D. G., Aronson. Focusing of noncircular self-similar shock waves. Phys. Rev. Lett., 87:074501, 2001.Google Scholar
[25] F., Bethuel, H., Brezis, and F., Hélein. Ginzburg–Landau Vortices. Birkhäuser, 1994.Google Scholar
[26] S., Bianchini and A., Bressan. Vanishing viscosity solutions of nonlinear hyperbolic systems. Ann. Math., 161:223, 2005.Google Scholar
[27] R. B., Bird, R. C., Armstrong, and O., Hassager. Dynamics of Polymeric Liquids, Volume I: Fluid Mechanics; Volume II: Kinetic Theory. Wiley, 1987.
[28] G., Birkhoff. Hydrodynamics: A Study in Logic, Fact, and Similitude. Princeton University Press, 1950.Google Scholar
[29] D., Bonn, J., Eggers, J., Indekeu, J., Meunier, and E., Rolley. Wetting and spreading. Rev. Mod. Phys., 81:739, 2009.Google Scholar
[30] A., Boudaoud and S., Chaïeb. Singular thin viscous sheet. Phys. Rev. E, 64:050601, 2001.Google Scholar
[31] M. P., Brenner. Droplet breakup and other problems involving surface tension driven flows. Ph.D. thesis, University of Chicago, 1994.Google Scholar
[32] M. P., Brenner and A. L., Bertozzi. Spreading of droplets on a solid surface. Phys. Rev. Lett., 71:593, 1993.
[33] M. P., Brenner, J., Eggers, K., Joseph, S. R., Nagel, and X. D., Shi. Breakdown of scaling in droplet fission at high Reynolds number. Phys. Fluids, 9:1573, 1997.Google Scholar
[34] M. P., Brenner, J. R., Lister, and H. A., Stone. Pinching threads, singularities and the number 0.0304. . . Phys. Fluids, 8:2827, 1996.Google Scholar
[35] M. P., Brenner, X. D., Shi, and S. R., Nagel. Iterated instabilities during droplet fission. Phys. Rev. Lett., 73:3391, 1994.
[36] J. W., Bruce and T. J., Gaffney. Simple singularities of mappings C, 0 → C2, 0. J. London Math. Soc., 26:465, 1982.
[37] J. M., Burgers. Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion. Kon. Ned. Akad. Wet., Verh. (Eerste Sectie), 17:1, 1939.Google Scholar
[38] J. C., Burton, J. E., Rutledge, and P., Taborek. Fluid pinch-off dynamics at nanometer length scales. Phys. Rev. Lett., 92:244505, 2004.Google Scholar
[39] J. C., Burton and P., Taborek. 2D inviscid pinch-off: an example of self-similarity of the second kind. Phys. Fluids, 19:102109, 2007.Google Scholar
[40] R. E., Caflisch, N., Ercolani, T. Y., Hou, and Y., Landis. Multi-valued solutions and branch point singularities for nonlinear hyperbolic and elliptic systems. Comm. Pure and Appl. Math., 46:453, 1993.
[41] R. E., Caflisch and O. F., Orellana. Singular solutions and ill-posedness for the evolution of vortex sheets. SIAM J. Math. Anal., 20:293, 1989.Google Scholar
[42] G. F., Carrier, M., Krook, and C. E., Pearson. Functions of a Complex Variable. McGraw-Hill, 1966.Google Scholar
[43] J. R., Castrejón-Pita, A. A., Castrejón-Pita, E. J., Hinch, J. R., Lister, and I. M., Hutchings. Self-similar breakup of near-inviscid liquids. Phys. Rev. E, 86:015301(R), 2012.Google Scholar
[44] A. U., Chen, P. K., Notz, and O. A., Basaran. Computational and experimental analysis of pinch-off and scaling. Phys. Rev. Lett., 88:174501, 2002.Google Scholar
[45] J.-D., Chen. Experiments on a spreading drop and its contact angle on a solid. J. Colloid Interf. Sci., 122:60, 1988.Google Scholar
[46] X., Chen, C. M., Elliott, and T., Qi. Shooting method for vortex solutions of a complex-valued Ginzburg–Landau equation. Proc. Roy. Soc. Edinburgh A, 124:1075, 1994.Google Scholar
[47] Y.-J., Chen and P. H., Steen. Dynamics of inviscid capillary breakup: collapse and pinchoff of a film bridge. J. Fluid Mech., 341:245, 1997.Google Scholar
[48] R. F., Chisnell. An analytic description of converging shock waves. J. Fluid Mech., 354:357, 1998.Google Scholar
[49] M.W., Choptuik. Universality and scaling in gravitational collapse of a massless scalar field. Phys. Rev. Lett., 70:9, 1993.Google Scholar
[50] A., Chorin and J. E., Marsden. A Mathematical Introduction to Fluid Mechanics. Springer, 2000.Google Scholar
[51] C., Clasen, J., Eggers, M. A., Fontelos, J., Li, and G. H., McKinley. The beads-onstring structure of viscoelastic jets. J. Fluid Mech., 556:283, 2006.
[52] I., Cohen, M. P., Brenner, J., Eggers, and S. R., Nagel. Two fluid drop snap-off problem: experiment and theory. Phys. Rev. Lett., 83:1147, 1999.Google Scholar
[53] P., Constantin, T. F., Dupont, R. E., Goldstein, L. P., Kadanoff, M. J., Shelley, and S.-M., Zhou. Droplet breakup in a model of the Hele-Shaw cell. Phys. Rev. E, 47:4169, 1993.Google Scholar
[54] S. D., Conte and C., De Boor. Elementary Numerical Analysis. McGraw Hill, 1965.Google Scholar
[55] S. Courrech du, Pont and J., Eggers. Sink flow deforms the interface between a viscous liquid and air into a tip singularity. Phys. Rev. Lett., 96:034501, 2006.Google Scholar
[56] V. F., Cowling and W. C., Royster. Domains of variability for univalent polynomials. Proc. Amer. Math. Soc., 19:767, 1968.Google Scholar
[57] R. F., Day, E. J., Hinch, and J. R., Lister. Self-similar capillary pinchoff of an inviscid fluid. Phys. Rev. Lett., 80:704, 1998.Google Scholar
[58] P.-G. de, Gennes, F., Brochart-Wyart, and D., Quéré. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer, 2003.Google Scholar
[59] F. de la, Hoz, M. A., Fontelos, and L., Vega. The effect of surface tension on the Moore singularity of vortex sheet dynamics. J. Nonlinear Sci., 18:463, 2008.Google Scholar
[60] W. R., Dean and P. E., Montagnon. On the steady motion of viscous liquid in a corner. Proc. Camb. Phil. Soc., 45:389, 1949.Google Scholar
[61] R. D., Deegan, O., Bakajin, T. F., Dupont, G., Huber, S. R., Nagel, and T. A., Witten. Contact line deposits in an evaporating drop. Phys. Rev. E, 62:756, 2000.Google Scholar
[62] M. P. do, Carmo. Differential Geometry of Curves and Surfaces. Prentice-Hall, 1976.
[63] P., Doshi, I., Cohen, W. W., Zhang, M., Siegel, P., Howell, O. A., Basaran et al. Persistence of memory in drop breakup: the breakdown of universality. Science, 302:1185, 2003.Google Scholar
[64] J. Douglas, Jr. and T. F., Dupont. Alternating-direction Galerkin methods on rectangles. In B., Hubbard, editor, Numerical Solution of Partial Differential Equations II, pp. 133–214. Academic Press, 1971.
[65] P. G., Drazin. Nonlinear Systems. Cambridge University Press, 1992.Google Scholar
[66] P. G., Drazin and W. H., Reid. Hydrodynamic Stability. Cambridge University Press, 1981.Google Scholar
[67] L., Duchemin and J., Eggers. The explicit–implicit–null method: removing the numerical instability of PDEs. J. Comp. Phys., 263:37, 2014.Google Scholar
[68] B. R., Duffy and S. K., Wilson. A third-order differential equation arising in thinfilm flows and relevant to Tanner's law. Appl. Math. Lett., 10:63, 1997.Google Scholar
[69] D. G., Duffy. Green's Functions with Applications. Chapman & Hall, 2001.Google Scholar
[70] C. R., Dun and G. C., Hocking. Withdrawal of fluid through a line sink beneath a free surface above a sloping boundary. J. Eng. Math., 29:1, 1995.Google Scholar
[71] H. E., Edgerton. Stopping Time: The Photographs of Harold Edgerton. Abrams, 1977.Google Scholar
[72] H., Effinger and S., Grossmann. Static structure function of turbulent flow from the Navier–Stokes equation. Z. Phys. B, 66:289, 1987.Google Scholar
[73] J., Eggers. Theory of drop formation. Phys. Fluids, 7:941, 1995.Google Scholar
[74] J., Eggers. Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys., 69:865, 1997.Google Scholar
[75] J., Eggers. Drop formation – an overview. ZAMM, 85:400, 2005.Google Scholar
[76] J., Eggers. Stability of a viscous pinching thread. Phys. Fluids, 24:072103, 2012.Google Scholar
[77] J., Eggers. Post-breakup solutions of Navier–Stokes and Stokes threads. Phys. Fluids, 26:072104, 2014.Google Scholar
[78] J., Eggers and T. F., Dupont. Drop formation in a one-dimensional approximation of the Navier–Stokes equation. J. Fluid Mech., 262:205, 1994.Google Scholar
[79] J., Eggers and M. A., Fontelos. Isolated inertialess drops cannot break up. J. Fluid Mech., 530:177, 2005.Google Scholar
[80] J., Eggers and M. A., Fontelos. The role of self-similarity in singularities of partial differential equations. Nonlinearity, 22:R1, 2009.Google Scholar
[81] J., Eggers and J., Hoppe. Singularity formation for timelike extremal hypersurfaces. Phys. Lett. B, 680:274, 2009.Google Scholar
[82] J., Eggers and H. A., Stone. Characteristic lengths at moving contact lines for a perfectly wetting fluid: the influence of speed on the dynamic contact angle. J. Fluid Mech., 505:309, 2004.Google Scholar
[83] J., Eggers and E., Villermaux. Physics of liquid jets. Rep. Progr. Phys., 71:036601, 2008.Google Scholar
[84] J., Eggers, M. A., Fontelos, D., Leppinen, and J. H., Snoeijer. Theory of the collapsing axisymmetric cavity. Phys. Rev. Lett., 98:094502, 2007.Google Scholar
[85] V. M., Entov and A. L., Yarin. Influence of elastic stresses on the capillary breakup of dilute polymer solutions. Fluid Dyn., 19:21, 1984.Google Scholar
[86] M. A., Fontelos. Break-up and no break-up in a family of models for the evolution of viscoelastic jets. Z. Angew. Math. Phys., 54:84, 2003.Google Scholar
[87] M. A., Fontelos, J., Eggers, and J. H., Snoeijer. The spatial structure of bubble pinch-off. SIAM J. Appl. Math., 71:1696, 2011.Google Scholar
[88] L. B., Freund. Dynamic Fracture Mechanics. Cambridge, 1998.Google Scholar
[89] L. A., Galin. Unsteady seepage with a free surface. Dokl. Akad. Nauk. SSSR, 47:246, 1945.Google Scholar
[90] C. G., Gibson. Singular Points of Smooth Mappings. Pitman, 1979.Google Scholar
[91] C. G., Gibson and C. A., Hobbs. Simple singularities of space curves. Math. Proc. Camb. Phil. Soc., 113:297, 1993.Google Scholar
[92] Y., Giga and R. V., Kohn. Asymptotically self-similar blow-up of semi-linear heat-equations. Comm. Pure Appl. Math., 38:297, 1985.Google Scholar
[93] Y., Giga and R. V., Kohn. Characterizing blowup using similarity variables. Indiana University Math. J., 36:1, 1987.Google Scholar
[94] J. W., Goodman. Introduction to Fourier Optics. Roberts & Co., 2004.Google Scholar
[95] J. M., Gordillo and M. A., Fontelos. Satellites in inviscid breakup of bubbles. Phys. Rev. Lett., 98:144503, 2007.Google Scholar
[96] I. S., Gradshteyn and I. M., Ryzhik. Table of Integrals, Series, and Products. Academic Press, 1980.Google Scholar
[97] G. M., Greuel, C., Lossen, and E., Shustin. Introduction to Singularities and Deformations. Springer, 2007.Google Scholar
[98] W. C., Griffith and W., Bleakney. Shock waves in gases. Amer. J. Phys., 22:597, 1954.Google Scholar
[99] R. E., Grundy. Local similarity solutions for the initial value problem in nonlinear diffusion. IMA J. Appl. Math., 30:209, 1983.Google Scholar
[100] G., Guderley. Starke kugelige und zylindrische Verdichtungsstöße in der Nähe des Kugelmittelpunktes bzw. der Zylinderachse. Luftfahrtforschung, 19:302, 1942.Google Scholar
[101] B., Gustafsson and A., Vasil'ev. Conformal and Potential Analysis in Hele-Shaw Cells. Birkhäuser, 2006.Google Scholar
[102] S., Gutiérrez, J., Rivas, and L., Vega. Formation of singularities and self-similar vortex motion under the localized induction approximation. Comm. Partial Diff. Eq., 28:927, 2003.Google Scholar
[103] D. A., Hammond and L. G., Redekopp. Global dynamics of symmetric and asymmetric wakes. J. Fluid Mech., 331:231, 1997.Google Scholar
[104] T. H., Havelock. The stability of motion of rectilinear vortices in ring formation. Phil. Mag., 11:617, 1931.Google Scholar
[105] H. S., Hele-Shaw. The flow of water. Nature, 58:34, 1898.Google Scholar
[106] D., Henderson, H., Segur, L. B., Smolka, and M., Wadati. The motion of a falling liquid filament. Phys. Fluids, 12:550, 2000.Google Scholar
[107] M. A., Herrero and J. J. L., Velázquez. Chemotactic collapse for the Keller–Segel model. J. Math. Biol., 35:177, 1996.Google Scholar
[108] M. A., Herrero and J. J. L., Velázquez. Singularity patterns in a chemotaxis model. Math. Ann., 306:583, 1996.Google Scholar
[109] R.-M., Hervé and M., Hervé. Étude qualitative des solutions réelles d'une équation différentielle liée à l’équation de Ginzburg–Landau. Ann. Inst. H. Poincaré Anal. Non Linéaire, 11:427, 1994.Google Scholar
[110] H., Hochstadt. Integral Equations. Wiley, 1973.Google Scholar
[111] L. M., Hocking. Rival contact-angle models and the spreading of drops. J. Fluid Mech., 239:671, 1992.Google Scholar
[112] B., Hopkinson. Discontinuous fluid motions involving sources and vortices. Proc. Lond. Math. Soc., 29:142–164, 1898.Google Scholar
[113] J., Hoppe. Conservation laws and formation of singularities in relativistic theories of extended objects. In Nonlinear Waves, Gakuto International Series: Mathematical Sciences and Applications, Volume 8. Gakkotosho, 2006.Google Scholar
[114] S. D., Howison. Cusp development in Hele-Shaw flow with a free surface. SIAM J. Appl. Math, 46:20, 1986.Google Scholar
[115] C., Huh and L. E., Scriven. Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Coll. Int. Sci., 35:85, 1971.Google Scholar
[116] G., Huisken. Local and global behaviour of hypersurfaces moving by mean curvature. Proc. Symp. Pure Math., 54:175, 1993.Google Scholar
[117] L., Ignat, C., Lefter, and V. D., Radulescu. Minimization of the renormalized energy in the unit ball of R2. Nieuw Arch. Wiskd., 1:278, 2000.Google Scholar
[118] R., Ishiguro, F., Graner, E., Rolley, and S., Balibar. Coalescence of crystalline drops. Phys. Rev. Lett., 93:235301, 2004.Google Scholar
[119] R., Ishiguro, F., Graner, E., Rolley, S., Balibar, and J., Eggers. Dripping of a crystal. Phys. Rev. E, 75:041606, 2007.Google Scholar
[120] J. D., Jackson. Classical Electrodynamics. Wiley, 1975.Google Scholar
[121] D. J., Jeffrey and Y., Onishi. The slow motion of a cylinder next to a plane wall. Quart. J. Mech. Appl. Math., 34:129, 1981.Google Scholar
[122] J.-T., Jeong and H. K., Moffatt. Free-surface cusps associated with a flow at low Reynolds numbers. J. Fluid Mech., 241:1, 1992.Google Scholar
[123] F., John. Two-dimensional potential flows with a free boundary. Comm. Pure Appl. Math., 6:497, 1953.
[124] D. D., Joseph, J., Nelson, M., Renardy, and Y., Renardy. Two-dimensional cusped interfaces. J. Fluid Mech., 223:383, 1991.Google Scholar
[125] N. C., Keim, P., Møller, W. W., Zhang, and S. R., Nagel. Breakup of air bubbles in water: memory and breakdown of cylindrical symmetry. Phys. Rev. Lett., 97:144503, 2006.Google Scholar
[126] T. A., Kowalewski. On the separation of droplets. Fluid Dyn. Res., 17:121, 1996.Google Scholar
[127] S. N., Kruzkov. Generalized solutions of the Cauchy problem in the large for first order nonlinear equations. Dokl. Akad. Nauk. SSSR, 187:29, 1969.Google Scholar
[128] P. K., Kundu and I. M., Cohen. Fluid Mechanics, Second Edition. Academic Press, 2002.Google Scholar
[129] B., Lafaurie, C., Nardone, R., Scardovelli, S., Zaleski, and G., Zanetti. Modelling merging and fragmentation in multiphase flows with SURFER. J. Comput. Physics, 113:134, 1994.Google Scholar
[130] G., Lagubeau, M. A., Fontelos, C., Josserand, A., Maurel, V., Pagneux, and P., Petitjeans. Flower patterns in drop impact on thin liquid films. Phys. Rev. Lett., 105:184503, 2010.Google Scholar
[131] H., Lamb. Hydrodynamics, Sixth Edition. Cambridge University Press, 1932.Google Scholar
[132] L. D., Landau and E. M., Lifshitz. Elasticity. Pergamon, 1970.Google Scholar
[133] L. D., Landau and E. M., Lifshitz. Fluid Mechanics. Pergamon, 1987.Google Scholar
[134] L. D., Landau and E. M., Lifshitz. Electrodynamics of Continuous Media. Pergamon, 1984.Google Scholar
[135] N. N., Lebedev. Special Functions and Their Applications. Prentice-Hall, 1965.Google Scholar
[136] J.-B., Leblond. Mécanique de la rupture fragile et ductile. Hermès, 2003.Google Scholar
[137] D., Leppinen and J., Lister. Capillary pinch-off in inviscid fluids. Phys. Fluids, 15:568, 2003.Google Scholar
[138] J., Leray. Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math., 63:193, 1934.Google Scholar
[139] B. M., Levitan and I. S., Sargsjan. Sturm–Liouville and Dirac Operators. Springer, 1990.Google Scholar
[140] H., Li, T. C., Halsey, and A., Lobkovsky. Singular shape of a fluid drop in an electric or magnetic field. Europhys. Lett., 27:575, 1994.Google Scholar
[141] J., Li and M. A., Fontelos. Drop dynamics on the beads-on-string structure of viscoelastic jets: a numerical study. Phys. Fluids, 15:922, 2003.Google Scholar
[142] F.-H., Lin and J. X., Xin. On the dynamical law of the Ginzburg–Landau vortices on the plane. Comm. Pure Appl. Math., 52:1189, 1999.Google Scholar
[143] J. R., Lister and H. A., Stone. Capillary breakup of a viscous thread surrounded by another viscous fluid. Phys. Fluids, 10:2758, 1998.Google Scholar
[144] E. W., Llewellin, H. M., Mader, and S. D. R., Wilson. The rheology of a bubbly liquid. Proc. Roy. Soc. London A, 458:987, 2002.Google Scholar
[145] R. A., London and B. P., Flannery. Hydrodynamics of x-ray induced stellar winds. Astrophys. J., 258:260, 1982.Google Scholar
[146] B., Lopez. Comportement hydrodynamique d'un jet capillaire: influence de la buse d'ejection. Ph.D. thesis, University of Grenoble, 1998.Google Scholar
[147] E. N., Lorenz. Deterministic nonperiodic flow. J. Atmos. Sci., 20:130, 1963.Google Scholar
[148] A. J., Majda and A. L., Bertozzi. Vorticity and Incompressible Flow. Cambridge University Press, 2002.Google Scholar
[149] N., Marheineke and R., Wegener. Asymptotic model for the dynamics of curved viscous fibres with surface tension. J. Fluid Mech., 622:345, 2009.Google Scholar
[150] J. M., Martin-Garcia and C., Gundlach. Global structure of Choptuik's critical solution in scalar field collapse. Phys. Rev. D, 68:024011, 2003.Google Scholar
[151] J. M., Martin-Garcia and C., Gundlach. Critical phenomena in gravitational collapse. Living Rev. Rel., 10:5, 2007.Google Scholar
[152] J. B., McLeod. The asymptotic behavior near the crest of waves of extreme form. Trans. Amer. Math. Soc., 299:299, 1987.Google Scholar
[153] L. M., Milne-Thompson. Theoretical Hydrodynamics, Fourth Edition. Macmillan & Co., 1962.Google Scholar
[154] H. K., Moffatt. Viscous and resistive eddies near a sharp corner. J. Fluid Mech., 18:1, 1963.Google Scholar
[155] H. K., Moffatt and B. R., Duffy. Local similarity solutions and their limitations. J. Fluid Mech., 96:299, 1980.Google Scholar
[156] D., Mond. On the classification of germs of maps from R2 → R3. Proc. London Math. Soc., 50:333, 1985.Google Scholar
[157] D. W., Moore. Spontaneous appearance of a singularity in the shape of an evolving vortex sheet. Proc. Roy. Soc. London A, 365:105, 1979.Google Scholar
[158] M., Moseler and U., Landman. Formation, stability, and breakup of nanojets. Science, 289:1165, 2000.Google Scholar
[159] J. D., Murray. Mathematical Biology. Springer, New York, 1993.Google Scholar
[160] J. C., Neu. Vortices in complex scalar fields. Physica D, 43:385, 1990.Google Scholar
[161] P., Nozières. Shape and growth of crystals. In C., Godrèche, editor, Solids far from Equilibrium, pp. 1–154. Cambridge University Press, 1992.Google Scholar
[162] J., Nye. Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations. Institute of Physics Publishing, 1999.Google Scholar
[163] A., Oron, S. H., Davis, and S. G., Bankoff. Long-scale evolution of thin liquid films. Rev. Mod. Phys., 69:931, 1997.Google Scholar
[164] C., Pantano, A. M., Gañán-Calvo, and A., Barrero. Zeroth order, electrohydrostatic solution for electrospraying in cone-jet mode. J. Aerosol Sci., 25:1065, 1994.Google Scholar
[165] D. T., Papageorgiou. On the breakup of viscous liquid threads. Phys. Fluids, 7:1529, 1995.Google Scholar
[166] T., Pearcey. The structure of the electromagnetic field in the neighbourhood of a cusp of a caustic. Phil. Mag., 37:311, 1946.Google Scholar
[167] C. L., Pekeris and Y., Accad. Solution of Laplace's equations for the M2 tide in the world oceans. Phil. Trans. Roy. Soc. London, 265:413, 1969.Google Scholar
[168] D. H., Peregrine, G., Shoker, and A., Symon. The bifurcation of liquid bridges. J. Fluid Mech., 212:25, 1990.Google Scholar
[169] L. M., Pismen. Vortices in Nonlinear Fields: From Liquid Crystals to Superfluids, from Non-equilibrium Patterns to Cosmic Strings. Oxford, 1999.Google Scholar
[170] L. M., Pismen and J., Eggers. Solvability condition for the moving contact line. Phys. Rev. E, 78:056304, 2008.Google Scholar
[171] L. M., Pismen and J., Rubinstein. Motion of vortex lines in the Ginzburg–Landau model. Physica D, 47:353, 1991.Google Scholar
[172] P. I., Plotnikov and J. F., Toland. Convexity of Stokes waves of extreme form. Arch. Rational Mech. Anal., 171:349, 2004.Google Scholar
[173] P. Ya., Polubarinova-Kochina. Concerning unsteady motions in the theory of filtration. Prikl. Matem. Mech., 9:79, 1945.Google Scholar
[174] P. Ya., Polubarinova-Kochina. On a problem of the motion of the contour of a petroleum shell. Dokl. Akad. Nauk USSR, 47:254, 1945.Google Scholar
[175] S., Popinet. An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys., 228:5838, 2009.Google Scholar
[176] T., Poston and I., Stewart. Catastrophe Theory and Its Applications. Dover, 1978.Google Scholar
[177] C., Pozrikidis. Boundary Integral and Singularity Methods for Linearized Flow. Cambridge University Press, 1992.Google Scholar
[178] W. H., Press, S. A., Teukolsky, W. T., Vetterling, and B. P., Flannery. Numerical Recipes: The Art of Scientific Computing, Third Edition. Cambridge University Press, 2007.Google Scholar
[179] W. H., Press, S. A., Teukolski, W. T., Vetterling, and B. P., Flannery. Numerical Recipes in Fortran; The Art of Scientific Computing Second Edition. Cambridge University Press, 1992.Google Scholar
[180] A., Pumir and E. D., Siggia. Development of singular solutions to the axisymmtric Euler equations. Phys. Fluids A, 4:1472, 1992.Google Scholar
[181] A., Ramos and A., Castellanos. Conical points in liquid–liquid interfaces subjected to electric fields. Phys. Lett. A, 184:268, 1994.Google Scholar
[182] Michael, Renardy. Self-similar breakup of non-Newtonian fluid jets. In Rheology Reviews, pp. 171–196, 2004.Google Scholar
[183] O., Reynolds. On the theory of lubrication and its application to M. Beauchamp Tower's experiments, including an experimental determination of the viscosity of olive oil. Phil. Trans. Roy. Soc. 177:157, 1886.Google Scholar
[184] E., Reyssat, E., Lorenceau, F., Restagno, and D., Quéré. Viscous jet drawing air into a bath. Phys. Fluids, 20:091107, 2008.Google Scholar
[185] L. F., Richardson. Atmospheric diffusion shown in a distance–neighbor graph. Proc. Roy. Soc. London A, 110:709, 1926.Google Scholar
[186] H., Risken. The Fokker–Planck Equation. Springer, 1984.Google Scholar
[187] A., Rothert, R., Richter, and I., Rehberg. Transition from symmetric to asymmetric scaling function before drop pinch-off. Phys. Rev. Lett., 87:084501, 2001.Google Scholar
[188] A. I., Ruban and J. S. B., Gajjar. Fluid Dynamics. Oxford University Press, 2014.Google Scholar
[189] P. G., Saffman. Vortex Dynamics. Cambridge University Press, 1992.Google Scholar
[190] E., Sandier and S., Serfaty. Gamma-convergence of gradient flows with applications to Ginzburg–Landau. Comm. Pure Appl. Math., 57:1627, 2004.Google Scholar
[191] C., Sautreaux. Mouvement d'un liquide parfait soumis à la pesanteur. Détermination des lignes de courant. J. Math. Pures Appl., 7:125, 1901.Google Scholar
[192] K., Schowalter. Quadratic and cubic reaction–diffusion fronts. Nonlinear Sci. Today, 4:3, 1995.Google Scholar
[193] D. W., Schwendeman and G. B., Whitham. On converging shock waves. Proc. Roy. Soc. London A, 413:297, 1987.Google Scholar
[194] L. I., Sedov. Similarity and Dimensional Methods in Mechanics. CRC Press, 1993.Google Scholar
[195] D., Segalman and M. W. Johnson, Jr. A model for viscoelastic fluid behavior which allows non-affine deformation. J. Non-Newtonian Fluid Mech., 2:255, 1977.Google Scholar
[196] M. J., Sewell. On Legendre transformations and elementary catastrophes. Math. Proc. Camb. Soc., 82:147, 1977.Google Scholar
[197] X. D., Shi, M. P., Brenner, and S. R., Nagel. A cascade of structure in a drop falling from a faucet. Science, 265:157, 1994.Google Scholar
[198] A., Sierou and J. R., Lister. Self-similar solutions for viscous capillary pinch-off. J. Fluid Mech., 497:381, 2003.Google Scholar
[199] I. N., Sneddon. Elements of Partial Differential Equations. McGraw-Hill, 1957.Google Scholar
[200] J. H., Snoeijer. Free surface flows with large slopes: beyond lubrication theory. Phys. Fluids, 18:021701, 2006.Google Scholar
[201] H. A., Stone, J. R., Lister, and M. P., Brenner. Drops with conical ends in electric and magnetic fields. Proc. Roy. Soc. Lond. A, 455:329, 1999.Google Scholar
[202] S. H., Strogatz. Nonlinear Dynamics and Chaos. Westview Press, 1994.Google Scholar
[203] C., Sulem, P. L., Sulem, C., Bardos, and U., Frisch. Finite time analyticity for the two and three dimensional Kelvin–Helmholtz instability. Comm. Math. Phys., 80:485, 1981.Google Scholar
[204] S., Taneda. Visualization of separating Stokes flows. J. Phys. Soc. Japan, 46:1935, 1979.Google Scholar
[205] S., Taneda and M., Honji. Unsteady flow past a flat plate normal to the direction of motion. J. Phys. Soc. Japan, 30:262, 1971.Google Scholar
[206] G. I., Taylor. The formation of a blast wave by a very intense explosion. Proc. Roy. Soc. London A, 201:159, 1950.Google Scholar
[207] G. I., Taylor. On scraping viscous fluid from a plane surface. In G. K., Batchelor, editor, G. I. Taylor: Scientific Papers, Volume IV, p. 410. Cambridge University Press, 1960.Google Scholar
[208] S. T., Thoroddsen, E. G., Etoh, and K., Takeara. Experiments on bubble pinch-off. Phys. Fluids, 19:042101, 2007.Google Scholar
[209] L., Ting and J. B., Keller. Slender jets and thin sheets with surface tension. SIAM J. Appl. Math., 50:1533, 1990.Google Scholar
[210] L. R. G., Treloar. The Physics of Rubber Elasticity. Oxford University Press, 1975.Google Scholar
[211] M. P., Valignat, N., Fraysse, A.-M., Cazabat, F., Heslot, and P., Levinson. An ellipsometric study of layered droplets. Thin Solid Films, 234:475, 1993.Google Scholar
[212] M. Van, Dyke. An Album of Fluid Motion. The Parabolic Press, 1982.Google Scholar
[213] A., Vilenkin and E. P. S., Shellard. Cosmic Strings and Other Topological Defects. Cambridge University Press, 2000.Google Scholar
[214] O. V., Voinov. Hydrodynamics of wetting [English translation]. Fluid Dynamics, 11:714, 1976.Google Scholar
[215] H. von, Foerster, P. M., Mora, and L. W., Amiot. Doomsday: Friday, 13 November, AD 2026. Science, 132:1291, 1960.Google Scholar
[216] M., Watanabe and K., Takayama. Stability of converging cylindrical shock waves. Shock Waves, 1:149, 1991.Google Scholar
[217] R. C., Weast, editor. Handbook of Chemistry and Physics. CRC Press, 1978.Google Scholar
[218] F. J., Wegner. Corrections to scaling laws. Phys. Rev. B, 5:4529, 1972.Google Scholar
[219] H., Werlé. Hydrodynamic flow visualization. Ann. Rev. FluidMech., 5:361, 1973.Google Scholar
[220] H. M., Westergaard. Bearing pressures and cracks. J. Appl. Mech., 6:A49, 1939.Google Scholar
[221] G. B., Whitham. A new approach to problems of shock dynamics. Part I: Two-dimensional problems. J.|Fluid Mech., 2:145, 1957.Google Scholar
[222] G. B., Whitham. Linear and Nonlinear Waves. Wiley, 1974.Google Scholar
[223] T. P., Witelski and A. J., Bernoff. Self-similar asymptotics for linear and nonlinear diffusion equations. Stud. Appl. Math., 100:153, 1998.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • J. Eggers, University of Bristol, M. A. Fontelos, Universidad Autónoma de Madrid
  • Book: Singularities: Formation, Structure, and Propagation
  • Online publication: 05 September 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316161692.020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • J. Eggers, University of Bristol, M. A. Fontelos, Universidad Autónoma de Madrid
  • Book: Singularities: Formation, Structure, and Propagation
  • Online publication: 05 September 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316161692.020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • J. Eggers, University of Bristol, M. A. Fontelos, Universidad Autónoma de Madrid
  • Book: Singularities: Formation, Structure, and Propagation
  • Online publication: 05 September 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316161692.020
Available formats
×